PHYSICS 112

Homework 2 Solutions

1. (a) If the two states have energy 0 and ϵ, the partition function is given by

$$
Z=1+e^{-\beta \epsilon},
$$

where $\beta=1 / k_{B} T$, and so the free energy is given by

$$
F=-k_{B} T \ln Z=-k_{B} T \ln \left(1+e^{-\beta \epsilon}\right) .
$$

(b) The energy is given by

$$
U=\frac{\partial}{\partial \beta}(\beta F)=\epsilon \frac{1}{e^{\beta \epsilon}+1} .
$$

The entropy is given by

$$
S=-\frac{\partial F}{\partial T}=\frac{\epsilon}{T} \frac{1}{e^{\beta \epsilon}+1}+k_{B} \ln \left(1+e^{-\beta \epsilon}\right) .
$$

Note that $S=(U-F) / T$ as required.
(c) The heat capacity at constant volume is given by

$$
C=\left(\frac{\partial U}{\partial T}\right)_{V} .
$$

Differentiating the above expression for U gives

$$
C=k_{B}\left(\frac{\epsilon}{k_{B} T}\right)^{2} \frac{e^{\beta \epsilon}}{\left[e^{\beta \epsilon}+1\right]^{2}} .
$$

The specific heat tends to zero both as $T \rightarrow 0$ and $T \rightarrow \infty$, and has a peak when $k_{B} T$ is about 0.42ϵ. A plot is shown below.

A peak like this in the specific heat due to a two-level system is called a "Schottky" specific heat.
2. (a) The energy levels are $\pm \mu B$, and so the partition function for one spin, z, is given by

$$
z=e^{\beta \mu B}+e^{-\beta \mu B}=2 \cosh (\beta \mu B) .
$$

The probabilities of the +1 and -1 states are given by

$$
P_{1}=\frac{e^{\beta \mu B}}{z}, \quad P_{-1}=\frac{e^{-\beta \mu B}}{z},
$$

and hence the magnetization per spin is given by

$$
\begin{equation*}
m=\mu \tanh (\beta \mu B), \tag{1}
\end{equation*}
$$

and the total magnetization is

$$
M=N \mu \tanh (\beta \mu B) .
$$

(b) For $\mu B \ll k_{B} T$ we have, expanding the tanh in Eq. (1),

$$
m=\mu^{2} \frac{B}{k_{B} T},
$$

which is known as Curie's law, as discussed in class.
3. For a simple harmonic oscillator the energy levels are

$$
\epsilon_{n}=n \hbar \omega,
$$

in which, following the question we have set the zero of energy to be at ϵ_{0}. (More conventionally the energy levels are written $\epsilon_{n}=(n+1 / 2) \hbar \omega$.)
(a) Hence the partition function is given by

$$
Z=\sum_{n=0}^{\infty} e^{-n \beta \hbar \omega}
$$

This is a geometric series whose sum is given by

$$
Z=\frac{1}{1-e^{-\beta \hbar \omega}} .
$$

Hence the free energy is given by

$$
F=-k_{B} T \ln Z=k_{B} T \ln \left[1-e^{-\beta \hbar \omega}\right]
$$

(b) The entropy is given by

$$
S=-\frac{\partial F}{\partial T}=\frac{\hbar \omega}{T} \frac{1}{e^{\beta \hbar \omega}-1}-\ln \left[1-e^{-\beta \hbar \omega}\right] .
$$

4. We have

$$
\begin{equation*}
U \equiv\langle E\rangle=\frac{1}{Z} \sum_{n} E_{n} e^{-\beta E_{n}}, \tag{2}
\end{equation*}
$$

and

$$
\left\langle E^{2}\right\rangle=\frac{1}{Z} \sum_{n} E_{n}^{2} e^{-\beta E_{n}}
$$

where

$$
Z=\sum_{n} e^{-\beta E_{n}} .
$$

Differentiating Eq. (2) with respect to T gives (remember Z also depends on T)

$$
\begin{align*}
\frac{\partial U}{\partial T} & =\frac{1}{k_{B} T^{2}}\left[\frac{1}{Z} \sum_{n} E_{n}^{2} e^{-\beta E_{n}}-\frac{1}{Z^{2}}\left(\sum_{n} E_{n} e^{-\beta E_{n}}\right) \sum_{m}\left(E_{m} e^{-\beta E_{m}}\right)\right] \\
& =\frac{1}{k_{B} T^{2}}\left(\left\langle E^{2}\right\rangle-\langle E\rangle^{2}\right) \\
& =\frac{1}{k_{B} T^{2}}\left\langle(E-\langle E\rangle)^{2}\right\rangle . \tag{3}
\end{align*}
$$

Note: This shows that the mean square fluctuation in the energy is proportional to $\partial U / \partial T$, the heat capacity (also called the specific heat). Since U, and hence the specific heat, is extensive the root mean square fluctuation in the energy (which is a typical deviation of the energy from its mean) is proportional to \sqrt{N}. We have seen several specific examples of \sqrt{N} fluctuations in the course, and here we see that the fluctuations in the energy vary quite generally in this way.
5. The energy levels of a diatomic molecule coming from its rotation motion are given by

$$
\epsilon(j)=j(j+1) \epsilon_{0}
$$

$j=0,1,2, \cdots$, and their degeneracy (multiplicity) is $2 j+1$.
(a) Hence the partition function is given by

$$
Z=\sum_{j=0}^{\infty}(2 j+1) e^{-\beta j(j+1) \epsilon_{0}},
$$

(note the inclusion of the degeneracy factor $2 j+1$). While this cannot be evaluated exactly in closed form, it can be evaluated for very low T and very high T.
(b) We first consider very high T, for which the Boltzmann factor $e^{-\beta j(j+1) \epsilon_{0}}$ doesn't change much from one j to the next, and so we can replace the sum by an integral:

$$
\begin{equation*}
Z \simeq \int_{0}^{\infty}(2 j+1) e^{-\beta j(j+1) \epsilon_{0}} d j=-\frac{1}{\beta \epsilon_{0}}\left[e^{-\beta j(j+1) \epsilon_{0}}\right]_{0}^{\infty}=\frac{1}{\beta \epsilon_{0}} . \tag{4}
\end{equation*}
$$

(c) In the low T limit we just consider the first two terms (the rest will be negligible) so

$$
\begin{equation*}
Z \simeq 1+3 e^{-\beta 2 \epsilon_{0}} . \tag{5}
\end{equation*}
$$

(d) Now $U=-(\partial / \partial \beta) \ln Z$ and applying this to Eq. (4) gives

$$
U=\frac{\partial}{\partial \beta} \ln \left(\beta \epsilon_{0}\right)=\frac{1}{\beta}=k_{B} T .
$$

The specific heat is

$$
C=\frac{\partial U}{\partial T}=k_{B} .
$$

We see that the specific heat tends to a constant at high temperature.
At low temperature, we obtain from Eq. (5)

$$
U=-\frac{\partial}{\partial \beta} \ln \left[1+3 e^{-2 \beta \epsilon_{0}}\right]=\frac{6 \epsilon_{0} e^{-2 \beta \epsilon_{0}}}{1+3 e^{-2 \beta \epsilon_{0}}} \simeq 6 \epsilon_{0} e^{-2 \beta \epsilon_{0}} .
$$

The specific heat is given by

$$
C=\frac{\partial U}{\partial T}=12 k_{B}\left(\frac{\epsilon_{0}}{k_{B} T}\right)^{2} e^{-2 \beta \epsilon_{0}}
$$

Both the energy and specific heat vanish exponentially for $T \rightarrow 0$.
(e) Sketching the energy and specific heat turns out to be a bit tricky. For example you may imagine that the specific heat increases monotonically from 0 to k_{B} as T increases from 0 to ∞, but it actually overshoots, with a peak value of about $1.1 k_{B}$ at $k_{B} T \simeq 0.81 \epsilon_{0}$. Since this is not obvious, you will get full credit for a monotonically increasing curve. Also, the energy actually tends to $k_{B} T-\epsilon_{0} / 3$ at high T (the constant was not given at our level of approximation) and so it actually lies parallel to the line $U=k_{B} T$ at high T but not on it. However, if you drew the curve equaling $k_{B} T$ at high T you will get full credit.
The figure below is the correct result obtained numerically. The solid line is for U and the dashed line for C. The dotted lines indicate the limits of C / k_{B} and U / ϵ_{0} at high temperature (1 and $k_{B} T / \epsilon_{0}-1 / 3$ respectively).

6. (a) The states of the system are: 0 links unzipped, 1 link unzipped, 2 links unzipped etc. Since the unzipping has to start from the left, there is only one state with a given number of links unzipped. Hence the partition function is given by

$$
Z=1+e^{-\beta \epsilon}+e^{-2 \beta \epsilon}+\cdots+e^{-N \beta \epsilon}
$$

and the standard result for the sum of a geometric series gives

$$
Z=\frac{1-e^{-(N+1) \beta \epsilon}}{1-e^{-\beta \epsilon}} .
$$

(b) At low temperature, $\beta \epsilon \gg 1$, we only need consider the two lowest energy levels, that with 0 open links and that with 1 open link. In this limit the partition function becomes

$$
Z \simeq 1+e^{-\beta \epsilon},
$$

and the average number of open links is

$$
0 \cdot \frac{1}{Z}+1 \cdot \frac{e^{-\beta \epsilon}}{Z}=\frac{e^{-\beta \epsilon}}{1+e^{-\beta \epsilon}} \simeq e^{-\beta \epsilon} .
$$

7. We consider two independent systems " 1 " and " 2 ". Independent means that the allowed values of the energy of system 1, for example, are independent of the value of the energy of system 2 . Hence if we denote the energy of a particular state of system 1 by $E_{1, i}$ and that of system two by $E_{2, j}$, then the sum over all states of the whole system is obtained by summing independently over i and j. Hence the partition function of the combined system is given by

$$
Z_{\text {tot }}=\sum_{i} \sum_{j} \exp \left[-\beta\left(E_{1, i}+E_{2, j}\right)\right]=\sum_{i} \exp \left(-\beta E_{1, i}\right) \sum_{j} \exp \left(-\beta E_{2, j}\right)=Z_{1} Z_{2} .
$$

Consequently the total free energy $F_{t o t}=-k_{B} T \ln Z_{\text {tot }}$ is given by

$$
F_{\text {tot }}=-k_{B} T \ln Z_{1} Z_{2}=-k_{B} T\left(\ln Z_{1}+\ln Z_{2}\right)=F_{1}+F_{2},
$$

i.e. it is the sum of the free energies of the two independent systems. Since the free energy, like the energy, is an extensive quantity, this is expected.

