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Some recent developmentsin Spin Glasses
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Abstract. | give some experimental and theoretical background to spin glasses, and then discuss the
nature of the phase transition in spin glasses with vector spins. Results of Monte Carlo simulations
of the Heisenberg spin glass model in three dimensions are presented. A finite size scaling analysis
of the correlation length of the spins and chiralities shows that there is a single, finite-temperature
transition at which both spins and chiralities order.
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1. Introduction

For a theorist such as myself, a spin glass is a system with disorder and frustration. A sim-
ple but useful example is shown in Figure 1 in which there is a single square of Ising spins
(which can only point up or down). The “+” or “—" on the bonds indicates a ferromagnetic
or antiferromagnetic interaction respectively. In this example, with one negative bond, it is
impossible to minimize the energy of all the bonds so there is competition or “frustration”.
Clearly, for a large system, it is non-trivial to find even the ground state of a system with
frustration and disorder.

The simplest model which has the basic ingredients of disorder and frustration is the the
Edwards-Anderson [1] (EA) model,

-

I

Figure 1. Atoy model which shows frustration. If the interaction on the bond is a “+”,
the spins want to be parallel and if it is a “—" they want to be antiparallel. Clearly all
these conditions can not be met so there is competition or “frustration”.




H=-> Ji;Si-S;, (1)

in which the spins S; lie on the sites of a regular lattice, and the interactions J;;, which we
take to be between nearest neighbors only, are independent random variables with mean
and standard deviation given by

[ilaw = 0; 512 =T (=1). ¥
A zero mean is chosen to avoid any bias towards ferromagnetism or antiferromagnetism,

and it is convenient, in the simulations. to take a Gaussian distribution for the J;;. The S;
are of unit length and have m—components:

m =1 (lIsing)
m=2 (XY)
m =3 (Heisenberg). 3)

Experimentally, there are different types of spin glasses:

e Metals:
Diluted magnetic atoms, e.g. Mn, in a non-magnetic metal such as Cu, interact with
the RKKY interaction,

COS(Q]CFRZ‘J‘>

Jij ~ e ;
ij

4)

where kr is the Fermi wavevector. We see that J;; is random in magnitude and sign,
so there is frustration. Note that Mn is an S-state ion and so has little anisotropy. It
should therefore correspond to a Heisenberg spin glass.

e Insulators:
An example is Feg.5sMng 5 TiO3, which comprises hexagonal layers. The spins align
perpendicular to layers (hence it is Ising-like). Within a layer the spins in pure
FeTiO3 are ferromagnetically coupled while spins in pure MnTiO3 are antiferro-
magnetically coupled. Hence the mixture gives an Ising spin glass with short range
interactions.

e Other systems where spin glass ideas have proved useful are:

— Protein folding
— Optimization problems in computer science
— Polymer glasses, foams - - -
After considerable experimental and theoretical work, it became clear that a spin glass
has a sharp thermodynamic phase transition at temperature ' = T's¢, such that for T' <
Tsc the spins freeze in some random-looking orientation. As T — T4, the spin glass

correlation length £s¢, which we will discuss in detail below, diverges. Here we just note
that the defining feature of the correlation length is that the magnitude of the the correlation
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Figure 2. Results for the non-linear susceptibility of 1% Mn in Cu from Omari et al.
[2]. The quantity as is the non-linear susceptibility in dimensionless units.

function (.S;S;) becomes significant for R; < £s¢, though the sign is random. A quantity
which diverges, therefore, is the spin glass susceptibility

1 2
XsG = o ZKSi +8j)%Jav » ©)
(i,5)
(notice the square) which is accessible in simulations. It is also essentially the same as the
non-linear susceptibility, x,;, which can be measured experimentally and is defined by the
coefficient of 7 in the expansion of the magnetization m,

m = xh—xuh®+---, (6)
where h is the magnetic field. We expect that x;,; diverges at T's¢ like
Xnt ~ (T'—=Tsaq)™? (7

where ~ is a critical exponent.

This divergent behavior has been seen in many experiments. Fig. 2 shows the results
of Omari et al. [2] on 1% Mn in Cu. They define m = aqh — ascsh® + ascsh® and
choose units (and constants c; = 1/15, ¢5 = 2/305) such that a; = 1 for independent Mn
spins. It follows that a3 is x,,; in dimensionless units. We see that ,,; becomes very large,
(> 10%), and presumably diverges. A fit gives v = 3.25.

At low temperatures, the dynamics of spin glasses becomes very slow, such that below
Tsq the system is never fully in equilibrium. This is because the “energy landscape” be-
comes very complicated with many “valleys” separated by “barriers”. The (free) energies
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of the valleys can be very similar and yet the spin configurations rather different. Hence
there are large-scale, low-energy excitations in spin glasses.

This non-equilibrium behavior has been extensively studied in recent years. Of particu-
lar note has been the study of “aging” in spin glasses, pioneered by the Uppsala group [3].
One cools the system below T's and waits for a “waiting time” t,,. The system is then
perturbed in some way, e.g. by applying a magnetic field, and the subsequent response
is measured. It is found that the nature of the response depends on ¢,,, providing clear
evidence that the system was not in equilibrium.

More complicated temperature protocols are possible, which have led to surprising re-
sults. For example, one can cool smoothly below T's and wait at a temperature 77, say,
before cooling further, and then warming back up through T's¢ this time without waiting
at 77. While waiting at 773 during the cooling process, the data shows a drift with time, and
on warming, one finds a similar feature at 7] even though the system did not wait there.
This “memory” effect [4] is still not well understood, and neither is “rejuvenation”, the fact
that aging at one temperature does not help equilibration at a lower temperature [4].

On the theoretical side, there is a mean field solution due to Parisi [5,6] which, following
Sherrington and Kirkpatrick [7], is the exact solution of an EA-like model with infinite
range interactions. One finds a finite spin glass transition temperature G¢.

Most of what we know about short range short-range (EA) models in three dimensions
has come from simulations on Ising systems, which also indicate a finite 75, as we will
see below. However, less is known about vector spin glass models and these will be the
main focus of the rest of the talk.

While the existence of a phase transition in three-dimensions is not in serious dispute,
at least for Ising spins, the nature of the equilibrium state below T's has been much more
controversial. An experimental system is not in equilibrium below T’s¢, so we ultimately
need a theory for non-equilibrium behavior. However, to do this, we presumably need to
know the equilibrium state towards which the system is trying to reach but never does. Two
main proposals have been made for the nature of the equilibrium spin glass state:

e “Replica Symmetry Breaking (RSB), which is like the Parisi [5,6] mean field solu-
tion, and

e The “droplet picture” (DP) of Fisher and Huse [8,9].

These differ in the nature of the large-scale, low-energy excitations, whose energy AE
scales as

AE « ¢°, (8)

where £ is the linear size of the excitation and 6 is a “stiffness” exponent. RSB and DP
have different predictions for 6:

e RSB, # = 0 for some excitations.
e DP, 0 > 0 (but small, around 0.2 for 3d Ising).

Since in both scenarios ¢ is zero or very small, a lot of cancellation occurs in the energy
to flip a cluster of spins. Hence, a characteristic feature of spin glasses is that there are
excitations which involve a large number of spins but which cost very little energy.

In three dimensions, numerics, which are inevitably on small lattice sizes, seem to fit
best an intermediate (TNT) scenario [10,11] scenario. In two dimensions, where 6§ <
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0 and consequently Tsg = 0, larger sizes can be studied and it seems that the droplet
theory works, though there are significant corrections to scaling for various quantities, see
e.g. Refs. [12,13] for recent discussions.

A lot of attention in spin glasses has been spent on (i) the nature of the phase transition
and (ii) the nature of the spin glass phase below T's¢. For both problems, most theory has
been on Ising systems though the vector nature of the spins may be relevant. In the rest of
this talk I will discuss the nature of the phase transition in vector spin glass models.

2. Vector Spin Glasses

Most theory has been done for the Ising (S; = £1) spin glass, where there is clear evidence
for a finite 7. The best evidence is from finite size scaling (FSS) of the correlation
length by Ballesteros et al. [14] This technique is discussed further below. However, many
experimental systems, such as CuMn described above, are closer to an isotropic vector spin
glass (in which S; is a vector), where the theoretical situation is less clear.

Old Monte Carlo simulations [15] found that T'sq, if it occurs at all, must be very low,
and this was interpreted as being evidence for Ts¢ = 0. Motivated by this, Kawamura
[16-19] argued that T's¢ = 0 but there can be a glass-like transition at T = T in
the “chiralities” (i.e. vortices). This implies spin—chirality decoupling. However, the
possibility of finite 73 has been raised by various authors, e.g. Maucourt and Grempel
[20], Akino and Kosterlitz [21], Granato [22], Matsubara et al. [23,24], and Nakamura et
al. [25]. Since the most successful approach for the Ising spin glass was the FSS scaling
analysis of the correlation length, Lee and | decided to perform analogous calculations for
vector spin glasses, investigating the correlation lengths of both the spins and chiralities.

There is an important difference between chiralities in frustrated and unfrustrated sys-
tems. In unfrustrated systems the ground state is collinear and so chirality needs to be
thermally excited. Such thermally activated chiralities (vortices) are responsible for the
Kosterlitz-Thouless-Berezinskii transition in the 2d XY ferromagnet. However, in spin
glasses, chiralities are quenched in at low-T because the ground state is non-collinear as a
result of the disorder and frustration.

To define chirality we follow Kawamura [17,18]:

1 < .
v ) == > sun(Jim) sin(6; — 0,,), XY (u L square),
Ky = 2V2 am

9)
Sitp - Si X Si_p, Heisenberg,

see Fig. 3, where for the XY case i refers to the plaquette indicated, and for the Heisenberg

model, ¢ refers to the middle of the three sites.

To determine the correlation lengths of the spins and chiralities we need to Fourier trans-
form the appropriate correlation functions:

1 NP )
xsa(k) = N ZKSi - 8;)2avel Bi—Ra) - (gping),
- , (10)
Xea(k) = & D [tk aye™ ®iRa) - (chiralities).
irj
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Figure 3. An illustration of chirality for XY and Heisenberg spin glasses.

Note that x,.,; ~ xsa(k = 0), which is essentially the “correlation volume” of the spins.
We determine the spin glass correlation length of the finite-size system, &, from the
Ornstein Zernicke equation:

0
xsa(k) = $7 (11)

by fittingtok = 0and k = k;, = 2{(1, 0,0). The precise formula is

B 1 xsc(0) e
€LiQsin(kmm/Q) (xsc(kmin) 1> . -

The chiral glass correlation length of the system, SZL' is determined in an analogous way.
In order to locate the transition we use the technique of finite-size scaling (FSS). The
basic assumption of FSS is that the size dependence comes from the ratio L /&y Where

Eoutk ~ (T —Tsq)™" (13)

is the bulk correlation length. In particular, the finite-size correlation length is expected to
vary as

&

L= X (LT - Tsq)) (14)

since &1,/ L is dimensionless (and so has no power of L multiplying the scaling function
X). Hence data for £;,/L for different sizes should intersect at T's; and splay out below
Ts¢. Similarly, data for &, should intersect at T

3. Results

Figure 4 shows that this works well for the Ising spin glass. This data, which is for the
spin glass correlation length divided by L, shows clear intersections and hence evidence
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Figure 4. Data for the correlation length of the Ising spin glass showing clear evidence
for a transition at T's¢ ~ 1.00.

for a transition, at T's ~ 1.00. Furthermore, the data splay out again on the low-T" side
demonstrating that there is spin glass order below Ts¢. This is data for the Gaussian
distribution. The technique of determining T's¢ by FSS of &7, was first used by Ballesteros
et al. [14] who took the “£J” distribution in which J;; = £1 with equal probability. This
has a somewhat higher transition temperature, T'sg ~ 1.14.

Prior to the work of Ballesteros et al., determination of T's¢ generally used the “Binder
ratio”, a dimensionless ratio of the moments of the order parameter distribution which
has a finite size scaling of the same form as in Eq. (14). However, this gives much less
convincing demonstration of a transition, see Fig. 5 which shows data from Marinari et al.
[26] for the Gaussian distribution.

We have seen that the best method for studying the transition in the Ising spin glass is
FSS of the correlation length. We now apply this to the spin glass with vector spins. Similar
results were obtained [27] for both the XY and Heisenberg models. Here, for conciseness,
we just present results for the Heisenberg case.

Figure 6 shows data for &7,/ L. It has has some additional data beyond that given in Lee
and Young [27]. The data intersects and splays out again at low temperatures indicating
a finite-temperature spin glass transition. The inset shows that the data can be collapsed
reasonably according the the FSS form in Eq. (14) with Tsg ~ 0.16, v ~ 1.2.

Figure 7 shows data for the chiral correlation length. There are actually two such lengths
depending upon whether the wavevector k., in Eq. (12) is parallel or perpendicular to the
line of spins shown in Fig. 3 for the Heisenberg case. The main figure in Fig. 7 shows the
parallel correlation length and the inset the perpendicular correlation length. Apart from
the smallest size, the data intersect pretty well. Furthermore, the transition temperature
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Figure 5. Data for the Binder ratio length of the Ising spin glass with Gaussian inter-
actions, from Marinari et al. [26]. The data merge but do not splay out strongly on the
low-T" side, unlike the results for the correlation length shown in Fig. 4.
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Figure 6. Data for the spin glass correlation length of the Heisenberg spin glass di-
vided by L (based on Ref. [27] with some additional data).
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Figure 7. Data for the chiral glass correlation length of the Heisenberg spin glass
divided by L (based on Ref. [27] with some additional data).

Tee seems to be equal to T's, namely about 0.16.
We conclude that a direct study of the correlation lengths indicates that there is a single
phase transition at which both spins and chiralities order in vector spin glasses.

4. Conclusions

It is interesting to see how the spin glass transition temperature varies with the number of
spin components m. To compare different values of m it is necessary to note that there is
an m dependence for T's¢; even in mean field theory: T34 = /z/m where z (= 6 here)
is the number of neighbors. Hence we show below values for Tisi; /T34 determined from
the numerics:

m model TgéF Tsa ng/TéVéF
1 (Ising) |2.45 1.00 0.41
2
3

(XY) 122 034 0.28
(Heisenberg)|0.82 0.16 0.20

We see that Tse/T2L is small and decreases further with increasing m. Physically, this
means that fluctuation effects are large and get larger with increasing m. The data suggest
that perhaps Tsg = 0 for m = oo. Preliminary results by Dhar, Lee and the author [28],
indicate that this is the case.
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To conclude, | believe that one important question, whether or not an isotropic Heisen-
berg spin glass has a finite temperature spin glass transition, has been answered in the
affirmative. However, the nature of the putative equilibrium state below T3¢, towards
which the system evolves but never reaches, as well as non-equilibrium phenomena such
as aging and rejuvenation, remain to be fully understood.
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