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Final Exam, 2012, solutions

1. [20 points]

(a) There are four states whose energies are

++, E = −J,

+−, E = +J,

−+, E = +J,

−−, E = −J.

(b) The partition function is given by Z = 2(eβJ + e−βJ) = 4 coshβJ . The free energy is given

by F = −kBT lnZ = −kBT ln(4 coshβJ) .

(c)
〈S1S2〉 = (+1)(+1)P++ + (+1)(−1)P+− + (−1)(+1)P−+ + (−1)(−1)P−−,

where the probability that the both spins are +1 is given by

P++ =
eβJ

Z
=

eβJ

4 coshβJ)
,

and similarly for the other states. Hence we get

〈S1S2〉 =
(+1) eβJ + (−1) e−βJ + (−1) e−βJ + (+1) eβJ

4 coshβJ)
=

2eβJ − 2e−βJ

4 coshβJ
=

4 sinhβJ

4 coshβJ
= tanhβJ .

(d)

〈S1〉 = 0 .

This follows from symmetry since the energy is invariant under flipping both the spins. Of
course, it can also be obtained by doing the Boltzmann average over the four states as in
Qu. 1c.

2. [18 points]

(a) The grand partition function is
Z = 1 + 2eβ(µ+I) .

Hence the probability that the atom is ionized is

Pionized =
1

1 + 2eβ(µ+I) .

(b) Now there is an additional state with energy −2I+U , so the grand partition function becomes

1 + 2eβ(µ+I) + eβ(2µ+2I−U) .

The probability that the atom binds two electrons is

Pbind 2 =
eβ(2µ+2I−U)

1 + 2eβ(µ+I) + eβ(2µ+2I−U)
(1)

=
1

1 + 2eβ(−I+U−µ) + eβ(−2I+U−2µ)
. (2)
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(c)

Pbind 2 =
1

[

1 + eβ(−I−µ)
]2 .

This result is the square of the Fermi-Dirac distribution for energy −I. The reason for this
result is because, for U = 0, there are two bound states, each of which can be occupied
independently of the other. The FD distribution gives the probability that one of the states
is occupied, so the probability that they are both occupied is the square of this.

3. [12 points]

(a) Since

f =

(

∂F

∂l

)

T

, S = −

(

∂F

∂T

)

l

,

and
∂2F

∂l ∂T
=

∂2F

∂T ∂l

we get the Maxwell relation
(

∂f

∂T

)

l

= −

(

∂S

∂l

)

T

.

(b) According to the third law of thermodynamics, S = 0 at T = 0 and hence (∂S/∂l)T vanishes
as T → 0. Hence, using the Maxwell relation

(

∂f

∂T

)

l

→ 0 as T → 0 .

4. [25 points]
We are given that

ρ(ǫ) = A
m

2πh̄2
,

where A is the area of the system so the number of particles is given by

N =

∫

∞

0

ρ(ǫ)

eβ(ǫ−µ) − 1
dǫ . (3)

(a) Eq. (3) can be written as

N = A
m

2πh̄2

∫

∞

0

dǫ

eβ(ǫ−µ) − 1
.

Making the substitution x = β(ǫ− µ) gives

n ≡
N

A
= nQ

∫

∞

−βµ

dx

ex − 1
,

where

nQ =
mkBT

2πh̄2

is the two-dimensional quantum concentration.
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(b) Writing
1

ex − 1
=

e−x

1− e−x

we get

n = nQ

∫

∞

−βµ

e−x

1− e−x
dx = nQ

[

ln
(

1− e−x
)]

∞

−βµ
= −nQ ln

(

1− eβµ
)

,

so
e−n/nQ = 1− eβµ .

Hence the chemical potential is given by

µ = kBT ln
[

1− e−n/nQ

]

.

(c) As T decreases nQ decreases, and so e−n/nQ decreases. However, e−n/nQ never goes negative,
so µ is always negative even down to T = 0. Hence there is no Bose-Einstein condensation
in two dimensions for the Bose gas.

For T → 0 we have nQ → 0 and so e−n/nQ → 0. Hence

µ

kBT
≃ −e−n/nQ = − exp

[

−
2πh̄2n

mkBT

]

.

Hence µ becomes exponentially small in 1/T at low-T (but is always non-zero at any non-zero
T ).

(d) For large T , nQ is large and so e−n/nQ ≃ 1 − n/nQ which gives the result for the classical
ideal gas in two dimensions:

µ = −kBT ln
(nQ

n

)

.

5. [25 points]

(a) The values of the energy for the states with S = +2,+1, 0,−1 and −2 are are −2B,−B, 0,+B
and +2B, and so

〈S〉 =
2 · e2βB + 1 · eβB + 0 · e0 + (−1) · e−βB + (−2) · e−2βB

e2βB + eβB + e0 + e−βB + e−2βB
=

2 sinh(βB) + 4 sinh(2βB)

1 + 2 cosh(βB) + 2 cosh(2βB)
.

This can be expressed as

〈S〉 = f

(

B

kBT

)

where

f(x) =
2 sinh(x) + 4 sinh(2x)

1 + 2 cosh(x) + 2 cosh(2x)
. (4)

(b) For small x we use sinh(x) = x+ · · · , cosh(x) = 1 + · · · to get

f(x) =
2x+ 8x+ · · ·

5 + · · ·
= 2x+ · · · .
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(c) Now each spin interacts with z neighbors Sj . In the mean field approximation this means
that each spin feels a mean field of strength equal to zJm where m ≡ 〈Sj〉. Hence m is given
by the same expression as above but with B = zJm, i.e.

m = f

(

zJm

kBT

)

, (5)

where f(x) is given by Eq. (4).

(d) Assuming that the transition is second order, the transition temperature Tc is where the
m → 0 and hence is where coefficients of m on both sides of Eq. (5) are equal. Using the
earlier parts of the question gives

1 = 2
zJ

kBTc

which gives
kBTc = 2zJ .
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