Physics 112
 An Integral

Peter Young
(Dated: February 16, 2012)

In class we showed that the determination of the specific heat of a degenerate Fermi gas involved the following integral

$$
\begin{equation*}
I=\int_{-\infty}^{\infty} \frac{x^{2} e^{x}}{\left(e^{x}+1\right)^{2}} d x \tag{1}
\end{equation*}
$$

The integrand can be written as

$$
\begin{equation*}
\left(\frac{x}{e^{x / 2}+e^{-x / 2}}\right)^{2} \tag{2}
\end{equation*}
$$

which is clearly an even function of x and so we can write I as an integral involving only positive values of x,

$$
\begin{equation*}
I=2 \int_{0}^{\infty} \frac{x^{2} e^{x}}{\left(e^{x}+1\right)^{2}} d x \tag{3}
\end{equation*}
$$

This is not exactly of a standard type, but can be related to a more standard integral since

$$
\begin{equation*}
I=-\left.2 \frac{d J(a)}{d a}\right|_{a=1}, \tag{4}
\end{equation*}
$$

where

$$
\begin{align*}
J(a) & =\int_{0}^{\infty} \frac{x}{e^{a x}+1} d x \\
& =\frac{1}{a^{2}} \int_{0}^{\infty} \frac{t}{e^{t}+1} d t \tag{5}
\end{align*}
$$

where, in the last line, we made the substitution $a x=t$. Hence, from Eqs. (4) and (5), we have

$$
\begin{equation*}
I=4 \int_{0}^{\infty} \frac{t}{e^{t}+1} d t \tag{6}
\end{equation*}
$$

which is of a fairly standard type.
We determine it, initially as a series, as follows:

$$
\begin{align*}
I & =4 \int_{0}^{\infty} \frac{t}{e^{t}+1} d t \\
& =4 \int_{0}^{\infty} t \frac{e^{-t}}{1+e^{-t}} d t \\
& =4 \int_{0}^{\infty} t\left[e^{-t}-e^{-2 t}+e^{-3 t}-e^{-4 t}+\cdots\right] d t \\
& =4 \int_{0}^{\infty} t e^{-t} d t\left[1-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\cdots\right] \tag{7}
\end{align*}
$$

where, to get the last line, we made the substitution $t \rightarrow t / 2$ in the second term, $t \rightarrow t / 3$ in the third term, and so on. The integral $\int_{0}^{\infty} t e^{-t} d t$ is equal to $1!(=1)$, and so

$$
\begin{equation*}
I=4\left\{\left[1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\cdots\right]-\left[\frac{1}{2^{2}}+\frac{1}{4^{2}}+\frac{1}{6^{2}}+\cdots\right]\right\} . \tag{8}
\end{equation*}
$$

In the first set of rectangular brackets we include the missing terms (which involve even integers) and then subtract them back out in the second term, i.e.

$$
\begin{align*}
I & =4\left\{\left[1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\cdots\right]-2\left[\frac{1}{2^{2}}+\frac{1}{4^{2}}+\frac{1}{6^{2}}+\cdots\right]\right\} \\
& =4\left\{\left[1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\cdots\right]-\frac{1}{2}\left[1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots\right]\right\} \\
& =4\left(1-\frac{1}{2}\right)\left[1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\cdots\right] \\
& =2 \zeta(2), \tag{9}
\end{align*}
$$

where

$$
\begin{equation*}
\zeta(2) \equiv 1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\cdots \tag{10}
\end{equation*}
$$

is a zeta function and has value $\pi^{2} / 6$. (This will have been shown in 116C.) Hence, from Eqs. (9) and (10), we have

$$
\begin{equation*}
I=\frac{\pi^{2}}{3} \tag{11}
\end{equation*}
$$

as stated in class.

