PHYSICS 112

Practice Midterm, 2012 (including solutions). Time 1 hr .10 mins.
Closed book. You may bring in one sheet of notes if you wish.
There are questions of both sides of the sheet.

1. [40 points]

An atom has a ground state with energy $E=0$ and $\operatorname{spin} S=0$, and a "triplet" excited level with energy $E=\Delta$. The triplet consists of three states with spin 1,0 and -1 . A magnetic field B splits the "degeneracy" of the triplet, and the energy levels become

$$
\begin{array}{ll}
E=0, & \text { spin }=0 \\
E=\Delta-B, & \text { spin }=1 \\
E=\Delta, & \text { spin }=0 \\
E=\Delta+B, & \text { spin }=-1,
\end{array}
$$

see the figure.

(a) For the case of zero magnetic field determine:
i. the partition function
ii. the probability that the system has energy 0 , and the probability that it has energy Δ.
iii. the free energy
iv. the entropy
v. the average energy
vi. the expectation value of the spin, $\langle S\rangle$. Explain this result.
(b) For the case of a magnetic field B, determine
i. the partition function
ii. $\langle S\rangle$.

Note: Use the Boltzmann distribution.

2. [35 points]

Consider the fluctuations in the occupancy of simple harmonic oscillator (or equivalently the number of photons in a particular mode). As discussed in class, the probability of it being in the state with energy $\left(n+\frac{1}{2}\right) \hbar \omega$ is

$$
P(n)=\frac{e^{-n x}}{\sum_{m=0}^{\infty} e^{-m x}}
$$

where $x=\beta \hbar \omega$ with $\beta=1 / k_{B} T$. You may assume this.
(a) Obtain a closed expression for the partition function, Z where

$$
Z=\sum_{n=0}^{\infty} e^{-n x}
$$

(b) Show that the mean number value of n, i.e. $\langle n\rangle \equiv \sum_{n} n P(n)$ is given by

$$
\langle n\rangle=-\frac{\partial \ln Z}{\partial x}
$$

and hence show that $\langle n\rangle$ is given by the Planck distribution

$$
\langle n\rangle=\frac{1}{e^{\beta \hbar \omega}-1} .
$$

(c) Similarly show that $\left\langle\Delta n^{2}\right\rangle$, the mean square fluctuation of n, is given by

$$
\left\langle\Delta n^{2}\right\rangle=\left\langle n^{2}\right\rangle-\langle n\rangle^{2}=-\frac{\partial\langle n\rangle}{\partial x},
$$

where $\Delta n=n-\langle n\rangle$. Hence show that

$$
\left\langle\Delta n^{2}\right\rangle=\langle n\rangle(1+\langle n\rangle) .
$$

This shows that, for large $\langle n\rangle$, the root mean square fluctuations, $\left\langle\Delta n^{2}\right\rangle^{1 / 2}$, are actually proportional to $\langle n\rangle\left(\right.$ not $\langle n\rangle^{1 / 2}$) and so are large.

3. [25 points]

Consider photons contained in a two-dimensional cavity of unit area. You are given that the density of states for the photons is

$$
\rho(\epsilon)=\frac{1}{\pi} \frac{1}{\hbar^{2} c^{2}} \epsilon .
$$

Compute the total number of photons at temperature T. Note: You are given that

$$
\int_{0}^{\infty} \frac{x}{e^{x}-1} d x=\frac{\pi^{2}}{6}
$$

Solutions

1. The energy levels are as shown in the figure.

(a) In zero magnetic field we have
i.

$$
Z=1+3 e^{-\beta \Delta} .
$$

ii. The probability that the system is in the state with energy 0 is given by

$$
P_{0}=\frac{e^{0}}{Z}=\frac{1}{1+3 e^{-\beta \Delta}},
$$

and the probability that it has energy Δ is given by

$$
P_{\Delta}=\frac{3 e^{-\beta \Delta}}{Z}=\frac{3 e^{-\beta \Delta}}{1+3 e^{-\beta \Delta}} \text {. }
$$

iii. The free energy is given by

$$
F=-k_{B} T \ln Z=-k_{B} T \ln \left(1+3 e^{-\beta \Delta}\right)
$$

iv. The entropy is given by

$$
S=-\frac{\partial F}{\partial T}=k_{B} \ln \left(1+3 e^{-\beta \Delta}\right)+\frac{3 \Delta}{T} \frac{e^{-\beta \Delta}}{1+3 e^{-\beta \Delta}} .
$$

v. The average energy is given by

$$
U=\Delta P_{\Delta}=3 \Delta \frac{e^{-\beta \Delta}}{1+3 e^{-\beta \Delta}}
$$

vi. Denoting the states with energy Δ and $\operatorname{spin} 1,0$, and -1 by Δ_{1}, Δ_{0} and Δ_{-1} respectively, we have

$$
\langle S\rangle=0 \cdot P_{0}+1 \cdot P_{\Delta_{1}}+0 \cdot P_{\Delta_{0}}+(-1) \cdot P_{\Delta_{-1}}=0,
$$

since $P_{\Delta_{1}}=P_{\Delta_{-1}}$. This could have been anticipated because, in the absence of a magnetic field, there is nothing in the system to prefer an up (positive) spin to a down spin. Hence $\langle S\rangle=0$ by symmetry.
(b) In a magnetic field,
i.

$$
Z=1+e^{-\beta \Delta}[1+2 \cosh (\beta B)] .
$$

(Remember $\left.\cosh x=\left(e^{x}+e^{-x}\right) / 2\right)$.
ii. As in zero field

$$
\langle S\rangle=0 \cdot P_{0}+1 \cdot P_{\Delta_{1}}+0 \cdot P_{\Delta_{0}}+(-1) \cdot P_{\Delta_{-1}}
$$

but the probabilities of the states are now changed so we get

$$
\langle S\rangle=\frac{2 e^{-\beta \Delta} \sinh \beta B}{1+e^{-\beta \Delta}[1+2 \cosh (\beta B)]}
$$

(Remember $\left.\sinh x=\left(e^{x}-e^{-x}\right) / 2\right)$.
2. (a)

$$
Z=\sum_{n=0}^{\infty} e^{-n x}
$$

This is an infinite geometric series whose some is the first term divided by (1-common ratio), i.e.

$$
Z=\frac{1}{1-e^{-x}}
$$

(b) The mean value of n is given by

$$
\langle n\rangle=\sum_{n=0}^{\infty} n P(n)=\frac{\sum_{n=0}^{\infty} n e^{-n x}}{\sum_{n=0}^{\infty} e^{-n x}}=-\frac{\partial Z / \partial x}{Z}=-\frac{\partial \ln Z}{\partial x}
$$

Using the expression for Z from part (a) gives

$$
\langle n\rangle=\frac{e^{-x}}{\left(1-e^{-x}\right)^{2}}\left(1-e^{-x}\right)=\frac{1}{e^{\beta \hbar \omega}-1},
$$

(with $x=\beta \hbar \omega$), the well-known Planck distribution.
(c) Firstly we note that

$$
\left\langle\Delta n^{2}\right\rangle=\left\langle(n-\langle n\rangle)^{2}\right\rangle=\left\langle n^{2}\right\rangle-2\langle n\langle n\rangle\rangle+\langle n\rangle^{2}=\left\langle n^{2}\right\rangle-\langle n\rangle^{2} .
$$

Using the definition of $\langle n\rangle$ we have

$$
-\frac{\partial\langle n\rangle}{\partial x}=-\frac{\partial}{\partial x}\left[\frac{\sum_{n=0}^{\infty} n e^{-n x}}{\sum_{n=0}^{\infty} e^{-n x}}\right]=\frac{\sum_{n=0}^{\infty} n^{2} e^{-n x}}{\sum_{n=0}^{\infty} e^{-n x}}-\frac{\left[\sum_{n=0}^{\infty} n e^{-n x}\right]^{2}}{\left[\sum_{n=0}^{\infty} e^{-n x}\right]^{2}}=\left\langle n^{2}\right\rangle-\langle n\rangle^{2}=\left\langle\Delta n^{2}\right\rangle .
$$

Using the expression for $\langle n\rangle$ from part (b) gives

$$
\left\langle\Delta n^{2}\right\rangle=-\frac{\partial\langle n\rangle}{\partial x}=\frac{e^{x}}{\left(e^{x}-1\right)^{2}}=\frac{1}{e^{x}-1}+\frac{1}{\left(e^{x}-1\right)^{2}}=\langle n\rangle(1+\langle n\rangle) .
$$

If $\langle n\rangle$ is large we can neglect the factor of 1 , and so $\left\langle\Delta n^{2}\right\rangle^{1 / 2} \propto\langle n\rangle$.
3. The mean number of photons in a state of energy ϵ is given by the Planck distribution

$$
n(\epsilon)=\frac{1}{e^{\beta \epsilon}-1} .
$$

Hence the total number of photons is given by

$$
\mathcal{N}=\int_{0}^{\infty} n(\epsilon) \rho(\epsilon) d \epsilon,
$$

where $\rho(\epsilon)$ is the density of states given in the question.
Hence

$$
\begin{aligned}
\mathcal{N} & =\frac{1}{\pi} \frac{1}{\hbar^{2} c^{2}} \int_{0}^{\infty} \frac{\epsilon}{e^{\beta \epsilon}-1} d \epsilon \\
& =\frac{1}{\pi}\left(\frac{k_{B} T}{\hbar c}\right)^{2} \int_{0}^{\infty} \frac{x}{e^{x}-1} d x \\
& =\frac{\pi}{6}\left(\frac{k_{B} T}{\hbar c}\right)^{2}
\end{aligned}
$$

using the value for the integral given in the question.

