## PHYSICS 112

## Homework 6 Solutions

1. (a) The thermodynamic identity is

$$
T d S=d U+P d V
$$

If the volume changes by a small amount $d V$, and the temperatures by $d T$ at constant entropy we have $0=d U+P d V$. Now $d U=C_{V} d T$ since the energy of an ideal gas only depends on $T$, not the volume, so

$$
C_{V} d T+P d V=0
$$

(b) Writing $P=N k_{B} T / V$ and recalling that $N k_{B}=C_{P}-C_{V}$ we get

$$
C_{V} \frac{d T}{T}+\left(C_{P}-C_{V}\right) \frac{d V}{V}=0
$$

Dividing by $C_{V}$ gives the desired result

$$
\frac{d T}{T}+(\gamma-1) \frac{d V}{V}=0
$$

where $\gamma=C_{P} / C_{V}$.
(c) Integrating the last expression gives

$$
\ln T+(\gamma-1) \ln V=\text { const. }
$$

and exponentiating gives

$$
T V^{\gamma-1}=\text { const. }
$$

Substituting $T=P V / N k_{B}$ into the result of the previous part gives

$$
\frac{P V}{N k_{B}} V^{\gamma-1}=\text { const. }
$$

and so

$$
P V^{\gamma}=\text { const }{ }^{\prime} .
$$

where const'. is another constant. (Remember we are keeping $N$ constant here.)
(d) At constant $T$, we have $P V=C$ where $C=N k_{B} T$ is constant, and so

$$
B_{T}=-V\left(\frac{\partial P}{\partial V}\right)_{T}=(-V)\left(-\frac{C}{V^{2}}\right)=\frac{C}{V}=P .
$$

At constant entropy, we have $P V^{\gamma}=C$, and so

$$
B_{S}=-V\left(\frac{\partial P}{\partial V}\right)_{S}=(-V)\left(-\frac{\gamma C}{V^{(1+\gamma)}}\right)=\frac{\gamma C}{V^{\gamma}}=\gamma P .
$$

2. The density of states in two dimensions was worked out in HW 3, Qu. 1 and is

$$
\rho(\epsilon)=A \frac{m}{2 \pi \hbar^{2}},
$$

where we divided that expression by 2 since we have spin $=0$ here. Note that this is independent of $\epsilon$.

As in three dimensions we have

$$
\Omega=-k_{B} T \lambda z^{(1)}
$$

where now

$$
\mathrm{z}^{(1)}=\sum_{l} e^{-\beta \epsilon_{l}}=A \frac{m}{2 \pi \hbar^{2}} \int_{0}^{\infty} e^{-\beta \epsilon} d \epsilon=A \frac{m k_{B} T}{2 \pi \hbar^{2}}=\frac{A}{A_{Q}},
$$

where $A_{Q}$, the "quantum area", is given by

$$
A_{Q}=\frac{2 \pi \hbar^{2}}{m k_{B} T} .
$$

Note that $A_{Q}=V_{Q}^{2 / 3}$.
Results for the free energies for classical ideal gas in three dimensions go over with $V$ replaced by $A$ and $V_{Q}$ replaced by $A_{Q}$. In particular:
(a)

$$
\mu=k_{B} T \ln \left(n A_{Q}\right)=-k_{B} T \ln \left[\frac{1}{n}\left(\frac{m k_{B} T}{2 \pi \hbar^{2}}\right)\right]
$$

where $n=N / A$ is the areal density.
(b) Also

$$
F=N k_{B} T\left[\ln \left(n A_{Q}\right)-1\right] .
$$

We obtain $U$ from $U=(\partial / \partial \beta)(\beta F)$ which gives

$$
U=N k_{B} T
$$

noting that $A_{Q} \sim T^{-1}$ (not $T^{-3 / 2}$ which is the result in three dimensions).
(c) In the same way, $S=-\partial F / \partial T$ gives

$$
S=N k_{B}\left[2-\ln \left(n A_{Q}\right)\right] .
$$

3. Let us define $V_{1}=V, V_{2}=2 V, V_{3}=4 V$, where $V$ is the initial volume, and similarly $T_{1}=T(=$ 300), $T_{2}=T_{1}$, and the final temperature is $T_{3}$.
(a) $V_{1} \rightarrow V_{2}$ is isothermal. As discussed in class the heat supplied is $N k_{B} T \ln \left(V_{2} / V_{1}\right)=$ $N k_{B} T \ln 2 . V_{2} \rightarrow V_{3}$ is isentropic so no heat is added. Hence the total heat added is

$$
N k_{B} T \ln 2=6.02 \times 10^{23} \times 0.693 \times 1.38 \times 10^{-23} \times 300=1728 \mathrm{~J} .
$$

where we used that 1 mole contains Avogadro's number of molecules $N=6.02 \times 10^{23}$.
(b) In the first process $T$ is constant. In the second process we have $T V^{2 / 3}=$ const. and so

$$
T_{3}=T\left(\frac{1}{2}\right)^{2 / 3}=0.63 T=189 \mathrm{~K} .
$$

(c) As discussed in the book the increase in entropy is

$$
\Delta S=N k_{B} \ln \left(V_{2} / V_{1}\right)=N k_{B} \ln 2=5.76 \mathrm{~J} \mathrm{~K}^{-1} .
$$

4. We are given that the distribution of speeds is

$$
\begin{equation*}
P(v)=\sqrt{\frac{2}{\pi}}\left(\frac{m}{k_{B} T}\right)^{3 / 2} v^{2} \exp \left(-\frac{m v^{2}}{2 k_{B} T}\right) \tag{1}
\end{equation*}
$$

To answer this question we will need certain results for Gaussian integrals mentioned in class

$$
\begin{align*}
\int_{0}^{\infty} e^{-a^{2} x^{2} / 2} d x & =\sqrt{\frac{\pi}{2}} \frac{1}{a}  \tag{2}\\
\int_{0}^{\infty} x^{2} e^{-a^{2} x^{2} / 2} d x & =\sqrt{\frac{\pi}{2}} \frac{1}{a^{3}}  \tag{3}\\
\int_{0}^{\infty} x^{4} e^{-a^{2} x^{2} / 2} d x & =3 \sqrt{\frac{\pi}{2}} \frac{1}{a^{5}} . \tag{4}
\end{align*}
$$

Note that Eq. (3) shows that the distribution in Eq. (1) is correctly normalized, i.e. $\int_{0}^{\infty} P(v) d v=$ 1. We will also need

$$
\begin{equation*}
\int_{0}^{\infty} x e^{-a^{2} x^{2} / 2} d x=\frac{1}{a^{2}} \tag{5}
\end{equation*}
$$

which is easy because indefinite integral is $-\left(1 / a^{2}\right) e^{-a^{2} x^{2} / 2}$, and

$$
\begin{equation*}
\int_{0}^{\infty} x^{3} e^{-a^{2} x^{2} / 2} d x=\frac{2}{a^{4}}, \tag{6}
\end{equation*}
$$

which is done by integrating by parts to make it look like Eq. (5).
(a) Using Eq. (4) with $a^{2}=m / k_{B} T$ we get

$$
\left\langle v^{2}\right\rangle=\int_{0}^{\infty} v^{2} P(v) d v=\sqrt{\frac{2}{\pi}}\left(\frac{m}{k_{B} T}\right)^{3 / 2} 3 \sqrt{\frac{\pi}{2}}\left(\frac{k_{B} T}{m}\right)^{5 / 2}=\frac{3 k_{B} T}{m}
$$

and so the rms velocity is given by

$$
v_{\mathrm{rms}} \equiv\left\langle v^{2}\right\rangle^{1 / 2}=\sqrt{\frac{3 k_{B} T}{m}}
$$

(b) The most probable value of the speed, $v_{\mathrm{mp}}$, is where $P(v)$ in Eq. (1) has a maximum, i.e.

$$
\left(2 v_{\mathrm{mp}}-v_{\mathrm{mp}}^{2} \frac{m v_{\mathrm{mp}}}{k_{B} T}\right) \exp \left(-\frac{m v_{\mathrm{mp}}^{2}}{2 k_{B} T}\right)=0,
$$

i.e.

$$
v_{\mathrm{mp}}=\sqrt{\frac{2 k_{B} T}{m}}
$$

(c) From Eq. (3), the mean speed is given by

$$
\langle v\rangle=\int_{0}^{\infty} v P(v) d v=\sqrt{\frac{2}{\pi}}\left(\frac{m}{k_{B} T}\right)^{3 / 2} \int_{0}^{\infty} v^{3} \exp \left(-\frac{m v^{2}}{2 k_{B} T}\right) d v=\sqrt{\frac{2}{\pi}} 2 \sqrt{\frac{k_{B} T}{m}}=\sqrt{\frac{8 k_{B} T}{\pi m}}
$$

(d) We are also given that the probability for a single component of velocity is

$$
P_{z}\left(v_{z}\right)=\sqrt{\frac{m}{2 \pi k_{B} T}} \exp \left(-\frac{m v_{z}^{2}}{2 k_{B} T}\right) .
$$

Noting that $v_{z}$ can have either sign we get

$$
\langle | v_{z}| \rangle=\int_{-\infty}^{\infty}\left|v_{z}\right| P_{z}\left(v_{z}\right) d v_{z}=2 \int_{0}^{\infty} v_{z} P_{z}\left(v_{z}\right) d v_{z}=2 \sqrt{\frac{m}{2 \pi k_{B} T}} \int_{0}^{\infty} v_{z} \exp \left(-\frac{m v_{z}^{2}}{2 k_{B} T}\right)=\sqrt{\frac{2 k_{B} T}{\pi m}},
$$

where we used Eq. (5) to get the final result. Note that $\langle | v_{z}| \rangle=\frac{1}{2}\langle v\rangle$.
5. Following the discussion in class, the number of states in which the magnitude of the wavevector lies between $k$ and $k+d k$ is

$$
2\left(\frac{L}{\pi}\right)^{3} \frac{4 \pi k^{2} d k}{8} .
$$

We write this as $\rho(\epsilon) d \epsilon=\rho(\epsilon)(\partial \epsilon / \partial k) d k$, and so

$$
\rho(\epsilon)=\frac{V}{\pi^{2}} k^{2} \frac{1}{(\partial \epsilon / \partial k)}=\frac{V}{\pi^{2}} k^{2} \frac{1}{\hbar c}=\frac{V}{\pi^{2}} \frac{\epsilon^{2}}{(\hbar c)^{3}} .
$$

(a) At $T=0$ we fill up all the states up to $\epsilon_{F}$, i.e.

$$
\begin{equation*}
N=\frac{V}{\pi^{2}(\hbar c)^{3}} \int_{0}^{\epsilon_{F}} \epsilon^{2} d \epsilon=\frac{V}{3 \pi^{2}}\left(\frac{\epsilon_{F}}{\hbar c}\right)^{3} . \tag{7}
\end{equation*}
$$

This can be rearranged as

$$
\epsilon_{F}=\pi^{2 / 3} \hbar c(3 n)^{1 / 3}
$$

(b) The energy is given by

$$
U=\int_{0}^{\epsilon_{F}} \epsilon \rho(\epsilon) d \epsilon=\frac{V}{4 \pi^{2}} \frac{\epsilon_{F}^{4}}{(\hbar c)^{3}}=\frac{3}{4} N \epsilon_{F},
$$

where we used Eq. (7).
6. (a) As shown in the book, the energy of an ideal Fermi gas at $T=0$ is

$$
\begin{equation*}
U=\int_{0}^{\epsilon_{F}} \epsilon \rho(\epsilon) d \epsilon=\frac{3}{5} N \epsilon_{F}=\frac{3}{10} N \frac{\hbar^{2}}{m}\left(\frac{3 \pi^{2} N}{V}\right)^{2 / 3} . \tag{8}
\end{equation*}
$$

From the thermodynamic identity

$$
d U=T d S-P d V
$$

we have

$$
P=-\left(\frac{\partial U}{\partial V}\right)_{S} .
$$

However at $T=0$ the entropy is zero, (Third Law) and so constant $S$ is equivalent to constant $T$. Hence we can obtain the pressure by differentiating Eq. (8) with respect to $V$, i.e.

$$
P=-\frac{\partial U}{\partial V}=\frac{\left(3 \pi^{2}\right)^{2 / 3}}{5} \frac{\hbar^{2}}{m} n^{5 / 3}
$$

