Quiz 3
 4/27/07
 Physics 219

(a) (5 points) The heat absorbed by N particles of an ideal gas in a quasi-static process in which the temperature T changes by $d T$ and its volume V by $d V$ is given by

$$
đ Q=C_{V} d T+\bar{p} d V
$$

where C_{V} is its heat capacity at constant volume and \bar{p} is the mean pressure. Find an expression for the change of entropy of this gas in a quasi-static process which takes if from initial values of temperature T_{i} and volume V_{i} to final values T_{f} and volume V_{f}. Does your answer depend on the particular quasi-static process (i.e. the path) involved in going from the initial to the final state?
(b) (5 points) Now assume that this gas is thermally insulated and is allowed to expand quasistatically from an initial volume V_{i} at temperature T_{i} to a final volume V_{f}. Using the result from part (a), find the final temperature T_{f}.

