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The probability that a single orbital k is occuped in the classical ideal gas is given by the classical distribution

fcl(ǫk) = exp(β(µ− ǫk)) . (1)

We recall that this number is very small compared with unity.
We are more interested in the number of particles in a given range of energy, dǫ rather than the mean number in a

single level. This is equal to

fcl(ǫ)ρ(ǫ) dǫ , (2)

where ρ(ǫ) ∝ ǫ1/2 is the density of states. Hence, if we observe a particle, the probability that its energy lies between
ǫ and ǫ+ dǫ, is

P (ǫ) dǫ = Afcl(ǫ)ρ(ǫ) dǫ , (3)

where

A =

[∫
∞

0

fcl(ǫ)ρ(ǫ) dǫ

]
−1

(4)

is a normalization constant. Since ρ(ǫ) ∝ ǫ1/2 we have

P (ǫ) dǫ = B ǫ1/2 exp(−βǫ)) dǫ , (5)

where B is another normalization constant, into which we have absorbed the factor exp(βµ).
It is particularly convenient to convert this last expression to a distribution of speeds, which we will denote by

PM (v). Since ǫ = 1

2
mv2, where m is the mass, we have

PM (v) dv = P (ǫ) dǫ (6)

so

PM (v) = B
(
1

2
mv2

)1/2
exp

(
−

mv2

2kBT

)
dǫ

dv

= const. v2 exp

(
−

mv2

2kBT

)
. (7)

The normalization constant is determined from the requirement that
∫

∞

0

PM (v) dv = 1, (8)

and using the following the Gaussian integral,

∫
∞

0

x2e−a2x2/2 dx =

√
π

2

1

a3
, (9)

with a2 = m/kBT . This gives the final result,

PM (v) = 4π

(
m

2πkBT

)3/2

v2 exp

(
−

mv2

2kBT

)
(10)

for the Maxwell distribution for the speeds. It is shown in the figure below. Note that the exponent is just (minus)
the kinetic energy divided by kBT , as expected from Boltzmann statistics, see Eq. (1).
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The probability tends to zero both for v → 0 and for v → ∞. A characterisitic speed is
√

kBT/m which is about
300 m/s for air. A problem in which you evaluate Gaussian integrals to determine several specific measures of the
distribution is set in the homework.

It is also useful to determine the distribution not only of the speed v =
√
v2x + v2y + v2z but also of each component

of the velocity. To do this note that PM (v) dv is the probability to find ~v = (vx, vy, vz) in a spherical shell of radius
v and width dv. The volume of this shell is 4πv2dv. Hence, if P (vx, vy, vz) dvxdvydvz is the probability of finding a
particle with velocity in a small box in ~v-space of volume dvxdvydvz we have

P (vx, vy, vz) 4πv
2 dv = PM (v) dv, (11)

and so

P (vx, vy, vz) =

(
m

2πkBT

)3/2

e−mv2

x
/2kBT e−my2

x
/2kBT e−mz2

x
/2kBT . (12)

As expected this factorizes,

P (vx, vy, vz) = P̃ (vx) P̃ (vy) P̃ (vz) (13)

in which

P̃ (vx) =

√
m

2πkBT
e−mv2

x
/2kBT , (14)

is the distribution of single velocity component vx. Note that this is Gaussian. We should point out that while
the speed v is positive, the individual velocity components can have either sign. Note too that the exponent is just
(minus) the kinetic energy of the motion along x divided by kBT .


