
PHYSICS 112

Homework 7 Solutions

1. Since
k =

nπ

L

where n = 1, 2, 3, · · · the number of states with wavevector between k and k + dk is (L/π)dk, If
the corresponding (infinitesimal) range of energy is dǫ then we have

ρ(ǫ) dǫ = 2
L

π
dk, (1)

where the factor of 2 comes because there are 2 electron spin states for each wavevector, and
ǫ = h̄2k2/(2m). Now we have

dǫ

dk
=

h̄2k

m
=

h̄2

m

√

2mǫ

h̄2
=

√

2h̄2ǫ

m
,

and substituting into Eq. (1) gives

ρ(ǫ) =
2L

π

√

m

2h̄2
ǫ−1/2 =

L

π

√

2m

h̄2
ǫ−1/2 .

2. The question is asking why µ(T ) decreases with T in d = 3 whereas it initially increases with T
in d = 1, as shown in Fig. 7.7 in the book. The difference is related to the fact that the density
of states increases with ǫ in d = 3 (ρ(ǫ) ∼ ǫ1/2) whereas it decreases in d = 1 (ρ(ǫ) ∼ ǫ−1/2).

Now at T = 0 we have

N =

∫ ǫF

0
ρ(ǫ) dǫ , (2)

where ǫF ≡ µ(T = 0). Furthermore, at finite-T we have

N =

∫

∞

0
ρ(ǫ)f(ǫ− µ) dǫ =

∫

∞

0

ρ(ǫ)

e(ǫ−µ(T ))/kBT + 1
dǫ , (3)

where

f(x) =
1

eβx + 1
,

is the Fermi-Dirac distribution. The values of N in Eqs. (2) and (3) are, of course, equal. Note
that

f(−x) = 1− f(x) , (4)

which is easy to verify. In going from T = 0 to small but non-zero T electrons are moved from
states just below ǫF to states just above ǫF .

Consider, for example, the case of d = 1 for which ρ(ǫ) is a decreasing function. Then, from
Eq. (4), if µ(T ) were maintained equal to ǫF we would remove more electrons from below ǫF than
we would put into states above ǫF (simply because there are more states below ǫF ). This would
decrease the total number of electrons. In order to maintain the number of electrons at the fixed
value of N we therefore have to increase µ.

Similarly for d = 3 where ρ(ǫ) is a decreasing function we have to decrease µ to keep the number
of particles constant.

1



0

1

FNote: T ,  T ,  and T  are equal apart from numerical constants
0

B Qµ= −(3/2)k T log(T/T )

µ/ε F

TT0

quantum

classical

3 dimensions

Q

Figure 1: Sketch of µ(T ) with T in three dimensions.

A sketch of µ(T )/ǫF against T is given in Fig. 1.

Note that ǫF = µ(T = 0) and TF = ǫF /kB. The temperature where µ = 0 is denoted by
T0. We have also showed in class that, in the high temperature, i.e. classical, limit, µ(T ) =
− 3

2
kBT log T/TQ. All these temperatures, TF , TQ, and T0 are of the form

Ti =
ci
kB

h̄2

m
n2/3, (3-d),

where n = N/V and the ci are numerical constants of order unity, which are different for i = F,Q
and 0.

In one dimension, the variation of µ(T ) with T is fairly similar except that, as found in this
question, µ initially increases with T before decreasing. This is shown in Fig. (2).

3. (a) The Fermi energy ǫF is determined from

N =

∫ ǫF

0
ρ(ǫ) dǫ

i.e.

N = A
m

πh̄2

∫ ǫF

0
dǫ = A

m

πh̄2
ǫF , (5)

which can be written

ǫF = n
πh̄2

m
, (6)

where n = N/A.

(b) At finite-T , N is given by

N =

∫

∞

0

ρ(ǫ)

eβ(ǫ−µ) + 1
dǫ = A

m

πh̄2

∫

∞

0

dǫ

eβ(ǫ−µ) + 1
,
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Figure 2: Sketch of µ(T ) with T in one dimension.

which, using Eq. (5), can be expressed as

ǫF =

∫

∞

0

dǫ

eβ(ǫ−µ) + 1

=

∫

∞

0

eβ(µ−ǫ)dǫ

1 + eβ(µ−ǫ)

= − 1

β

[

ln
(

1 + eβ(µ−ǫ)
)]∞

0

=
1

β
ln
(

1 + eβµ
)

.

Simplifying this gives
eβµ = eβǫF − 1 ,

which can be written as

µ(T )

ǫF
=

kBT

ǫF
ln
(

eǫF /kBT − 1
)

= t ln
(

e1/t − 1
)

, (7)

where t = kBT/ǫF = T/TF .

A plot of Eq. (7) is given in Fig. 3. Note that whereas Figs. 1 and 2 are sketches, Fig. 3 is a
precise plot.

(c) For t ≪ 1, e1/t ≫ 1, so t ln(e1/t − 1) ≃ t ln e1/t = 1, and hence

µ(T → 0) = ǫF .

(d) For t ≫ 1 we expand e1/t = 1 + (1/t) + · · · and so

µ(T ) = ǫF
kBT

ǫF
ln

(

TF

T

)

= −kBT ln

(

T

TF

)

. (8)
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Figure 3: Plot of µ(T )/ǫF against T/TF in two dimensions, according to Eq. (7). The dashed line is
the high temperature (classical) limit µ(T )/ǫF = −t log t+ 1

2
with t = T/TF . (Strictly speaking, 1

2
is a

sub-leading term going beyond the classical limit.) The chemical potential vanishes at T = T0 where
T0/TF = 1/ log(2) = 1.443. In the quantum limit, T ≪ TF , µ(T ) tends to a constant which is called the
Fermi energy, ǫF .

This function, including the next term in the expansion (which is 1

2
), is shown as the dashed

line in Fig. 3. Since
T

TF
=

kBT

ǫF
=

mkBT

nπh̄2
,

where we used Eq. (6), Eq. (8) can be written

µ(T ) = −kBT ln

[

1

n

(

mkBT

πh̄2

)]

,

as required.

4. In the limit µ → 0−, the number of particles that can be put in the ǫ > 0 states is given by

Ne(T ) =

∫

∞

0

ρ(ǫ)

eǫ/kBT − 1
dǫ ,

where ρ(ǫ), the single-particle density of states, is given in d = 1 by

ρ(ǫ) =
L

π

√

2m

h̄2ǫ
.

To control the integral we put a small but non zero lower limit, δ and so

Ne(T ) =
L

π

√

2m

h̄2
lim
δ→0

∫

∞

δ

1

ǫ1/2
1

eǫ/kBT − 1
dǫ

=
L

π

√

2mkBT

h̄2
lim
δ→0

∫

∞

δ/kBT

1

x1/2
1

ex − 1
dǫ
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The integrand diverges as 1/x3/2 for x → 0 and hence the integral diverges as [1/x1/2]x=δ/kBT ,
and so, for δ → 0 we have

Ne(T ) =
L

π

√

2m

h̄2
kBT√

δ
,

which diverges for δ → 0 at any non-zero temperature.
Note: This means that we can put as many particles as we need to in the ǫ > 0 states, so there
will be no macroscopic occupancy of the ǫ = 0 state, i.e. no Bose-Einstein condensation.

5. In the Bose condensed state, the chemical potential is essentially zero. A finite fraction of the
particles is in the ǫ = 0 state, but these don’t contribute to the energy or specific heat. (One
might worry that they could contribute to the entropy, but a calculation shows that they only
give a total contribution lnN0, where N0 is the number of particles in the condensate, and so the
entropy per spin vanishes in the thermodynamic limit.)

Using the expression for the density of states discussed in class, we have

U =
V

4π2

(

2m

h̄2

)3/2 ∫ ∞

0

ǫ ǫ1/2

eβǫ − 1
dǫ

so

U

V
=

I

4π2

(

2m

h̄2

)3/2

(kBT )
5/2 , (9)

where

I =

∫

∞

0

x3/2

ex − 1
dx .

The numerical value of I is I = 1.78329 . . ., but you don’t need to show this.

The specific heat at constant volume is obtained by differentiating Eq. (9) with respect T :

CV

V kB
=

5I

8π2

(

2mkBT

h̄2

)3/2

. (10)

The entropy is obtained from

S(T )− S(0) =

∫ T

0

CV (T
′)

T ′
dT ′ .

Using Eq. (10) and the third law (S(0) = 0) one gets

S

V kB
=

5I

12π2

(

2mkBT

h̄2

)3/2

.

6. (a) For a single fermion state we have

〈n〉 = 0 + 1 · eβ(µ−ǫ)

1 + eβ(µ−ǫ)
=

1

eβ(ǫ−µ) + 1
,

and similarly

〈n2〉 = 02 + 12 · eβ(µ−ǫ)

1 + eβ(µ−ǫ)
=

1

eβ(ǫ−µ) + 1
= 〈n〉 .
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Consequently
〈

(∆n)2
〉

≡ 〈n2〉 − 〈n〉2 = 〈n〉(1− 〈n〉) .

(b) For a single boson state the grand partition function is given by

Z =
1

1− ex
,

where x = β(µ− ǫ). Now

〈n〉 =
1

Z

∞
∑

n=0

nenx

=
1

Z

∂Z

∂x

=
1

e−x − 1
=

1

eβ(ǫ−µ) − 1
,

and similarly

〈n2〉 =
1

Z

∞
∑

n=0

n2enx

=
1

Z

∂2
Z

∂x2

= (1− ex)
ex(1 + ex)

(1− x2)3
=

1 + e−x

(e−x − 1)2

= 2〈n〉2 + 〈n〉 .

Hence we have
〈

(∆n)2
〉

≡ 〈n2〉 − 〈n〉2 = 〈n〉 (〈n〉+ 1) .

7. In the heat pump, heat Qlow is absorbed from outside at temperature Tlow and greater amount of
heat Qhigh is emitted into the inside of the building at a higher temperature Thigh. The difference
is the work done

W = Qhigh −Qlow .

Now in a Carnot cycle
Qhigh

Thigh
=

Qlow

Tlow
,

and so
W

Qhigh
= 1− Qlow

Qhigh
= 1− Tlow

Thigh
.
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