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In class we showed that the determination of the specific heat of a degenerate Fermi gas involved
the following integral
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(ex + 1)2
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The integrand can be written as
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, (2)

which is clearly an even function of x and so we can write I as an integral involving only positive
values of x,
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This is not exactly of a standard type, but can be related to a more standard integral since
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where
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where, in the last line, we made the substitution ax = t. Hence, from Eqs. (4) and (5), we have
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which is of a fairly standard type.
We determine it, initially as a series, as follows:
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where, to get the last line, we made the substitution t → t/2 in the second term, t → t/3 in the
third term, and so on. The integral
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In the first set of rectangular brackets we include the missing terms (which involve even integers)
and then subtract them back out in the second term, i.e.
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where

ζ(2) ≡ 1 +
1
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is a zeta function and has value π2/6. (This will have been shown in 116C.) Hence, from Eqs. (9)
and (10), we have

I =
π2

3
, (11)

as stated in class.


