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As shown in class and a handout [1], the density of single particle states of non-interacting (i.e.
free) electrons in three dimensions is

ρ(ǫ) =
V

2π2

(
2m

h̄2

)3/2

ǫ1/2 . (1)

At T = 0, all states are occupied up to the “Fermi energy”, which is the zero temperature limit of
the chemical potential. This is determined from

N =
V

2π2

(
2m

h̄2

)3/2 ∫ ǫF

0
ǫ1/2 dǫ =

V

2π2

(
2m

h̄2

)3/2 2

3
ǫ
3/2
F , (2)

where N is the number of particles, which gives

ǫF =
h̄2

2m

(
3π2n

)2/3
, (3)

where n = N/V . Associated with the Fermi energy is a corresponding Fermi temperature TF =
ǫF /kB given by

TF =
h̄2

mkB

1

2

(
3π2
)2/3

n2/3. (4)

At finite temperature, each single-particle state has a mean number of particles given by the
Fermi-Dirac distribution. Hence the total number of particles N can also be written as

N =
V

2π2

(
2m

h̄2

)3/2 ∫ ∞

0

ǫ1/2

eβ(ǫ−µ) + 1
dǫ . (5)

Equating Eqs. (2) and (5) gives

2

3
ǫ
3/2
F =

∫
∞

0

ǫ1/2

eβ(ǫ−µ) + 1
dǫ . (6)

From Eq. (6) one determines µ(T ) as a function of T . However, it is not possible to give a closed
form analytical expression for µ(T ) so we will determine it numerically. First, it is convenient to
write Eq. (6) in dimensionless form by defining

µ̃ =
µ

ǫF
, T̃ =

T

TF
. (7)

In terms of the dimensionless “tilde” variables, Eq. (6) can be written

2

3
=

∫
∞

0

x1/2

e(x−µ̃)/T̃ + 1
dx . (8)
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FIG. 1: The solid (red) curve shows µ̃(T ) ≡ µ(T )/ǫF against T̃ ≡ T/TF , determined numerically from
Eq. (8). The value of µ(T ) is found to vanish at T = T ⋆ where T ⋆/TF = 0.9887. This is indicated by one of
the dashed vertical lines. In the classical (high-temperature) limit, µ̃(T ) is given by Eq. (14). This is shown
by the dotted (green) curve. The classical result vanishes at T = TQ where TQ is given by Eq. (13) and
indicated by the other vertical dashed line. At high temperatures, the numerically calculated curve and the
curve for the classical limit approach each other.

I have used Eq. (8) to determine µ̃ ≡ µ/ǫF numerically as a function of T̃ ≡ T/TF and show
the results in Fig. 1. It is found that µ(T ) changes sign at T = T ⋆ where

T ⋆

TF
= 0.9887 . (9)

In one of the handouts [2] we determined µ(T ) in the classical, i.e. high-temperature, limit for
spinless particles. Incorporating the spin degeneracy of 2 (this is a trivial example of an “internal”
partition function discussed in class and a homework assignment [3]) we have

µclass(T ) = −
3

2
kBT log

(
T

TQ

)
, (10)

where here

TQ =
h̄2

mkB
2π
(n
2

)2/3
. (11)

The spin degeneracy appears through the replacement of n in the expression for TQ for spinless
particles [2] by n/2, i.e. the (number) density of particles per spin species.

Equation (10) can also be obtained from Eq. (5) by neglecting the factor of +1 in the de-
nominator (which is justified in this limit since µ is large and negative so the exponential dom-
inates). One can then extract eβµ out of the integral. Evaluating the integral over ǫ using∫
∞

0 x1/2e−x dx = Γ(3/2) =
√
π/2, gives Eq. (10) with TQ given by Eq. (11).
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Comparing Eq. (11) with (4) we see that

TQ =
4π

(6π2)2/3
TF = 0.8271TF , (12)

so

T̃Q ≡
TQ

TF
= 0.8271 . (13)

Writing µ̃class = µclass/ǫF , we can express Eq. (10) as

µ̃class = −
3

2
T̃ log

(
T̃

T̃Q

)
, (14)

which is shown by the dotted (green) line in Fig. 1.
For electrons at metallic densities, TF is typically several tens of thousand Kelvin, far higher

than room temperature. In this limit, T ≪ TF so µ is extremely close to its low temperature limit
ǫF (which is, of course, positive). As part of the course, we have also studied the classical ideal gas,
which corresponds to the opposite, very high temperature, limit, in which µ, given by Eq. (10), is
large in magnitude but negative. The main purpose of this handout, as summarized by Fig. 1, is
to show how these two limits are connected.

Another purpose is to point out that the different temperature scales, TF , T
⋆ and TQ all depend

on parameters of the system and fundamental constants in the same way, i.e.

Ti = ci
h̄2

mkB
n2/3 , (15)

where “i” refers to “F”, “Q”, or “⋆”, and ci is a (dimensionless) numerical constant with values

cF =
1

2

(
3π2
)2/3

= 4.7854, c⋆ = 0.9887 cF = 4.7312, cQ = 21/3π = 3.9582 , (16)

obtained from Eqs. (4), (9) and (11) respectively.
This handout has discussed fermions. Later, when we discuss bosons, we will find a “Bose-

Einstein condensation” temperature, TBE which will also vary with parameters of the system and
fundamental constants in the same way as in Eq. (15), but with yet another numerical constant
cBE .

[1] Physics 112 handout: “Single particle density of states”, http://physics.ucsc.edu/~peter/112/dos.pdf.
[2] Physics 112 handout: The “classical” ideal gas, http://physics.ucsc.edu/~peter/112/ideal.pdf.
[3] The correction due to spin degeneracy can be obtained from the solution to Qu. (4) in HW 5 with ∆ = 0,

see http://physics.ucsc.edu/~peter/112/sols/solutions5.pdf.


