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Variation of the chemical potential with T for free bosons in three-dimensions
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As shown in class and a handout [1], the density of single particle states of non-interacting
spinless bosons in three dimensions is

ρ(ǫ) =
V

4π2

(
2m

h̄2

)3/2

ǫ1/2 . (1)

The mean occupancy of a single-particle state is given by the Bose-Einstein distribution, so the
mean total number of particles is given by

N =

∫
∞

0

ρ(ǫ)

eβ(ǫ−µ) − 1
dǫ =

V

4π2

(
2m

h̄2

)3/2 ∫
∞

0

ǫ1/2

eβ(ǫ−µ) − 1
dǫ . (2)

Equation (2) is used to compute the (temperature dependent) chemical potential µ(T ). It is
an implicit relation. In general, we can not extract µ(T ) outside the integral to get an explicit

expression for µ(T ).
However, at very high temperatures, which is the classical limit, we can obtain µ(T ) explicitly.

To do this we neglect the factor of −1 in the denominator of Eq. (2) (which is justified in this limit
since µ is large and negative so the exponential dominates). This gives

n =
1

4π2

(
2m

h̄2

)3/2

eβµclass

∫
∞

0
ǫ1/2e−βǫ dǫ , (3)

where n ≡ N/V , in which the factor eβµclass has been pulled out of the integral. Making the
substitution x = βǫ and using the result that

∫
∞

0 x1/2e−x dx = Γ(3/2) =
√
π/2, we get

e−βµclass =
1

4π2

1

n

(
2mkBT

h̄2

)3/2 √
π

2
. (4)

This can be reexpressed as

µclass(T ) = −
3

2
kBT log

(
T

TQ

)
, (5)

where

TQ =
h̄2

mkB
2πn2/3 . (6)

Eqs. (5) and (6) were also obtained in a handout [2]. Note that the high temperature limit
corresponds to T ≫ TQ.
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FIG. 1: The solid (red) curve shows µ̃(T ) ≡ µ(T )/kBTQ against T̃ ≡ T/TQ, determined numerically from
Eq. (10). The value of µ(T ) is found to vanish at T = TBE , the Bose-Einstein condensation temperature,

where T̃BE ≡ TBE/TQ = 0.5272. In the classical (high-temperature) limit, µ̃(T ) is given by Eq. (11). This
is shown by the dotted (green) curve. The classical result vanishes at T = TQ where TQ is given by Eq. (6).

Taking Eq. (6) to the 3/2-power, and slighly rearranging the factors, gives

√
π

2
(kBTQ)

3/2 = 4π2 n

(
h̄2

2m

)3/2

, (7)

and substituting into Eq. (2) gives

(kBTQ)
3/2 =

2
√
π

∫
∞

0

ǫ1/2

e(ǫ−µ)/T − 1
dǫ . (8)

Defining

µ̃ =
µ

kBTQ
, T̃ =

T

TQ
, (9)

and x = ǫ/kBT , Eq. (8) can be written in dimensionless form as

1 =
2
√
π

∫
∞

0

x1/2

e(x−µ̃)/T̃ − 1
dx . (10)

Equation (10) is the dimensionless form of Eq. (2). I have used Eq. (10) to determine µ̃ ≡ µ/kBTQ

numerically as a function of T̃ ≡ T/TQ and show the results by the solid red curve in Fig. 1. The
classical (high-T ) expression in Eq. (5) can also be put in dimensionless form as

µ̃class(T ) ≡
µclass(T )

kBTQ
= −

3

2
T̃ log T̃ , (11)
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and this is shown by the dotted (green) curve. At high temperatures, the curve numerically
calculated from Eq. (10) approaches the curve obtained from the classical (high-T ) limit, Eq. (11).

As the temperature is lowered, µ(T ), as calculated from Eq. (10), becomes less negative until, at
a temperature TBE , the Bose-Einstein condensation temperature, it is equal to zero. The value of
TBE can be obtained from Eq. (10) by setting µ̃ equal to zero. Defining a new integration variable
y by y = x/T̃ , Eq. (10) becomes

1 =
2
√
π

(
T̃BE

)3/2
∫

∞

0

y1/2

ey − 1
dy , (12)

where T̃BE = TBE/TQ. The integral is evaluated as follows:
∫

∞

0

y1/2

ey − 1
dy =

∫
∞

0

y1/2e−y

1− e−y
dy

=

∫
∞

0
y1/2e−y

[
1 + e−y + e−2y + e−3y + · · ·

]
dy (13)

=

∫
∞

0
y1/2e−y dy

[
1 +

1

23/2
+

1

33/2
+

1

43/2
+ · · ·

]

= Γ(3/2)ζ(3/2) , (14)

where

Γ(x) =

∫
∞

0
tx−1e−t dt (15)

is the Gamma function, and

ζ(x) = 1 +
1

2x
+

1

3x
+

1

4x
+ · · · (16)

is the zeta function. From Math methods courses we have Γ(3/2) =
√
π/2. The value of ζ(3/2) is

not known exactly but its numerical value is 2.612. In Eq. (13) we made the substitution y → y/2
in the second term, y → y/3 in the third term, etc. Substituting Eq. (14) into Eq. (12) gives

T̃BE ≡
TBE

TQ
=

(
1

ζ(3/2)

)2/3

= 0.5272. (17)

This temperature is marked on Fig. 1. From Eqs. (6) and (17) we have

TBE = 3.313
h̄2

m
n2/3 . (18)

As discussed in the corresponding handout for fermions [3], all characteristic temperatures for
non-interacting gases have the form (h̄2/m)n2/3 times a numerical constant of order unity.

Finally, as discussed in class and in the book, at temperatures below TBE a finite fraction of
the particles are in the lowest quantum state (with energy 0). It should be mentioned that, in this
region, the chemical potential is actually not quite zero but of order 1/N . Figure 1 plots µ(T ) in
the thermodynamic limit, N → ∞, and so shows µ(T ) equal to zero for T ≤ TBE .
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