
PHYSICS 112

Homework 9 Solutions

1. As discussed in class the (Helmholtz) free energy of the van der Waals gas is given by

F = −NkBT

{

ln

[

nQ(V −Nb)

N

]

+ 1

}

−N
N

V
a ,

where

nQ =

(

mkBT

2πh̄2

)3/2

.

(a) The entropy is given by

S = −
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∂T
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(b) The energy can be obtained either from U = F + TS or U = (∂/∂β)(βF ). Since we have
already worked out the entropy the simplest is to use U = F + TS which gives

U = N

[

3

2
kBT −

N

V
a

]

.

The first term is the usual kinetic energy, and the second term is the (negative) potential
energy from the attractive part of the potential. There is no contribution from the strong re-
pulsive part of the potential, (which involves the parameter b int the van der Waals equation)
because it acts like to hard wall from which the particles simply recoil.

2. (a) In the model in the book we have a solid in equilibrium with a vapor. For the vapor the
“activity” λg ≡ exp(βµg) is given by

λg = nVQ =
P

kBT
VQ =

P

kBT

(

2πh̄2

mkBT

)3/2

.

For the solid the Gibbs free energy per atom, gs, is related to the chemical potential by
gs = fs + Pvs = µs, where fs is the Helmholtz free energy per atom. The pressure in the
solid is the same as that in the gas but the volume per atom vs is much less than that in the
gas, so we neglect the Pvs term. Hence the activity in the solid is given by

λs ≡ exp(βµs) ≃ exp(βfs) = exp(− lnZs) =
1

Zs
,

where Zs is the partition function of an atom in the solid.

We represent the solid by a three-dimensional harmonic oscillator. The energy levels are
E = −ǫ0 + h̄ω(nx + ny + nz), where nx, ny and nz are positive integers or zero. Hence we
have

Zs =
∑

nx,ny ,nz

exp {−β[(nx + ny + nz)h̄ω − ǫ0]} = exp(βǫ0)

[

∑

n

exp(−nβh̄ω)

]3

=
exp(βǫ0)

[1− exp(βh̄ω)]3
.
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We consider high temperatures where kBT ≫ h̄ω and so get

λs ≃
1

Zs
≃

(

h̄ω

kBT

)3

exp(−βǫ0) .

Equilibrium occurs when λs = λg which gives

P

kBT

(

2πh̄2

mkBT

)3/2

≃

(

h̄ω

kBT

)3

exp(−βǫ0) ,

which simplifies to

P ≃
(m

2π

)3/2 ω3

(kBT )1/2
exp(−βǫ0) . (1)

(b) According to Eq. (18) of Ch. 10 of the book

dP

dT
≃

L

kBT 2
P ,

where L is the latent heat per atom. Substituting P from Eq. (1) gives

ǫ0 − kBT/2

kBT 2
=

L

kBT 2

and so the latent heat per atom L is given by

L = ǫ0 −
kBT

2
.

(c) A phenomenological explanation of this last result is as follows. As discussed in the book the
latent heat is also the change in the enthalpy, see KK p. 284-5. The enthalpy of the vapor
phase is related to the specific heat at constant pressure by Cp = (∂H/∂T )p. We showed in
class that Cp of an ideal gas is (5/2)NkB, and so the enthalpy of the vapor phase is

Hg =
5

2
kBT

per particle.

For the solid, the binding energy is −ǫ0 and the excitation energy of the oscillators is, on
average, kBT for each of the x, y, and z, directions. Hence the mean energy is Us =
−ǫ0 + 3kBT per particle. Now H = U + PV but the volume is small for the solid (as also
used above) so Hs ≃ Us and we have

Hs = −ǫ0 + 3kBT

per particle. The latent heat is therefore

L = Hg −Hs =
5

2
kBT − (−ǫ0 + 3kBT ) = ǫ0 −

1

2
kBT ,

as found explicitly above,
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3. (a) The energy is given by E = −γB cos θ, where θ is the polar angle of the spins, which we take
to be along the direction of the magnetic field. Remembering that in spherical polars the
angular integrals are of the form

∫

sin θ dθ dφ, and noting that there is no dependence of φ,
we have

m ≡ γ〈cos θ〉 =

∫ π
0
et cos θ cos θ sin θ dθ
∫ π
0
et cos θ sin θ dθ

=

∫

1

−1
etxx dx

∫

1

−1
etx dx ,

where t = βγB and x = cos θ. The denominator is sinh(t)/t and the numerator is d/dt of
the numerator = cosh(t)/t− sinh(t)/t2. Hence

m = γL(βγB) ,

where

L(x) = coth(x)−
1

x
.

Note: L(x) is called the Langevin function. For small x it has the series expansion L(x) =
x/3− x2/45 + · · · , and for x → ∞, L(x) → 1.

(b) No. The energy is invariant if the spin and field are both rotated by the same amount. Only
the field gives a preferred direction in space, and so
the spin always points along the direction of the field. If the direction of the field is changed,
by symmetry, the spin will point along the new direction of the field, and the magnitude of
the spin expectation value will not change.

4. From the thermodynamic identity dF = SdT −MdB we have

S = −

(

∂F

∂T

)

B

, M = −

(

∂F

∂B

)

T

.

Since the order of the mixed second derivatives of F is unimportant we have the Maxwell relation

(

∂M

∂T

)

B

=

(

∂S

∂B

)

T

.

According to the third law of thermodynamics S = 0 at T = 0, and so (∂S/∂B)T = 0 at T = 0.
According to the above Maxwell equation, this implies

(

∂M

∂T

)

B

= 0 ,

at T = 0.

5. The web site is http://physics.ucsc.edu/~peter/ising/ising.html.

(a) The range of the correlations is quite small. The system quickly settles down to a state which
(statistically) doesn’t depend on the starting state.

(b) The correlated regions are now large. The fluctuations of these large correlated regions are
quite slow.
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(c) The state is ordered, with virtually all spins down (white) and just a few flipped spins. With
a random start, domains of both signs grow, and usually, for some time, there is one large
white domain and one large blue domain. Eventually one of these will grow at the expense of
the other, and we will have a ordered state with just a few overturned spins, as when when
we started with an ordered state. This is an example of “spontaneous symmetry breaking”.

6. (a) Consider

m = tanh

(

J0m+B

kBT

)

, (2)

for T > Tc = J0/kB and B → 0. In this limit m → 0 as shown in class. Hence we will
differentiate this expression with respect to B (remembering that both factors of m must be
differentiated) and then set m = B = 0. The differentiation gives (with χ ≡ ∂m/∂B)

χ =
J0χ+ 1

kBT
sech2

(

J0m+B

kBT

)

,

Setting m = B = 0 the sech becomes unity, and so

χ =
J0χ+ 1

kBT
,

which can easily be arranged to

χ =
1

kB(T − Tc)
.

Note: This shows that the system is very sensitive to a small magnetic field just above the
transition temperature. This should not be surprising because below Tc the magnetization
appears spontaneously without any applied field at all.

(b) Going back to Eq. (2) and setting T = J0/kB (= Tc), and using tanh(x) = x − x3/3 + · · ·
gives

m = (m+ b)−
1

3
(m+ b)3 + · · · ,

where b = B/kBT . This immediately gives

(m+ b)3 = 3b . (3)

For b → 0 the solution is m ∼ b1/3 so m ≫ b and the factor of b on the LHS of Eq. (3) can
be neglected compared with m. Hence we get

m ∼ b1/3 ∼ B1/3 .

7. As discussed in class the mean field H is given, in the absence of an external field, by

H = zJ〈S〉 = zJm

where m = 〈S〉 is the magnetization. In a field H the energy states of a spin are, for the spin-1
case,

S = 1, E = −H
S = 0, E = 0
S = −1, E = H
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Hence the expectation of S is given by

m =
eβH + 0− e−βH

eβH + 1 + e−βH
,

or

m =

2 sinh

(

zJm

kBT

)

1 + 2 cosh

(

zJm

kBT

) .

To get the temperature of the transition, assumed second order, expand the RHS to first order in
m, i.e.

m =
2zJ

3kBT
m+ · · · .

The transition is where the cofficients of m on both sides of the equation are equal, i.e.

kBTc =
2

3
zJ .

8. We consider the Landau free energy

F (m) =
1

2
a(T )m2 +

1

4
cm4 +

1

6
dm6 .

We discussed in class the case of c > 0, and showed that the equilibrium value of m tends to
zero continuously. If c < 0 then, while a(T ) is small but positive, F (m) initially decreases as
m increases from 0 (because (a(T )m2 dominates), then F (m) starts to decrease (because cm4

dominates in this region), and then finally, for large m, F (m) increases because dm6 dominates.
Hence F (m) starts to develop minima at non-zero m even above T0 (i.e. where a(T ) > 0), as
shown in the figures below.

One can also locate, mathematically, where the first order transition occurs by determining m⋆

and T as a function of a(T )(≡ α(T − T0)), b, c and d, such that ∂F/∂m|m⋆ = 0, and F (m⋆) =
F (0) (= 0).

At T = Tc the free energy of these two (equivalent) minima is equal to that of the m = 0 solution.
See the figure below.
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For T < Tc the solutions at non-zero m have the lowest free energy, as shown in the figure below.

Let ±m0 be the value of m at the two minima at non-zero m in middle of the three figures above.
The figures show that the magnetization drops discontinuously from m0 to 0 at Tc. In other words
the transition is discontinuous if c < 0.
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