PHYSICS 112

Final Exam, 2011, solutions

1. [15 points]

(a) The partition is given by

$$
Z=g_{1}+g_{2} e^{-\beta \Delta}
$$

(note the degeneracy factors).
(b) The free energy is given by $F=-k_{B} T \log Z$, i.e.

$$
F=-k_{B} T \log \left(g_{1}+g_{2} e^{-\beta \Delta}\right)
$$

The energy is related to F by $U=(\partial / \partial \beta)(\beta F)=-(\partial / \partial \beta) \log Z$, so

$$
U=-\frac{\partial}{\partial \beta} \log \left(g_{1}+g_{2} e^{-\beta \Delta}\right)=\frac{\Delta g_{2} e^{-\beta \Delta}}{g_{1}+g_{2} e^{-\beta \Delta}} .
$$

The specific heat is given by

$$
\begin{align*}
C & =\frac{\partial U}{\partial T} \\
& =\frac{\Delta^{2}}{k_{B} T^{2}}\left[\frac{g_{2} e^{-\beta \Delta}}{g_{1}+g_{2} e^{-\beta \Delta}}-\frac{g_{2}^{2} e^{-2 \beta \Delta}}{\left(g_{1}+g_{2} e^{-\beta \Delta}\right)^{2}}\right] \\
& =\frac{\Delta^{2}}{k_{B} T^{2}} \frac{g_{1} g_{2} e^{-\beta \Delta}}{\left(g_{1}+g_{2} e^{-\beta \Delta}\right)^{2}} . \tag{1}
\end{align*}
$$

2. [15 points]

We are given that

$$
E_{n}=n \epsilon+U n(n-1),
$$

(a) According to the Gibbs distribution we have

$$
\langle n\rangle=\frac{\sum_{n=0}^{\infty} n \exp [\beta\{n(\mu-\epsilon)-U n(n-1)\}]}{\sum_{n=0}^{\infty} \exp [\beta\{n(\mu-\epsilon)-U n(n-1)\}]}
$$

(b) For $U=0$ the denominator is a geometric series which sums to $1 /(1-\exp (x))$ where $x=$ $\beta(\mu-\epsilon)$. The numerator is the derivative of this with respect to x, i.e. $\exp (x) /(1-\exp (x))^{2}$. Hence

$$
\langle n\rangle=\frac{\exp (x)}{1-\exp (x)}=\frac{1}{\exp [\beta(\epsilon-\mu)]-1},
$$

the Bose-Einstein distribution.
(c) For $U \rightarrow \infty$ only the $n=0$ and $n=1$ terms contribute so we have

$$
\langle n\rangle=\frac{\exp [\beta(\mu-\epsilon)]}{1+\exp [\beta(\mu-\epsilon)]}=\frac{1}{\exp [\beta(\epsilon-\mu)]+1},
$$

which is the same as the Fermi-Dirac distribution.

3. [25 points]

We are given that the density of states is

$$
\rho(\epsilon)=V \frac{2 S+1}{4 \pi^{2}}\left(\frac{2 m}{\hbar^{2}}\right)^{3 / 2} \epsilon^{1 / 2} .
$$

(a) The Fermi energy ϵ_{F} is determined from

$$
N=\int_{0}^{\epsilon_{F}} \rho(\epsilon) d \epsilon=V \frac{2 S+1}{4 \pi^{2}}\left(\frac{2 m}{\hbar^{2}}\right)^{3 / 2} \int_{0}^{\epsilon_{F}} \epsilon^{1 / 2} d \epsilon=V \frac{2 S+1}{6 \pi^{2}}\left(\frac{2 m}{\hbar^{2}}\right)^{3 / 2} \epsilon_{F}^{3 / 2}
$$

which gives

$$
\epsilon_{F}=\left(\frac{\hbar^{2}}{2 m}\right)\left(\frac{6 \pi^{2} n}{2 S+1}\right)^{2 / 3},
$$

where $n=N / V$ is the particle density.
(b) The energy at $T=0$ is given by

$$
\begin{aligned}
U & =\int_{0}^{\epsilon_{F}} \epsilon \rho(\epsilon) d \epsilon=V \frac{2 S+1}{4 \pi^{2}}\left(\frac{2 m}{\hbar^{2}}\right)^{3 / 2} \int_{0}^{\epsilon_{F}} \epsilon^{3 / 2} d \epsilon=V \frac{2 S+1}{10 \pi^{2}}\left(\frac{2 m}{\hbar^{2}}\right)^{3 / 2} \epsilon_{F}^{5 / 2}, \\
& =V \frac{2 S+1}{10 \pi^{2}}\left(\frac{\hbar^{2}}{2 m}\right)\left(\frac{6 \pi^{2} n}{2 S+1}\right)^{5 / 3}=\frac{3}{10}\left(\frac{6 \pi^{2}}{2 S+1}\right)^{2 / 3}\left(\frac{\hbar^{2}}{m}\right) \frac{N^{5 / 3}}{V^{2 / 3}}
\end{aligned}
$$

(c) The pressure at $T=0$ is given by

$$
P=-(\partial U / \partial V)_{N, T}=\frac{2}{3} \frac{3}{10}\left(\frac{6 \pi^{2}}{2 S+1}\right)^{2 / 3}\left(\frac{\hbar^{2}}{m}\right)\left(\frac{N}{V}\right)^{5 / 3}=\frac{1}{5}\left(\frac{6 \pi^{2}}{2 S+1}\right)^{2 / 3}\left(\frac{\hbar^{2}}{m}\right)\left(\frac{N}{V}\right)^{5 / 3} .
$$

(d) The pressures are equal in equilibrium, so

$$
\begin{equation*}
\frac{n_{1}^{5 / 3}}{2^{2 / 3}}=\frac{n_{2}^{5 / 3}}{4^{2 / 3}} \tag{2}
\end{equation*}
$$

where n_{1} is the density of particles in compartment 1 which has spin- $1 / 2$ particles, and n_{2} is the density of particles in compartment 2 which has spin- $3 / 2$ particles. Taking the third power of Eq. (2) gives

$$
\left(\frac{n_{1}}{n_{2}}\right)^{5}=\left(\frac{1}{2}\right)^{2}
$$

or

$$
\frac{n_{1}}{n_{2}}=\left(\frac{1}{2}\right)^{2 / 5}=0.758 \cdots .
$$

(Since calculators are not allowed you are not required to give the numerical value.)
Note: As stated in the question the result that the densities are different is a quantum effect.

4. [20 points]

The law of mass action, given at the beginning of the exam, states that

$$
\left(\frac{n_{A}}{n_{Q A}}\right)^{2}=\frac{n_{B}}{Z_{B} n_{Q B}},
$$

where $Z_{B}=e^{\beta \Delta E}$ is the partition function of the molecule B including just its lowest state which has energy $-\Delta E$. From the expression given for $n_{Q j}$ in the exam, we see that $n_{Q A}$ and $n_{Q B}$ differ only because B has twice the mass of A. Hence $n_{Q B}=2^{3 / 2} n_{Q A}$. We therefore have

$$
\frac{n_{A}^{2}}{n_{Q A}}=n_{B} \frac{e^{-\beta \Delta E}}{2^{3 / 2}}
$$

Hence, the condition that $n_{A}=n_{B}$ is

$$
\frac{n_{A}}{n_{Q A}}=\frac{1}{2^{3 / 2}} e^{-\beta \Delta E}
$$

5. [25 points]

The energy levels of a single spin are shown in the figure.

(a) The average value of S is

$$
\begin{equation*}
m \equiv\left\langle S_{i}\right\rangle=\frac{e^{\beta(-\Delta+B)}+0-e^{\beta(-\Delta-B)}}{e^{\beta(-\Delta+B)}+1+e^{\beta(-\Delta-B}}=\frac{2 e^{-\beta \Delta} \sinh \beta B}{1+2 e^{-\beta \Delta} \cosh \beta B} . \tag{3}
\end{equation*}
$$

(b) Different spins interact through an additional energy

$$
-J \sum_{\langle i, j\rangle} S_{i} S_{j} .
$$

The terms involving spin i are $-S_{i} J \sum_{j} S_{j}$, and taking the average value of the spins on the neighboring sites j gives $-B^{M F} S_{i}$ where

$$
\begin{equation*}
B^{M F}=z J m \tag{4}
\end{equation*}
$$

where z is the number of neighbors.
(c) Substituting $B=B^{M F}$ from Eq. (4) into the equation for m in Eq. (3) gives

$$
m=\frac{2 e^{-\beta \Delta} \sinh \beta z J m}{1+2 e^{-\beta \Delta} \cosh \beta z J m}
$$

(d) Assuming that the transition is continuous (second order) one can locate $\beta_{c} \equiv 1 / k_{B} T_{c}$ by looking for a solution with m non-zero but infinitesimally small. Expanding the RHS of the last equation and just including the first order term, and setting $\beta=\beta_{c}$, gives

$$
m=\frac{2 \beta_{c} z J e^{-\beta_{c} \Delta}}{1+2 e^{-\beta_{c} \Delta}} m
$$

which is satisfied when the coefficient of m on the RHS is unity, i.e.

$$
k_{B} T_{c}=\frac{2 e^{-\Delta / k_{B} T_{c}}}{1+2 e^{-\Delta / k_{B} T_{c}}} z J
$$

(e) For the limit $\Delta \rightarrow 0$ the exponential factors tend to unity so

$$
k_{B} T_{c}=\frac{2}{3} z J .
$$

