PHYSICS 112

Midterm, 2012: Solutions

1. The energy levels are as shown in the figure.

(a) In zero magnetic field we have
i.

$$
Z=1+2 e^{-\beta \Delta}+e^{-2 \beta \Delta} .
$$

ii. The probability that the system is in the state with energy 0 is given by

$$
P_{0}=\frac{e^{0}}{Z}=\frac{1}{1+2 e^{-\beta \Delta}+e^{-2 \beta \Delta}},
$$

the probability that it has energy Δ is given by

$$
P_{\Delta}=\frac{2 e^{-\beta \Delta}}{Z}=\frac{2 e^{-\beta \Delta}}{1+2 e^{-\beta \Delta}+e^{-2 \beta \Delta}},
$$

and the probability that it has energy 2Δ is given by

$$
P_{2 \Delta}=\frac{e^{-2 \beta \Delta}}{Z}=\frac{e^{-2 \beta \Delta}}{1+2 e^{-\beta \Delta}+e^{-2 \beta \Delta}},
$$

iii. The free energy is given by

$$
F=-k_{B} T \ln Z=-k_{B} T \ln \left(1+2 e^{-\beta \Delta}+e^{-2 \beta \Delta}\right) .
$$

iv. The entropy is given by

$$
S=-\frac{\partial F}{\partial T}=k_{B} \ln \left(1+2 e^{-\beta \Delta}+e^{-2 \beta \Delta}\right)+\frac{2 \Delta}{T} \frac{e^{-\beta \Delta}+e^{-2 \beta \Delta}}{1+2 e^{-\beta \Delta}+e^{-2 \beta \Delta}} .
$$

v. The average energy is given by

$$
U=\Delta P_{\Delta}+2 \Delta P_{2 \Delta}=2 \Delta \frac{e^{-\beta \Delta}+e^{-2 \beta \Delta}}{1+2 e^{-\beta \Delta}+e^{-2 \beta \Delta}}
$$

vi. Denoting the state with energy Δ and spin 1 by Δ_{1} and that with energy Δ and spin -1 by Δ_{-1}, we have

$$
\langle S\rangle=0 \cdot P_{0}+1 \cdot P_{\Delta_{1}}+(-1) \cdot P_{\Delta_{-1}}+0 \cdot P_{2 \Delta}=0,
$$

since $P_{\Delta_{1}}=P_{\Delta_{-1}}$. This could have been anticipated because, in the absence of a magnetic field, there is nothing in the system to prefer an up (positive) spin to a down spin. Hence $\langle S\rangle=0$ by symmetry.
(b) In a magnetic field,
i.

$$
Z=1+2 e^{-\beta \Delta} \cosh (\beta B)+e^{-2 \beta \Delta} .
$$

(Remember $2 \cosh x=e^{x}+e^{-x}$).
ii. As in zero field

$$
\langle S\rangle=0 \cdot P_{0}+1 \cdot P_{\Delta_{1}}+(-1) \cdot P_{\Delta_{-1}}+0 \cdot P_{2 \Delta},
$$

but the probabilities of the states are now changed so we get

$$
\langle S\rangle=\frac{2 e^{-\beta \Delta} \sinh \beta B}{1+2 e^{-\beta \Delta} \cosh (\beta B)+e^{-2 \beta \Delta}},
$$

rather than 0 . (Remember that $2 \sinh x=e^{x}-e^{-x}$).
2. We are given that the density of states is

$$
\begin{equation*}
\rho(\epsilon)=\frac{V}{\pi^{2}} \frac{1}{(\hbar c)^{3}} \epsilon^{2} . \tag{1}
\end{equation*}
$$

(a) To get the total number of photons we multiply $\rho(\epsilon)$ by the Planck distribution

$$
n_{P}(\epsilon)=\frac{1}{e^{\beta \epsilon}-1},
$$

and integrate, i.e.

$$
\langle N\rangle=\int_{0}^{\infty} \frac{\rho(\epsilon)}{e^{\beta \epsilon}-1} d \epsilon=V \frac{1}{\pi^{2}(\hbar c)^{3}} \int_{0}^{\infty} \frac{\epsilon^{2}}{e^{\beta \epsilon}-1} d \epsilon .
$$

In the integral we make the substitution $x=\beta \epsilon$ so

$$
\langle N\rangle=\frac{V}{\pi^{2}}\left(\frac{k_{B} T}{\hbar c}\right)^{3} I_{2},
$$

where

$$
I_{2}=\int_{0}^{\infty} \frac{x^{2}}{e^{x}-1} d x
$$

Note: The numerical value of the integral I_{2} (which you are not asked to determine) is equal to 2.40411
(b) To get the total energy we multiply $\epsilon \rho(\epsilon)$ by the Planck distribution and integrate, i.e.

$$
U \equiv\langle E\rangle=\int_{0}^{\infty} \frac{\epsilon \rho(\epsilon)}{e^{\beta \epsilon}-1} d \epsilon=V \frac{1}{\pi^{2}(\hbar c)^{3}} \int_{0}^{\infty} \frac{\epsilon^{3}}{e^{\beta \epsilon}-1} d \epsilon
$$

In the integral we make the substitution $x=\beta \epsilon$ so

$$
U=\frac{V}{\pi^{2}} \frac{\left(k_{B} T\right)^{4}}{(\hbar c)^{3}} I_{3},
$$

where

$$
I_{3}=\int_{0}^{\infty} \frac{x^{3}}{e^{x}-1} d x
$$

Note: The value of the integral I_{3} (which again you are not asked to determine) is $\pi^{4} / 15=$ 6.49394....
3. (a) According to the Boltzmann distribution the mean number of particles is given by

$$
\langle n\rangle=\frac{0 \cdot 1+2 \cdot 1 \cdot e^{-\beta \epsilon}+2 \cdot e^{-\beta(2 \epsilon+U)}}{1+2 \cdot e^{-\beta \epsilon}+e^{-\beta(2 \epsilon+U)}}=2 \frac{e^{-\beta \epsilon}+e^{-\beta(2 \epsilon+U)}}{1+2 e^{-\beta \epsilon}+e^{-\beta(2 \epsilon+U)}} .
$$

(b) i. For $U=0$ we have

$$
\langle n\rangle=\frac{2 x+2 x^{2}}{1+2 x+x^{2}}=\frac{2 x(1+x)}{(1+x)^{2}}=\frac{2}{x^{-1}+1}=\frac{2}{e^{\beta \epsilon}+1},
$$

where $x=e^{-\beta \epsilon}$.
ii. For $U \rightarrow \infty$ we have

$$
\langle n\rangle=\frac{2 x}{1+2 x}=\frac{2}{x^{-1}+2}=\frac{1}{\frac{1}{2} e^{\beta \epsilon}+1},
$$

