PHYSICS 112 Practice Midterm, 2012 (including solutions). Time 1 hr. 10 mins.

Closed book. You may bring in one sheet of notes if you wish. There are questions of both sides of the sheet.

1. [40 points]

An atom has a ground state with energy E = 0 and spin S = 0, and a "triplet" excited level with energy $E = \Delta$. The triplet consists of three states with spin 1,0 and -1. A magnetic field B splits the "degeneracy" of the triplet, and the energy levels become

$$E = 0, \qquad \text{spin} = 0$$

$$E = \Delta - B, \qquad \text{spin} = 1$$

$$E = \Delta, \qquad \text{spin} = 0$$

$$E = \Delta + B, \qquad \text{spin} = -1,$$

see the figure.

- (a) For the case of zero magnetic field determine:
 - i. the partition function
 - ii. the probability that the system has energy 0, and the probability that it has energy Δ .
 - iii. the free energy
 - iv. the entropy
 - v. the average energy
 - vi. the expectation value of the spin, $\langle S \rangle$. Explain this result.
- (b) For the case of a magnetic field B, determine
 - i. the partition function
 - ii. $\langle S \rangle$.

Note: Use the Boltzmann distribution.

2. **[35 points]**

Consider the fluctuations in the occupancy of simple harmonic oscillator (or equivalently the number of photons in a particular mode). As discussed in class, the probability of it being in the state with energy $(n + \frac{1}{2})\hbar\omega$ is

$$P(n) = \frac{e^{-nx}}{\sum_{m=0}^{\infty} e^{-mx}},$$

where $x = \beta \hbar \omega$ with $\beta = 1/k_B T$. You may assume this.

(a) Obtain a closed expression for the partition function, Z where

$$Z = \sum_{n=0}^{\infty} e^{-nx}$$

(b) Show that the mean number value of n, i.e. $\langle n\rangle\equiv\sum_n nP(n)$ is given by

$$\langle n \rangle = -\frac{\partial \ln Z}{\partial x}$$

and hence show that $\langle n \rangle$ is given by the Planck distribution

$$\langle n \rangle = \frac{1}{e^{\beta \hbar \omega} - 1} \,.$$

(c) Similarly show that $\langle \Delta n^2 \rangle$, the mean square fluctuation of n, is given by

$$\langle \Delta n^2 \rangle = \langle n^2 \rangle - \langle n \rangle^2 = -\frac{\partial \langle n \rangle}{\partial x},$$

where $\Delta n = n - \langle n \rangle$. Hence show that

$$\langle \Delta n^2 \rangle = \langle n \rangle (1 + \langle n \rangle).$$

This shows that, for large $\langle n \rangle$, the root mean square fluctuations, $\langle \Delta n^2 \rangle^{1/2}$, are actually proportional to $\langle n \rangle$ (not $\langle n \rangle^{1/2}$) and so are *large*.

3. [25 points]

Consider photons contained in a *two-dimensional* cavity of unit area. You are *given* that the density of states for the photons is

$$\rho(\epsilon) = \frac{1}{\pi} \frac{1}{\hbar^2 c^2} \epsilon$$

Compute the total number of photons at temperature T. Note: You are given that

$$\int_0^\infty \frac{x}{e^x - 1} \, dx = \frac{\pi^2}{6}$$

Solutions

1. The energy levels are as shown in the figure.

(a) In zero magnetic field we have

i.

$$Z = 1 + 3e^{-\beta\Delta} \,.$$

ii. The probability that the system is in the state with energy 0 is given by

$$P_0 = \frac{e^0}{Z} = \boxed{\frac{1}{1 + 3e^{-\beta\Delta}}},$$

and the probability that it has energy Δ is given by

$$P_{\Delta} = \frac{3e^{-\beta\Delta}}{Z} = \boxed{\frac{3e^{-\beta\Delta}}{1+3e^{-\beta\Delta}}}.$$

iii. The free energy is given by

$$F = -k_B T \ln Z = \boxed{-k_B T \ln(1 + 3e^{-\beta \Delta})}.$$

iv. The entropy is given by

$$S = -\frac{\partial F}{\partial T} = \left[k_B \ln(1 + 3e^{-\beta\Delta}) + \frac{3\Delta}{T} \frac{e^{-\beta\Delta}}{1 + 3e^{-\beta\Delta}} \right].$$

v. The average energy is given by

$$U = \Delta P_{\Delta} = \boxed{3\Delta \frac{e^{-\beta\Delta}}{1 + 3e^{-\beta\Delta}}}.$$

vi. Denoting the states with energy Δ and spin 1, 0, and -1 by Δ_1, Δ_0 and Δ_{-1} respectively, we have

$$\langle S \rangle = 0 \cdot P_0 + 1 \cdot P_{\Delta_1} + 0 \cdot P_{\Delta_0} + (-1) \cdot P_{\Delta_{-1}} = 0,$$

since $P_{\Delta_1} = P_{\Delta_{-1}}$. This could have been anticipated because, in the absence of a magnetic field, there is nothing in the system to prefer an up (positive) spin to a down spin. Hence $\langle S \rangle = 0$ by symmetry.

(b) In a magnetic field,

$$Z = 1 + e^{-\beta\Delta} \left[1 + 2\cosh(\beta B) \right] \,.$$

(Remember $\cosh x = (e^x + e^{-x})/2$).

ii. As in zero field

$$\langle S \rangle = 0 \cdot P_0 + 1 \cdot P_{\Delta_1} + 0 \cdot P_{\Delta_0} + (-1) \cdot P_{\Delta_{-1}} ,$$

but the probabilities of the states are now changed so we get

$$\left< S \right> = \frac{2e^{-\beta \Delta} \sinh \beta B}{1 + e^{-\beta \Delta} \left[1 + 2 \cosh(\beta B) \right]} \,.$$

(Remember $\sinh x = (e^x - e^{-x})/2$).

2. (a)

$$Z = \sum_{n=0}^{\infty} e^{-nx} \,.$$

This is an infinite geometric series whose some is the first term divided by (1 - common ratio), i.e.

$$Z = \frac{1}{1 - e^{-x}}.$$

(b) The mean value of n is given by

$$\langle n \rangle = \sum_{n=0}^{\infty} n P(n) = \frac{\sum_{n=0}^{\infty} n e^{-nx}}{\sum_{n=0}^{\infty} e^{-nx}} = -\frac{\partial Z/\partial x}{Z} = \boxed{-\frac{\partial \ln Z}{\partial x}}.$$

Using the expression for Z from part (a) gives

$$\langle n \rangle = \frac{e^{-x}}{(1 - e^{-x})^2} \left(1 - e^{-x} \right) = \left| \begin{array}{c} \frac{1}{e^{\beta \hbar \omega} - 1} \, , \end{array} \right|$$

(with $x = \beta \hbar \omega$), the well-known Planck distribution.

(c) Firstly we note that

$$\langle \Delta n^2 \rangle = \langle (n - \langle n \rangle)^2 \rangle = \langle n^2 \rangle - 2 \langle n \langle n \rangle \rangle + \langle n \rangle^2 = \boxed{\langle n^2 \rangle - \langle n \rangle^2}.$$

Using the definition of $\langle n \rangle$ we have

$$-\frac{\partial\langle n\rangle}{\partial x} = -\frac{\partial}{\partial x} \left[\frac{\sum\limits_{n=0}^{\infty} ne^{-nx}}{\sum\limits_{n=0}^{\infty} e^{-nx}} \right] = \frac{\sum\limits_{n=0}^{\infty} n^2 e^{-nx}}{\sum\limits_{n=0}^{\infty} e^{-nx}} - \frac{\left[\sum\limits_{n=0}^{\infty} ne^{-nx}\right]^2}{\left[\sum\limits_{n=0}^{\infty} e^{-nx}\right]^2} = \langle n^2 \rangle - \langle n \rangle^2 = \boxed{\langle \Delta n^2 \rangle}.$$

Using the expression for $\langle n \rangle$ from part (b) gives

$$\langle \Delta n^2 \rangle = -\frac{\partial \langle n \rangle}{\partial x} = \frac{e^x}{(e^x - 1)^2} = \frac{1}{e^x - 1} + \frac{1}{(e^x - 1)^2} = \boxed{\langle n \rangle (1 + \langle n \rangle)}.$$

If $\langle n \rangle$ is large we can neglect the factor of 1, and so $\langle \Delta n^2 \rangle^{1/2} \propto \langle n \rangle$.

3. The mean number of photons in a state of energy ϵ is given by the Planck distribution

$$n(\epsilon) = \frac{1}{e^{\beta\epsilon} - 1} \,.$$

Hence the total number of photons is given by

$$\mathcal{N} = \int_0^\infty n(\epsilon) \rho(\epsilon) \, d\epsilon,$$

where $\rho(\epsilon)$ is the density of states given in the question. Hence

$$\mathcal{N} = \frac{1}{\pi} \frac{1}{\hbar^2 c^2} \int_0^\infty \frac{\epsilon}{e^{\beta \epsilon} - 1} d\epsilon$$
$$= \frac{1}{\pi} \left(\frac{k_B T}{\hbar c}\right)^2 \int_0^\infty \frac{x}{e^x - 1} dx$$
$$= \frac{\pi}{6} \left(\frac{k_B T}{\hbar c}\right)^2,$$

using the value for the integral given in the question.