
PHYSICS 112

Homework 3 Solutions

1. As shown in class (see also handout) the allowed values of ~k in k-space form a regularly space grid
with spacing π/L (where the system is of size L in each direction) and kx, ky etc. are taken to be
positive.

[Note: This is for “free” boundary conditions. Instead, one often uses “periodic” boundary
conditions, where one includes negative as well as positive values of kx etc. , and the spacing is
2π/L. For a large system, one obtains the same results for the density of states for any boundary
conditions.]

Hence the density of points in k-space in two dimensions is (L/π)2 = A/π2 where A is the area the
system. Hence the number of points in k-space which have magnitude of the wavevector between
k and k + dk is

A

π2
2πk dk

1

4
, (1)

since the area of a thin ring of radius k and width dk is 2πkdk, but we are only interested in the
positive quadrant (kx > 0, ky > 0), so we divide by 4. Hence the density of states as a function of
k, ρ̃(k), is given by

ρ̃(k) =
A

2π
k . (2)

We now convert this to energy ǫ using

ρ̃(k) dk = ρ(ǫ) dǫ (3)

and the given dispersion relation.

(a) For electrons, ǫ = h̄2k2/2m and so kdk = mdǫ/h̄2. We also need to multiply by 2 for the
spin degeneracy. Hence Eqs. (2) and (3) gives

ρ(ǫ) = A
m

πh̄2
.

Note that this is a constant density of states.

(b) For photons, ǫ = h̄ck so kdk = ǫdǫ/(h̄c)2. We also need to multiply by 2 for the two photon
polarizations, which gives

ρ(ǫ) = A
1

π(h̄c)2
ǫ .

2. The density of states for photons is

ρ(ǫ) =
V

π2

1

(h̄c)3
ǫ2 .

Since the mean number of photons in a single mode is given by the Planck distribution, the total
number of photons, summed over all modes, is given by

N =
V

π2

1

(h̄c)3

∫ ∞

0

ǫ2

eβǫ − 1
dǫ .
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Writing βǫ = x, this gives

N =
V

π2

(
kBT

h̄c

)3 ∫ ∞

0

x2

ex − 1
dx .

As stated in the question, the value of the integral is 2.404 and so we obtain the desired result.

3. (a) The total rate of energy generation of the sun is the “solar constant” times the area (in cm.2)
of a sphere whose radius is the earth-sun distance = 1.5× 1013 cm, i.e. it is given by

0.136× 4π(1.5× 1013)2 ≃ 4× 1026J s−1 .

(b) This is equal to the area of the sun [4π(7 × 1010)2], times the Stefan-Boltzmann constant
[5.67× 10−12], times T 4 where T is the temperature of the surface of the sun, and so

4× 1026 = 4π(7× 1010)2 × 5.67× 10−12 × T 4 ,

and so

T =

(
4× 1026

4π(7× 1010)2 × 5.67× 10−12

)1/4

≃ 6000K .

4. (a) As discussed in class

P = −

(
∂U

∂V

)

S

.

Now
U =

∑

j

h̄ωjnj ,

where j refers to a particular mode, and nj is the mean photon occupation number which
is given by the Planck distribution. The entropy is determined by the occupation numbers
(see for example the Boltzmann definition of entropy discussed in class, and Qu. 7 in this
assignment). Hence keeping the entropy constant is obtained by keeping the nj constant.
This gives

P = −
∑

j

h̄
∂ωj

∂V
nj .

(b) Now

ωj = h̄ckj = h̄c
π

L
(nx, ny, nz) ,

where the nx etc. are integers specifying ~k, and V = L3. Hence ωj = const.V −1/3 and so

∂ωj

∂V
= −

ωj

3V
.

(c) From parts (a) and (b) we have

P =
1

3V

∑

j

h̄ωj =
U

3V
,

so the pressure is (1/3)× (energy density).
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5. (a) The total energy of the photon gas is given by

E =
∑

l

ǫlnl ,

where l denotes a photon mode and, nl is the occupancy of the mode, i.e. nl = 0, 1, 2, · · · .
(Note that here nl is not the average occupancy (Planck distribution), which we will denote
by 〈nl〉.)

The sum over states clearly corresponds to summing over all the nl. Hence the partition
function is given by

Z =
∑

states

exp(−βE) =
∑

{nl}

exp

[
−β

∑

l

ǫlnl

]
, (4)

where {nl} means sum over the set of nl. Now the exponential of a sum is a product of
exponentials, and the nl can be summed over independently, so we can write Eq. (4) as

Z =
∏

l




∞∑

nl=0

exp(−βǫlnl)


 =

∏

l

zl ,

where

zl =
∞∑

nl=0

exp(−βǫlnl) = [1− exp(−βh̄ωl)]
−1

is the partition function of mode l.

(b) Since the partition function is the product of partition functions for the individual modes,
and since F = −kBT lnZ, the free energy is the sum of free energies of the modes, i.e.

F = kBT
∑

l

ln [1− exp(−βh̄ωl)] =
V

π2

kBT

(h̄c)3

∫ ∞

0

ǫ2 ln
[
1− e−βǫ

]
dǫ ,

where the second expression has used the density of photon states in a box. Writing x = βǫ
the last equation becomes

F =
V

π2

(kBT )
4

(h̄c)3

∫ ∞

0

x2 ln
[
1− e−x

]
dx . (5)

Writing the integral as I and integrating by parts we have

I =

∫ ∞

0

x2 ln
[
1− e−x

]
dx =

∫ ∞

0

d

dx

(
x3

3

)
ln
[
1− e−x

]
dx

=

{
x3

3
ln
[
1− e−x

]}∞

0

−
1

3

∫ ∞

0

x3

ex − 1
dx

= −
1

3

∫ ∞

0

x3

ex − 1
dx

= −
π4

45
,

where the last line uses the value of the integral given in the question. Substituting this value
for I into Eq. (5) we have

F = −V
π2(kBT )

4

45(h̄c)3
.
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6. (Due next week.)

7. From Qu. (5) the free energy of a single photon mode is given by

f = kBT ln
[
1− e−βh̄ω

]
,

and hence its entropy is

σ ≡
s

kB
= −

1

kB

(
∂f

∂T

)
= − ln

[
1− e−βh̄ω

]
+

h̄ω

kBT

1

eβh̄ω − 1
.

(Note that I use the symbol n for the photon occupation and s for the entropy per mode.) Now
we have

〈n+ 1〉 = 1 +
1

eβh̄ω − 1
=

1

1− e−βh̄ω
,

〈n+ 1〉

〈n〉
= eβh̄ω ,

and so

σ = ln〈n+ 1〉+ 〈n〉 ln

(
〈n+ 1〉

〈n〉

)
= 〈n+ 1〉 ln〈n+ 1〉 − 〈n〉 ln〈n〉 .

8. From Eq. (23) of Ch. 4 the entropy of the photon gas is given by

S = const. V T 3 , (6)

and hence in a process at constant entropy we have

TV 1/3 = const. (7)

(Note that Eq. (6) can also be obtained by differentiating the final result of Qu. (5) with respect
to T .)

(a) The temperature of the cosmic microwave background is now Tf = 2.73K. If it was originally
Ti = 3000K and assuming the expansion takes place at constant entropy, we have from Eq. (7)

TiRi = TfRf ,

where Ri and Rf are the initial and final radii of the universe. (Note that the volume is
proportional to the radius cubed.) This gives

Ri

Rf
=

Tf

Ti
=

2.73

3000
≃ 9× 10−4 .

(b) If the rate of expansion is constant, the time since the big bang is proportional to the radius
and so

ti
tf

= 9× 10−4 ,

i.e. the universe was about a thousandth of its present age.
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