
PHYSICS 112

Homework 6 Solutions

1. (a) The thermodynamic identity is
TdS = dU + PdV.

If the volume changes by a small amount dV , and the temperatures by dT at constant entropy
we have 0 = dU + PdV . Now dU = CV dT since the energy of an ideal gas only depends on
T , not the volume, so

CV dT + PdV = 0 .

(b) Writing P = NkBT/V and recalling that NkB = CP − CV we get

CV
dT

T
+ (CP − CV )

dV

V
= 0.

Dividing by CV gives the desired result

dT

T
+ (γ − 1)

dV

V
= 0,

where γ = CP /CV .

(c) Integrating the last expression gives

lnT + (γ − 1) lnV = const.

and exponentiating gives

TV γ−1 = const.

Substituting T = PV/NkB into the result of the previous part gives

PV

NkB
V γ−1 = const.

and so
PV γ = const′.

where const′. is another constant. (Remember we are keeping N constant here.)

(d) At constant T , we have PV = C where C = NkBT is constant, and so

BT = −V

(

∂P

∂V

)

T

= (−V )

(

−
C

V 2

)

=
C

V
= P .

At constant entropy, we have PV γ = C, and so

BS = −V

(

∂P

∂V

)

S

= (−V )

(

−
γC

V (1 + γ)

)

=
γC

V γ
= γP .

2. The density of states in two dimensions was worked out in HW 3, Qu. 1 and is

ρ(ǫ) = A
m

2πh̄2 ,

where we divided that expression by 2 since we have spin = 0 here. Note that this is independent

of ǫ.
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As in three dimensions we have
Ω = −kBTλz(1)

where now

z(1) =
∑

l

e−βǫl = A
m

2πh̄2

∫

∞

0
e−βǫ dǫ = A

mkBT

2πh̄2 =
A

AQ
,

where AQ, the “quantum area”, is given by

AQ =
2πh̄2

mkBT
.

Note that AQ = V
2/3
Q .

Results for the free energies for classical ideal gas in three dimensions go over with V replaced by
A and VQ replaced by AQ. In particular:

(a)

µ = kBT ln(nAQ) = −kBT ln

[

1

n

(

mkBT

2πh̄2

)]

,

where n = N/A is the areal density.

(b) Also
F = NkBT [ln(nAQ) − 1] .

We obtain U from U = (∂/∂β)(βF ) which gives

U = NkBT ,

noting that AQ ∼ T−1 (not T−3/2 which is the result in three dimensions).

(c) In the same way, S = −∂F/∂T gives

S = NkB [2 − ln(nAQ)] .

3. Let us define V1 = V, V2 = 2V, V3 = 4V , where V is the initial volume, and similarly T1 = T (=
300), T2 = T1, and the final temperature is T3.

(a) V1 → V2 is isothermal. As discussed in class the heat supplied is NkBT ln(V2/V1) =
NkBT ln 2. V2 → V3 is isentropic so no heat is added. Hence the total heat added is

NkBT ln 2 = 6.02 × 1023 × 0.693 × 1.38 × 10−23 × 300 = 1728 J .

where we used that 1 mole contains Avogadro’s number of molecules N = 6.02 × 1023.

(b) In the first process T is constant. In the second process we have TV 2/3 = const. and so

T3 = T

(

1

2

)2/3

= 0.63T = 189 K .

(c) As discussed in the book the increase in entropy is

∆S = NkB ln(V2/V1) = NkB ln 2 = 5.76 J K−1 .

.
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4. We are given that the distribution of speeds is

P (v) =

√

2

π

(

m

kBT

)3/2

v2 exp

(

−
mv2

2kBT

)

. (1)

To answer this question we will need certain results for Gaussian integrals mentioned in class

∫

∞

0
e−a2x2/2 dx =

√

π

2

1

a
, (2)

∫

∞

0
x2e−a2x2/2 dx =

√

π

2

1

a3
, (3)

∫

∞

0
x4e−a2x2/2 dx = 3

√

π

2

1

a5
. (4)

Note that Eq. (3) shows that the distribution in Eq. (1) is correctly normalized, i.e.
∫

∞

0 P (v) dv =
1. We will also need

∫

∞

0
xe−a2x2/2 dx =

1

a2
, (5)

which is easy because indefinite integral is −(1/a2)e−a2x2/2, and

∫

∞

0
x3e−a2x2/2 dx =

2

a4
, (6)

which is done by integrating by parts to make it look like Eq. (5).

(a) Using Eq. (4) with a2 = m/kBT we get

〈v2〉 =

∫

∞

0
v2P (v) dv =

√

2

π

(

m

kBT

)3/2

3

√

π

2

(

kBT

m

)5/2

=
3kBT

m
,

and so the rms velocity is given by

vrms ≡ 〈v2〉1/2 =

√

3kBT

m
.

(b) The most probable value of the speed, vmp, is where P (v) in Eq. (1) has a maximum, i.e.

(

2vmp − v2
mp

mvmp

kBT

)

exp

(

−
mv2

mp

2kBT

)

= 0,

i.e.

vmp =

√

2kBT

m
.

(c) From Eq. (3), the mean speed is given by

〈v〉 =

∫

∞

0
vP (v) dv =

√

2

π

(

m

kBT

)3/2 ∫ ∞

0
v3 exp

(

−
mv2

2kBT

)

dv =

√

2

π
2

√

kBT

m
=

√

8kBT

πm
.
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(d) We are also given that the probability for a single component of velocity is

Pz(vz) =

√

m

2πkBT
exp

(

−
mv2

z

2kBT

)

.

Noting that vz can have either sign we get

〈|vz|〉 =

∫

∞

−∞

|vz|Pz(vz) dvz = 2

∫

∞

0
vzPz(vz) dvz = 2

√

m

2πkBT

∫

∞

0
vz exp

(

−
mv2

z

2kBT

)

=

√

2kBT

πm
,

where we used Eq. (5) to get the final result. Note that 〈|vz|〉 = 1

2
〈v〉.

5. Following the discussion in class, the number of states in which the magnitude of the wavevector
lies between k and k + dk is

2

(

L

π

)3 4πk2 dk

8
.

We write this as ρ(ǫ) dǫ = ρ(ǫ) (∂ǫ/∂k) dk, and so

ρ(ǫ) =
V

π2
k2 1

(∂ǫ/∂k)
=

V

π2
k2 1

h̄c
=

V

π2

ǫ2

(h̄c)3
.

(a) At T = 0 we fill up all the states up to ǫF , i.e.

N =
V

π2(h̄c)3

∫ ǫF

0
ǫ2 dǫ =

V

3π2

(ǫF

h̄c

)3
. (7)

This can be rearranged as

ǫF = π2/3h̄c (3n)1/3 .

(b) The energy is given by

U =

∫ ǫF

0
ǫρ(ǫ) dǫ =

V

4π2

ǫ4F
(h̄c)3

=
3

4
NǫF ,

where we used Eq. (7).

6. (a) As shown in the book, the energy of an ideal Fermi gas at T = 0 is

U =

∫ ǫF

0
ǫρ(ǫ) dǫ =

3

5
NǫF =

3

10
N

h̄2

m

(

3π2N

V

)2/3

. (8)

From the thermodynamic identity

dU = TdS − PdV

we have

P = −

(

∂U

∂V

)

S

.

However at T = 0 the entropy is zero, (Third Law) and so constant S is equivalent to constant
T . Hence we can obtain the pressure by differentiating Eq. (8) with respect to V , i.e.

P = −
∂U

∂V
=

(3π2)2/3

5

h̄2

m
n5/3 .
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