
PHYSICS 112

Homework 4 Solutions

1. The specific heat, per unit volume of a crystal at low temperature is given by

Cphonon

kB
=

12π4n

5

(

T

θD

)3

,

while the specific heat per unit volume of a photon gas is

Cphoton

kB
=

4π2

15(h̄c)3
(kBT )

3 ,

which can be obtained by differentiating the energy density in Eq. (20), Ch. 4 of the book with
respect to T . Taking the ratio gives

Cphonon

Cphoton

= 9π2n

(

h̄c

kBθD

)3 (

Tphonon

Tphoton

)3

, (1)

where we have allowed different temperatures for the photons and phonons.

[Note: Since θD is defined by
kBθD = h̄v(6π2n)1/3

where v is the sound speed, (see Eqs. (42) and(43) of the book), Eq. (1) is equivalent to

Cphonon

Cphoton

=
3

2

( c

v

)3
(

Tphonon

Tphoton

)3

. (2)

This is mentioned in the question.]

Setting the specific heats in Eq. (1) to be equal gives

Tphoton =
(

9π2n
)1/3 h̄c

kBθD
Tphonon .

Putting Tphonon = 1K and n = 1022 cm−3 gives

Tphoton =
(9× 3.1422 × 1022)1/3 × 1.055× 10−27 × 3× 1010

1.38× 10−16 × 100
≃ 2.2× 105K .

As shown in Eq. (2), the ratio of temperatures, 2.2× 105, is the ratio of the speed of light to the
speed of sound (apart from a factor (3/2)1/3).

2. Consider a column of gas in the atmosphere of unit cross sectional area. We showed in class that
the density varies with height h as

n(h) = n0 exp(−mgh/kBT ) ,

where n0 is the density at h = 0.
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(a) The number of atoms in the column whose height is between h and h+ dh is n(h) dh. Their
contribution to the potential energy is mghn(h) dh. Hence the average potential energy per
atom is obtaining by integrating this over h and dividing by the total number of atoms in
the column, i.e.

〈PE〉 =
mg n0

∫

∞

0

h exp(−mgh/kBT ) dh

n0

∫

∞

0

exp(−mgh/kBT ) dh

= kBT ,

where to get the final answer we let x = mgh/kBT and used the following integrals:
∫

∞

0

exp(−x) dx = 1 ,

∫

∞

0

x exp(−x) dx = 1 .

(b) To get the specific heat we need the contribution from both the potential energy and kinetic
energy. The kinetic energy per atom is 3kBT/2 (we are assuming that T is independent of
h), see Eq. (65) of Ch. 3 of Kittel and Kroemer, which gives a specific heat of 3kB/2, while
the above result for the potential energy gives a specific heat per atom of kB. Adding them
together gives a total specific heat per atom of

C =
5

2
kB .

3. (a) There are three possible states:

(A) no particle: this gives a contribution of 1 to Z
(B) one particle in a state of zero energy: contribution is exp(βµ)

(C) one particle in state with energy ǫ: contribution is exp(βµ− βǫ).

Adding up gives

Z = 1 + λ+ λ exp(−βǫ) ,

where λ, which is known as the activity, is equal to exp(βµ).

(b) The probabilities of the system being in states A, B, and C are:

PA =
1

Z , PB =
λ

Z , PC =
λ exp(−βǫ)

Z ,

and so the expectation value of the number of particles is given by

〈N〉 = 0 · PA + 1 · PB + 1 · PC =
λ+ λ exp(−βǫ)

Z .

(c) The average occupancy of the state at energy ǫ is PC which is equal to

λ exp(−βǫ)

Z .

(d) The average energy is given by

U = 0 · PA + 0 · PB + ǫ · PC =
ǫλ exp(−βǫ)

Z .
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(e) Now we add a fourth state, D, with two particles and energy ǫ, and so

Z = 1 + λ+ λ exp(−βǫ) + λ2 exp(−βǫ) = (1 + λ) [1 + λ exp(−βǫ)] .

Because Z can be factored, the states with energy zero and energy ǫ are effectively two
independent systems.

4. There are four states as specified in the question. Weighting them according to the Gibbs distri-
bution, the average number of electrons is

λ [exp(β∆/2) + exp(−β∆/2)] + 2λ2 exp(−βδ/2)

exp(βδ/2) + λ [exp(β∆/2) + exp(−β∆/2)] + λ2 exp(−βδ/2)
.,

where β = 1/τ . Setting this (rather complicated) expression equal to unity gives the desired
condition, i.e.

λ [exp(β∆/2) + exp(−β∆/2)]+2λ2 exp(−βδ/2) = exp(βδ/2)+λ [exp(β∆/2) + exp(−β∆/2)]+λ2 exp(−βδ/2)

and simplifying gives
λ2 exp(−βδ/2) = exp(βδ/2) , (3)

which corresponds to the probability of there being two electrons is equal to the probability of
their being no electrons. (This condition is is equivalent to the average being one.) Eq. (3) can
be written as

λ2 = exp(βδ) ,

as desired.

5. There are three possible states:

(0) Site is vacant: energy = 0.

(A) O2 molecule: energy = ǫA

(B) CO molecule: energy = ǫB

The corresponding weights in the Gibbs distribution are

(0) 1 , (A) λ(O2) exp(−βǫA) , (B) λ(CO) exp(−βǫB) .

(a) Assume there is no CO, i.e. λ(CO) = 0. The probability that an O2 molecule is attached is
therefore

λ(O2) exp(−βǫA)

1 + λ(O2) exp(−βǫA)
.

For this to equal 0.9 we need
λ(O2) exp(−βǫA) = 9 . (4)

and putting in λ(O2) = 1× 10−5 gives

ǫA = kBT ln(10−5/9) = −0.37ev.

where we used T = 37◦C = 310K, and 1 ev = 1.6× 10−19 J.
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(b) Now allow for contamination by CO. The probability that the site is occupied by an O2

molecule is now
λ(O2) exp(−βǫA)

1 + λ(O2) exp(−βǫA) + λ(CO) exp(−βǫB)
,

where we are given λ(CO) = 1× 10−7. For this to be reduced to 0.1 one has, using Eq. (4),

0.1 =
9

1 + 9 + 10−7 exp(−βǫB)
,

which gives
ǫB = −0.55ev.

6. (a)

〈N〉 = 1

Z

{

∑

N

N
∑

l

exp[β(Nµ− El)]

}

=
kBT

Z

(

∂Z
∂µ

)

T,V

= −
(

∂Ω

∂µ

)

T,V

, (5)

where Ω, the grand potential, is equal to −kBT lnZ.

(b) Similarly

〈N2〉 = 1

Z

{

∑

N

N2
∑

l

exp[β(Nµ− El)]

}

=
(kBT )

2

Z

(

∂2Z
∂µ2

)

T,V

,

and hence

〈(∆N)2〉 ≡ 〈N2〉 − 〈N〉2 = (kBT )
2

[

1

Z

(

∂2Z
∂µ2

)

− 1

Z2

(

∂Z
∂µ

)2
]

.

(c) Differentiating Eq. (5) with respect to µ, and noting that one has to differentiate both ∂Z/∂µ
and the factor of Z in the denominator, we get

∂〈N〉
∂µ

= kBT

{

1

Z

(

∂2Z
∂µ2

)

− 1

Z2

(

∂Z
∂µ

)2
}

=
1

kBT
〈(∆N)2〉 ,

where we used part (a) in the last equality.

Note: The left hand side is of order N and so the size of typical fluctuations in N , which is
given by 〈(∆N)2〉1/2, is of order

√
N which is much less than N if N is very large. Hence,

as stated in class, relative fluctuations in N are small, in the Gibbs distribution, for a large
system.

7. We are given that the density of water vapor at the bottom is n0 and the density in the air at the
leaves is equal to 0.9n0. In order for the water vapor to rise in the tree to the leaves, the density
of water vapor in the pores of the tree must exceed that in the outside air at the leaves, 0.9n0.
We showed in class that the density varies with h as

n(h) = n0 exp(−mgh/kBT ) ,

and so we need
n0 exp(−mgh/kBT ) > 0.9n0 ,
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or
mgh

kBT
< ln(1/0.9) = 0.105 .

This gives

h < 0.105
kBT

mg
.

Putting in T = 25◦C = 298K, g = 9.81m s−2, m = 18 × 1.67 × 10−27 kg, and kB = 1.38 ×
10−23 JK−1, (where we have noted that the mass of a water molecule is essentially 18 times that
of a proton whose mass is given in the back of the book), we get the maximum height to be

0.105× 1.38× 10−23 × 298

18× 1.67× 10−27 × 9.81
≃ 1460m .
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