
PHYSICS 112

Homework 8 Solutions

1. (a) In the reaction
e+H+

←→ H

we have νe = 1, νH+ = 1, νH = −1 and so the law of mass action gives us

ne nH+

nH
=

nQe nQH+

nQH

1

ZH(int)
(1)

where ZH(int) = eβ∆E is the internal partition function of the hydrogen atom (we just
include the lowest state with energy −∆E). There are no internal degrees of freedom of the
electron, and those of the proton are of much too high energy to be important, so we have
set Ze(int) = ZH+(int) = 1. Now

nQe =

(

mkBT

2πh̄2

)3/2

, (2)

with similar expressions for nQH+ and nQH . Since the mass of the hydrogen atom is almost
the same as that of the proton, the factors of nQH+ and nQH cancel in Eq. (1) to a good
approximation. Furthermore, there are an equal number of protons and electrons, so ne =
nH+ , and hence, taking the square root of Eq. (1), we get

ne = (nH nQe)
1/2 exp(−β∆E/2) , (3)

which is known as the Saha equation.

(b) When half the hydrogen atoms are ionized, we have ne = nH , for which Eq. (3) gives (when
squared)

nH

nQe
= exp

(

−

∆E

kBTi

)

,

where Ti is the temperature,

2. (a) Referring to the handout on equilibrium in chemical reactions, we have νA+ = νA− = 1, and
ZA+(int) = ZA−(int) = exp(−β∆E/2). Hence Eq. (16) of that handout gives

nA+

nQ

nA−

nQ

1

e−β∆E
= 1 , (4)

where

nQ+ = nQ−
= nQ =

(

mkBT

2πh̄2

)3/2

.

Equation (4) gives

nA+ = nA− = nQ e−β∆E/2 . (5)

(b) Putting in the mass of the electron, and the given temperature of the sun we get

∆E

2kBT
=

mc2

kBT
=

0.51× 106 × 11, 600

1.5× 107
= 394.
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nQ =

(

9.1× 10−28
× 1.38× 10−16

× 1.5× 107

2× 3.142× (1.05× 10−24)2

)3/2

= 1.4× 1026cm−3 .

Hence the density of thermally produced electrons at the center of the sum, given by Eq. (5),
is

1.4× 1026 × exp(−394) ≃ 10−145 cm−3 .

This is a really tiny number. In the volume of the sun, not one pair would be produced.
However, if the sun were only 10 times hotter, pairs would be produced; the density would
then be 4.4× 1027 × exp(−39) ≃ 5× 1010 cm−3.

3. (a) Maxwell equations arise because the order of a mixed second derivative is unimportant, i.e.

(

∂

∂y

(

∂f

∂x

)

y

)

x

=

(

∂

∂y

(

∂f

∂x

)

x

)

y

. (6)

We apply this first with f the Gibbs free energy G, x = T and y = P . Now
(

∂G

∂T

)

P

= −S,

(

∂G

∂P

)

T

= V ,

and applying Eq. (6) gives
(

∂V

∂T

)

P

= −

(

∂S

∂P

)

T

. (7)

Next apply Eq. (6) with f the Gibbs free energy G, x = N and y = P . We have

(

∂G

∂N

)

P

= µ,

(

∂G

∂P

)

N

= V ,

and applying Eq. (6) gives
(

∂V

∂N

)

P

=

(

∂µ

∂P

)

N

.

Next apply Eq. (6) with f the Gibbs free energy G, x = N and y = T . We have

(

∂G

∂N

)

T

= µ,

(

∂G

∂T

)

N

= −S ,

and applying Eq. (6) gives
(

∂µ

∂T

)

N

= −

(

∂S

∂N

)

T

.

Note: We have omitted subscripts of those variables which are constant of both sides of the
equation.

(b) From Eq. (7) the volume coefficient of thermal expansion α is given by

α ≡
1

V

(

∂V

∂T

)

P

= −
1

V

(

∂S

∂P

)

T

.

According to the third law of thermodynamics, S = 0 at T = 0 and hence (∂S/∂P )T = 0 at

T = 0. We conclude that α→ 0 for T → 0.
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4. To a good approximation, the Clausius-Clapeyron equation can be written

dP

dT
=

L

kBT 2
P ,

see Eq. (18) of Ch. 10 of the book, where L is the latent heat per molecule. We have L =
2260/(NA/18) J where NA = 6 × 1023 is Avogadro’s number and 18 is the molecular weight of
water in grams. Also T = 373K and P = 1atm. Hence we have

1

P

dP

dT
=

2260× 18

1.38× 10−19
× 3732 × 6× 1023

= 0.035K−1.

Taking the inverse and setting P = 1atm. gives

dT

dP
= 28K/atm.

5. The Clausius-Clapeyron equation can be written in the form

dP

dT
=

ss − sl
vs − vl

,

where subscripts ‘s’ and ‘l’ refer to ‘solid’ and ‘liquid’.

(a) The result that dP/dT → 0 for T → 0 implies that ss = sl at T = 0. This is required by the
third law of thermodynamics.

(b) The result that dp/dT < 0 at low but non-zero T implies that the entropy of the liquid is
less than that of the solid, since the volume of the liquid is greater (3He, like most liquids
with the notable exception of water, contracts when it solidifies).

This is surprising since usually liquids have a lot more disorder than solids and so have a
higher entropy. However, 3He at low-T is a degenerate Fermi liquid in which the occupancy
of most (single-particle) quantum states is either 0 or 1, and so the entropy is low. (If the
occupancy is exactly 0 or 1 the entropy from that state is zero. Why?)

In fact the entropy is proportional to T since CV = TdS/dT and we showed that the specific
heat CV is proportional to T .
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