
(Fast) Fourier Transform of Discrete Time Series
Consider  a  set  of  experimental  data,  obtained  at  M uniformly  spaced  intervals,  t_n  =  n
D t,  where  n  =  0,  1,  2,  ...  ,  M−1.  The  total  time  is

T = MDt

In  what  follows  we  shall  set  the  time  interval  between  measurements,  D t,  to  be  1,  so  T
= M,   and  fix

T = M = 128.

We shall  obtain  the  power  spectrum  by  Fourier  transforming  the  data.  

Here  we  assume  that  the  data  is  a  damped  oscillation  with  its  maximum  at  T/2.  The  damp −
ing  constant  will  be  Γ and  the  frequency  Ω0 .  We also  allow  for  a  phase  factor  Φ , though

this  will  make  very  little  difference.

timeseries := Table@Exp@-Γ Abs@t - T�2DD Sin@Ω0 t + ΦD, 8t, 0, M - 1<D;
Initially  we  will  assume  no  damping,  and  put  in  a  frequency  i ncommensur at e  with  the
total  time  T  (i.e.  Ω0  T  is  not  an  integer  multiple  of  2 Π ):

Dt = 1; M = 128; T = M Dt; Γ = 0.0; Φ = 0.7; Ω0 = 0.62;

Plotting  the  data,  we  see  the  expected  pure  sine  wave

ListPlot@timeseries, Joined ® TrueD
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Next  we  compute  the  power  spectrum  which  is  the  square  of  the  absolute  value  of  the
Fourier  transform  (the  Mat hemat i ca  function  Fourier  does  the  Fast  Fourier  Transform
( FFT) ) :

powerspectrum = Abs@Fourier@timeseriesDD^2;
The  frequency  values  are  2 Π n/T,  where  n  is  an  integer  with  0  £  n  £  M−1  (or  equiva −
lently  any  other  range  of  M contiguous  values  such  as  −M/2  <  n  £ M/2):

omegavals = Table@2 Π t � T, 8t, 0, M - 1<D;
We next  plot  the  power  spectrum.  For  D t =  1,  the  range  of  frequencies  is  from  − Π to  Π .
However,  the  power  spectrum  is  an  even  function  of  Ω so  we  only  plot  the  range  from  0
to  Π .



ListPlot@8Transpose@8omegavals, powerspectrum<D, Transpose@8omegavals, powerspectrum<D<,
Joined ® 8True, False<, PlotRange ® 880, Π<, 8-1, 25<<, AxesLabel ® 8"Ω", "PHΩL"<,
Epilog ® 8Text@"Ω0 = ", 82, 10<D, Text@Ω0, 82.3, 10<D , Line@880.62, 0<, 80.62, 25<<D<D
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We see  the  expected  peak  at  Ω0  but  there  is  also  a  signal  at  neighboring  frequencies.

This  is  because  the  time  series  is  not  a  perfect  sine  wave  since  the  values  at  t  =  0
and  T  are  different  and  so  (bearing  in  mind  that  the  function  represented  by  the  FFT
is  actually  a  periodic  continuation  of  the  time  series)  there  is  a  discontinuity  when
t  is  an  integer  multiple  of  T.

The  values  of  the  power  spectrum  at  frequencies  neighboring  Ω0  are  shown  in  the  next

figure  which  is  a  blowup  of  the  relevant  region  (the  vertical  line  indicates  Ω0)

ListPlot@8Transpose@8omegavals, powerspectrum<D, Transpose@8omegavals, powerspectrum<D<,
Joined ® 8True, False<, PlotRange ® 880, 1<, 8-0.2, 5<<, AxesLabel ® 8"Ω", "PHΩL"<,
Epilog ® 8Text@"Ω0 = ", 80.2, 2<D, Text@Ω0, 80.28, 2<D , Line@880.62, 0<, 80.62, 25<<D<D
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However,  if  we  choose  a  frequency  which  is  commensur at e  with  total  time  T  there  is  no
discontinuity  at  the  boundaries  and  we  get  onl y  a  signal  at  Ω0 .  

Ω0 = 12 H2 Π � TL;
timeseries = Table@Exp@-Γ Abs@t - T�2DD Sin@Ω0 t + ΦD, 8t, 0, M - 1<D;
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ListPlot@timeseries, Joined ® TrueD
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powerspectrum = Abs@Fourier@timeseriesDD^2;
ListPlot@8Transpose@8omegavals, powerspectrum<D, Transpose@8omegavals, powerspectrum<D<,
Joined ® 8True, False<, PlotRange ® 880, Π<, 8-1, 35<<, AxesLabel ® 8"Ω", "PHΩL"<,
Epilog ® 8Text@"Ω0 = ", 82, 20<D, Text@Ω0, 82.25, 20<D , Line@883 Π �16, 0<, 83 Π �16, 40<<D<D
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ListPlot@8Transpose@8omegavals, powerspectrum<D, Transpose@8omegavals, powerspectrum<D<,
Joined ® 8True, False<, PlotRange ® 880, 0.7<, 8-0.09, 4<<,
AxesLabel ® 8"Ω", "PHΩL"<, Epilog ®8Text@"Ω0 = ", 80.2, 1.5<D, Text@Ω0, 80.25, 1.5<D , Line@883 Π �16, 0<, 83 Π �16, 5<<D<D
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We see  that  all  values  for  the  power  spectrum  are  zero  except  for  Ω =  Ω0 .

Now lets  put  in  some  damping,  and  go  back  to  the  original  (incommensurate)  frequency

Γ = 0.1; Ω0 = 0.62;

timeseries = Table@Exp@-Γ Abs@t - T�2DD Sin@Ω0 t + ΦD, 8t, 0, M - 1<D;
The time  series  shows  oscillations  decaying  about  the  middle  of  the  range

ListPlot@timeseries, PlotRange ® 8-0.7, 1<, Joined ® TrueD
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powerspectrum = Abs@Fourier@timeseriesDD^2;
The power  spectrum  (shown  by  the  points  in  the  figure  below)  is  centered  on  Ω and  has
a finite  width.  
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The power  spectrum  (shown  by  the  points  in  the  figure  below)  is  centered  on  Ω and  has
a finite  width.  

discrete = ListPlot@Transpose@8omegavals, powerspectrum<D, Joined ® False,
PlotRange ® 880, Π<, 80, 0.8<<, PlotStyle ® Directive@Red, PointSize@LargeDD,
AxesLabel ® 8"Ω", "PHΩL"<, Epilog ® 8Text@"Ω0 = ", 82, 0.4<D, Text@Ω0, 82.27, 0.4<D <D

0.0 0.5 1.0 1.5 2.0 2.5
Ω0.0

0.2

0.4

0.6

PHΩL

Ω0 = 0.62

However,  unlike  the  above  case  with  no  damping,  where  the  width  was  an  artifact  of  the
finite  length  of  the  time  series,  here  the  width  is  i nt r i nsi c  and  due  to  the  damping.
To see  this  we  compute  the  power  spectrum  for  a  damped  oscillator  in  continuous  time
extending  up  to  T  =  ¥ (a  Lorentzian)  

continuous = Plot@HΓ � HHΩ - Ω0L^2 + Γ^2LL^2�M,8Ω, 0, Π<, PlotRange ® 80, 0.8<, PlotStyle ® 8Blue, Dashed, Thick<D;
In  order  to  compare  with  the  power  spectrum  of  the  discrete  FT  we  divide  by  M  (the

number  of  points)  because  Mat hemat i ca  puts  in  a  factor  of  1/
�!!!!!!

M  in  the  definition  of
both  the  direct  and  indirect  FT   (i.e.  making  the  two  equivalent)  rather  than  a  factor
of  1  in  the  direct  FT  and  1/N  in  the  inverse  FT  as  discussed  in  class.  We show  the
power  spectrum  for  continuous  time  by  the  dashed  line  on  the  same  plot  as  the  discrete
FFT :

Show@discrete, continuousD
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The two  agree  extremely  well.

I  conclude  with  some  words  of  caution  on  Fourier  Transforms  of  discrete  time  series.

1.  The  first  difficulty  comes  because  the  data  is  at  discrete  times  m  D t.  This  means
that  the  range  of  frequencies  is  limited  to  − Π / D t  <  Ω £ Π / D t .   If  the  data  has  fre −
quencies  outside  this  range  they  will  be  mapped  on  to  a  frequency  inside  this  range  by
a  shift  of  an  integer  multiple  of  2  Π / D t.  (Note  that,  at  the  discrete  times  m  D t,
data  for  frequencies  Ω and  Ω +  2  Π n  /  D t  are  identical).  This  effect  is  called  al i as−
i ng.  Clearly  the  Fourier  Transform  is  misleading  if  the  physical  phenomena  take  at
higher  frequencies  than  those  which  can  be  represented  by  data  at  the  discrete  times.

2.  The  second  difficulty  comes  because  the  data  is  only  over  a  finite  time  T,  and  the
data  at  one  end  point  will  not,  in  general,  match  up  with  data  at  the  other  end  point.
The  FFT  actually  represents  a  periodic  continuation  of  the  data,  and  so  there  is  a
discontinuity  at  multiples  of  T  which,  as  we  have  seen,  puts  weight  in  neighboring
Fourier  components.

To  help  alleviate  this  problem  one  often  multiplies  the  data  by  a  window  function
wHt nL.  This  is  designed  to  be  relatively  flat  in  the  central  region  and  to  fall  to

zero  for  t  ® 0  and  t  ® T.  Many  window  functions  have  been  proposed.  Perhaps  the  sim −
plest  is  the  Welch  window
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discontinuity  at  multiples  of  T  which,  as  we  have  seen,  puts  weight  in  neighboring
Fourier  components.
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zero  for  t  ® 0  and  t  ® T.  Many  window  functions  have  been  proposed.  Perhaps  the  sim −
plest  is  the  Welch  window

w Ht nL = 1 -
ikjjj �������������������������

Hn - M� 2L
M� 2

y{zzz2

which  is  just  a  parabola  which  vanishes  at  n  =  0  and  M,  i.e.  t n  =  0  and  T.

welch = Table@1 - HHn - M�2L � HM�2LL^2, 8n, 0, M - 1<D;
ListPlot@welch, PlotStyle ® PointSize@MediumDD
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Let’s  go  back  to  the  undamped  sine  wave,  and  multiply  the  data  by  the  Welch  window.

Dt = 1; M = 128; T = M Dt; Γ = 0.0; Φ = 0.7; Ω0 = 0.62;

timeseries = Table@Exp@-Γ Abs@t - T�2DD Sin@Ω0 t + ΦD, 8t, 0, M - 1<D;
timeseries = timeseries * welch;

We plot  the  resulting  time  series.
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ListPlot@timeseries, Joined ® TrueD
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As expected  it  tends  to  zero  at  the  two  ends.Computing  the  power  spectrum  gives

powerspectrum = Abs@Fourier@timeseriesDD^2;
ListPlot@8Transpose@8omegavals, powerspectrum<D, Transpose@8omegavals, powerspectrum<D<,
Joined ® 8True, False<, PlotRange ® 880, Π<, 8-1, 8<<, AxesLabel ® 8"Ω", "PHΩL"<,
Epilog ® 8Text@"Ω0 = ", 82, 5<D, Text@Ω0, 82.3, 5<D , Line@880.62, 0<, 80.62, 25<<D<D
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Blowing  up  the  region  near  the  peak  we  see  that  much  less  spectral  weight  spreads  out
onto  neighboring  frequencies  than  without  the  window  function.

ListPlot@8Transpose@8omegavals, powerspectrum<D, Transpose@8omegavals, powerspectrum<D<,
Joined ® 8True, False<, PlotRange ® 880, 1<, 8-0.2, 1.2<<, AxesLabel ® 8"Ω", "PHΩL"<,
Epilog ® 8Text@"Ω0 = ", 80.2, 0.5<D, Text@Ω0, 80.32, 0.5<D , Line@880.62, 0<, 80.62, 25<<D<D
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