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Spin-s wave functions with algebraic order
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We generalize the Gutzwiller wave function fm% spin chains to construct a family of wave functions for
all s> % Through numerical simulations, we demonstrate that the spin spin correlation functiafisfdecay
as a power law with logarithmic corrections. This is done by mapping the model to a classical statistical
mechanical model, which has coupled Ising spin chains with long range interactions. The power law exponents
are those of the Wess Zumino Witten models with?s. Thus these simple wave functions reproduce the spin
correlations of the family of Hamiltonians obtained by the Algebraic Bethe Ansatz.
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I. INTRODUCTION of freedom. This insulating spin wave function inherits the

i in chai ith | orrelatio ofpower law correlations of the parent free Fermi wave func-
Quantum spin chains with power law correlations are ofjjo 4 heit with some renormalization of the values of the

great current interest. St{arting with thg Bethe cﬁaiitnhas exponents. The work of HaldadeShastr and other$
been known for a long time that half integer spin systems;howed that the wave function is the exact ground state of a
generically have spin correlation functions that decay as thgyng rangeds=1/2 Heisenberg model that is in the same
inverse of the distance between the spins. For integer spiginjversality class as the Bethe chain, i.e., has the same cor-
chains, the correlation functions are generically expected teelation exponents.
decay exponentially, due to the Haldane conjecturmw- In this paper, we propose a natural extension of the
ever, it is also known that special models can be constructedutzwiller wave function to obtain wave functions falt s,
for which the spin correlation functions decay as a power lawwhich (based on our numerical resyltseem to have power
for all (including integey spin s, with an exponent that de- law correlations of the form in Eq1). Thus we have con-
pends ors. These models are realized from the Bethe Ansatastructed for wave functions the analog of the Algebraic Bethe
in its algebraic form. The work of the Leningrad school hasAnsatz method for Hamiltonians: a prescription that yields
provided concrete realizations, e.g., the model of Takhtajathe nongeneric correlations of E@l) automatically, i.e.,
and Babudjah for spin 1. It has also provided a general Without any fine tuning of parameters. This paper builds on
technique for obtaining the Hamiltonian for all values of ideas presented earlier in Ref. 10. _
spin, starting from the Algebraic Bethe Ansétz. We start W|th 3 copies of the Gut;wﬂler wave function,
The coefficients of the biquadratic and other terms need tgnd use the principle of symmetrization to produce an angu-
be specially chosen to obtain these models. Alternatively, théd’ momentumj=s wave function, i.e., one where each lat-
Algebraic Bethe Ansatz method automatically generatedC€ Site has a spia degree of freedom. Symmetrization is a
these Hamiltonians. The general construction of a field(’)vriI Sg%vgpat%?ﬁﬁguga![gsag?ua|1ars ;gg?:grgytﬁgﬁ{zé vu\'/khere
tsm?)(\)/\r/)éJ?rr\z;?t?wsees?r?]nglsV\E)aeSIoLrJ]rg;dt?)r:ﬁEe\?Vebs)g ';EE?:gsvl ttecopies of spin half states and p_rojecting out all states that are
i eRA fully symmetric in the 2 spin constituents. This proce-
(WZW) class. These models are characterized by a singl§, e clearly generates wave functions for particles of angular
parametek, which detgrmlnes the exponents. In t_hls CaSe, momentums. Based on the experience witrF1/2, one
turns out to be &for spins. From the known behavior of the \yqyid hope that these wave functions might also inherit the
WZW theories, Affleck showed that the spin spin correla-power law correlations of the parent free Fermi gas, again

tions are asymptotically of the form with some as yet undetermined renormalization of values of
(S -S| ~|i |32 0 exponents. o |
SS9 ') ' We are able to perform the symmetrization of this wave

function explicitly, using the elegant formalism of spin co-
renormalization group sense. This gives rise to a muItiplica—]t]uer]rgt?(t)nsﬁéﬁfé \r’]‘{]emfgfi?jrtjgmth:s pwﬁgrrf I?r?eo\fvg\];s fvl\Jlﬁ\ée
tive factof of [A+B In|i—j|]?in the correlatiqn function of . tion is squared, it can be convenientl.y interpreted as a statis-
Eq. (.1)’ unless the parg value .Of the marginal operator 'Sical mechanical model ofglparallel chains of logarithmi-
fortuitously equal to its fixed point value’ cally interacting particles with certain couplings, i.e., a
An alternative recent line of thought has been to studyyeneralization of the Wigner Dyson Coulomb problem. Our
explicit wave functions. In particular, the Gutzwiller wave nymerical results fos=1,3/2,2 are presented here. Together
function in one dimension has been very successful. Thgith the analytically known results f@s=1/2, they support
Gutzwiller wave function takes the free fermion determinan-the remarkable conclusion that these wave functions provide
tal wave function and retains all configurations with singlea |attice realizationof the WZW models withk=2s.
occupancy of electrons. Thus at half filling, i.e., one electron We are unable to address the issue of finding a Hamil-
per site, it yields a wave function that has only spin degreesonian for which the states here are exact ground states, but

For anys, the field theory has a marginal operator in the
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have wave functions that are explicit and rather beautifulrules that we discuss in the next subsection of this paper.
This seems to be just the opposite situation of the Algebraic Next, we need to construct the rules for obtaining aver-
Bethe Ansatz modetsfor higher spin, where the Hamilto- ages of variables in states. We begin by noting the diagonal
nians are relatively straightforward, but the wave functionsrepresentation of an arbitrary operatst® followed by its
are highly complicated. average as:
Earlier numerical work by Shasf§on the same wave

function for s=1, with relatively shorter spin chains, gave _(23+ 1)J

. i A= dQ a(Q)|QxQ|, (6)
results that were consistent with the same exponents as found 4
here, but lacked the resolution to determine the logarithmic
corrections to the leading behavior. We note that spin coherwherfe the prefactor has been chosen so ml):_l for the
ent states were used for a similar mapping of spin wavddentity operator. To compute averages, we write
functions to statistical mechanical problems in the work of (23+1)
Arovas, Auerbach, and Haldafeas well as Affleck, (Al = — f dQ a(Q){Qp{HQ )
Kennedy, Lieb, and TasaKAKLT ), who studied thes=1 4m
model of AKLT!2 for which correlations are exponential. (23+1)
The calculation of the correlations is considerably easier than Sl f dQ a(Q)|p(Q)[%. (7)
in the cases studied here. AKLTs method of solution is also a
very nice application of the idea of symmetrization that weThus, given a wave functiop(Q2") =(Q| ), we can find the
use in the present paper. Analytical and numerical results fosxpectation value of any operator if Q) is known. For
the spin-half chain, with the corresponding statistical meytyre reference, we note thatQ)) for the operatoss, is (J
chanical model studied as a function of temperature, havg 1)cos9. An important corollary that we will use is that if
been presented earlie. spin coherent states are constructed for every site in a lattice,
the expectation value of an operat@;B;) can be found by
using the corresponding weight functi@t(;)b(();) in the
integrals, where({}) andb({)) are the functions for isolated

II. SPIN COHERENT STATES, SYMMETRIZATION,
AND THE GUTZWILLER WAVE FUNCTION

A. Spin coherent states sites. This will be used for the spin correlation function.
We begin by recapitulating the salient definitions of spin
coherent states. There are several related variants of these, B. Symmetrization

and each has slightly different advantages. Let us consider a

single site. The functions introduced by Radchffare de- Let us consider a simple case of two sénparhcles with

fined for angular momenturd as ) = oy Bs. (8)
|Q) = S exlid)-S" exp-id)l012) 3y = co@( g2) @ dDexpid)S | 3 Symmetrization is best understood from its action on states,

23 so in the present case

- 2J 1/2 J-n 2)sin(6/2 ing| 71 _ . 2

nE:O{ C.}/2co$P"(612)sin(612)€"¢|3 - ) 2 S = Haufo + ). 9

Radcliffe also introduced a related set of states, On more general functions of many copies of spin half, its
- action is similarly defined, namely find the fully symmetric
|Dr=€5725). (3)  combination generated from a seed state and divide by the

total number of generated states. We next deduce the rule for

These are normalized and related to the first set by Settingymmetrizing 2 copies of spin 1/2 in the space of coherent
i . ..
z—tan(0/2)e'’. Another set of coherent states were found t0gtate \wave functions. It turns out that the most efficient way

be very convenient for the purpose of obtaining differential g 15 work with the unnormalized coherent states E4).
operator representations ?f spin operators, €3 (S  \yhere the wave functions are just polynomialszinLet us
=7 9/9Z) in the space of “wave functions(z|#). These |apel the 2 copies of spin 1/2 by () and the resulting

coherent states were the unnormalized states spin s variables byZ, so that a coherent states of the direct
23 product states and the final spirstate are
20=€519) = 2 ('C )/ 22" - n), @) 2
0 {2(1),22) ... 229} = [ (1/2) o+ 2(@)|- 112),), (10
with [2)r=(1+|2?~|2). The relationship between the wave a=1

functions Y(Z') =(z| ), ¥x(Z)=g(z|¥) and Q") follows

from the relationship between the basis functions, we note - 25~ 11/2(om
the relation needed later: 2y= 2 {°C}/2(2)" 25~ m). (1)

m=0
* = J * . * _|¢
W) = cos(B2)¢(Z)  withZ — tar(6/2)e™?.  (5) Generic states in the direct product space and the finalsspin
The functionsy(z") are polynomials ire’ of maximal degree space are represented hg) and|®), respectively, and the

2J, and lend themselves to very simple “symmetrization”role of symmetrization is to map the former into the latter as
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Slp=|3), with n=L/2. ngecﬁ is a creation operator with wave vector
k in the original Fermionic representation, and the
- —-n; ;n; ] factors ensure no double occupancy for any gite
|#) = | D). (12 S are the spin lowering operators in the spin representation
The question we address is: given a staf what is the that i§ equivalen_t at _haIf filling\/ i; the. normalization .that
resulting statdd) for the spin 2 particle. The answer turns We Will not specify fill the end, since it cancels out in the
out to be remarkably simple in the unnormalized coherengValuation of the correlations. For simplicity we have con-

state basis. If we denote fined our consi(_jerati_ons to the ca_seLdQ overturned_ spins,
X X X . X X so we are dealing with a global singlet wave function, made
f{Z(1),2(2)...2(29}]=({Z(1),Z(2)...Z (29)}| $), up of L spin 1/2 particles.
We next consider f copies of this wave function, and
f[{z*(l),z*(z) N .Z*(ZS)}] — <{Z*(1),Z*(2) N Z*(ZS)}S|¢>, pl’OjeCt |nt0 the SpIrB SeCtOI’ at eaCh S|te. In view Of the

discussion in the last section, this is most easily done with
the coherent state notation, so the product wave function is

F(Z)=({Z|®), (13 \written down directly as
we find (and demonstrate latethat \I'(Z; Z; ZD
F(ZH)=tZ,Z...2). (14) A S e{ingrj}{l—[smz[ﬂ(rj _rk)/l_]}
This implies that by ignoring the distinction between the Isry( LrypsL k<]
different copies of the spin 1/2 and replacing every occur- xXZ 7 .7 T=. (19)
1 '2 L/2

rence ofZ' («) by Z' gives us a coherent state representative

of the spins particle. This result is obvious for the special To obtain this result, we wrotglg) in terms ofZ' (@), mul-
(symmetrig cases off=1 and=IIZ (@), but not so obvious tiplied 2s copies of this, and then symmetrized the wave
for other cases, since one has to rule out possible nontrividgunction by dropping the distinction between the different

dependence on the degree of the polynomial. copies or replicas. To reconstruct the wave function in the
We now give a brief proof of this assertion. It suffices to angular basis we use E(p) and write
consider the general case of a polynomial of degrebus L
f=7(1)Z2)...2 1), v(Q,Q,...0)=]] co§s(aj/2)W(Z:1,Z:2 . Z:L/Z).
=1
~ 1! (2s-r)! % ‘. (20)
f=—g 2 Z[Z(y)..Z0). (19 . . )
s! 1=iy(iy. . (i;=(29) In order to make this more tractable, we introduce “occupa-

- _ _ o tion numbers” p* which determine whether we get a
The statef clearly is proportional to the state deriving from cos(6;/2) or sin(#,/2) factor at a given sit¢ in a particular
(S_)r|\]2= 25>, the proportlonallty constant Is readlly worked “rep"ca” «. Thus at each site we get a factor of

out so 2

2s—1)! factor =] | [cog6,/2)(1 - p®) + sin(6;/2)e 4+ p
(29)!
2s
hence, = coéS(aj/z)exp[Z p! In{tan(6;/2) +imj —igy} |.
o e ) (25=1) o ot
F(Z)=(z )“{WQSI(S*)'(S)’IZS)}— (). (17 (22)
The last line follows on using the commutation relations ofWe thus write the wave function as
angular momentum. V(Q,0,...0Q))
L
C. Gutzwiller type wave functions :NH CO§S(0j/2) 2 '
The Gutzwiller wave function for a one dimensional 1= {pj=0.3
Fermi gas at half filling is expressible in the fdtm 2s k=)
L xexp) >, lz pipiIn sinz%
o) =N [1-n;n ] II CE,TCE,1|0> a=lli<k
j=1 Ik <ke o
=N 2 e{i”EJ’j} HSinZ[W(I‘J- —rk)/L] +$pj In tan_21+|7TJ _I¢j:| ' (22)
Isrq(.. {rysL k(j
- The sum over the occupancy integer is constrained to
Xsf_lsfz"'sf_n|u2> (18) obey =,pi=L/2 for each replicax. In the next section we
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continue the discussion of expectation values and correlatio and % from ¥"). The constraint Eq(27) is equivalent to
functions, which require taking the modulus square of thishe condition that the sum of the Ising spifmot to be con-

wave function. fused with the original quantum spinacross the different
chains at any site must be zero. In addition, we impose the
IIl. COUPLED ISING REPRESENTATION condition that the sum of the spins along any chain must be
The probability density i$‘1’({91- _ -QT_})F, so we need to  2€ro. With this condition, the interactions along any chain are
multiply ¥ in Eq. (23) with its complex conjugate, leading to 1+of1+of
4sreplicas in all. The correlation functigis's;) can be found > “In sir?] 7(j - k)/L]
by calculating(s+1)%cos#, cos 6 with this probability den- j<k 2
sity, as noted after Eq7). From the fact that¥') is a singlet 1
state, this correlation function suffices to determine all com- =const +%ZUEYU? Insind #(j - k/L].  (27)
1<

ponents(s*s®). The angular variableg and ¢ can be inte-
grated over, leaving only thg's. The problem reduces to The interactions along any chain are antiferromagnetic and
one of interacting lattice gas particles. logarithmic. The interaction across the different chains at any

Integration over the azimuthal angt can be done at site occurs, apart from the constraint, through\ti¢m) fac-
each sitej, and gives a constraint thal p{'=X,pj' '=s tor.

—m;, wherea and o’ refer to replicas in¥ and\If respec- For the case o6=1, there is an alternative form of the
t|ve|y Note that the oscillating phase factor can be droppegbartition function that is more convenient. With the con-
in view of the constraint from the azimuthal integration.  straint that the spins on the four chains at any site must add

The integral ovem; is next performed up to zero, there are six possible configurations at any site:
. e om osrom 1,1-1,-1),(1,-1,1-1), (1,—-1,—-1,1), and the mirror im-
e g ostm!l(s—m)! ages of these three. The magnetizatiois 1 for the first and
sin cos—l sing, de, =2 \ . o
0 2 (2s+1)! zero for the next two configurations. A remarkable simplifi-
B cation occurs once we note thﬁgofaﬁ‘F(j—k) is equal to
= 2Wy(m), (23) zero for any functior unless the configurations at the sites

with the functionWg(m) defined by this equation. For the | andkare either identical or mirror images$n the sum over

spin autocorrelation functiofs's;), we have to insert an ex- the two replicas fromys and the two fromy; are in-
tra factor of(s+1)cosé in the # integrals af andk. It is easy cluded) Thus msteacj of four coupled Ising chains, the.prob-
to verify that lem reduces to a six state Potts model on one chain. The

states are labeled = +1,2,3. The configuratio(l,1,1, is

.6 2s-2m ) 2s+2m _ labeled withg=1, so thatm;=+1 wheng;=+1, andm;=0
(s+1) {sin cos cosgsin 6;do; wheng;=+2,+3.The partition function is

2
0
= 2mW(m). (24) Zx qEq ex Ek( 4.9~ O -a)IN SILr(j - k)/L]}
1 - ML
The final result is like a classical partition function
. x[T@+sz,. (29)
Z=1v{Q;...QH} j !
=N expl > ppl Insind (] — k)/L)] The last factor comes from the fact that(+1)=2Wy(0).
o i Two sites only interact with each other if thejis are iden-

PPk tical or opposite. The condition that the total magnetization

+ pf Pk "In sird[ m(j - k)/L] H Wy(m), (25) for each of the four original chains must be zero reduces to
i<k the statement that

where a anad a’ refer to replicas in¥ a_nd\lf , respectively, > Sy = > Sy (29)
m;=s-Z,p;" and the sum in the partition functicdis sub- ! i

ject to the constraints
for anyn.

> p= p.a’ =L/2, Potts models can similarly be constructed &+ 1, al-
AR though they are more complicated: two sije@ndk interact
even wheng; # ¢, and the condition from the total mag-
Ep-“:Ep-“' (26) netization is weaker than E@30). The numerical simula-
! ! tions reported in the next section were conducted with both
the coupled Ising and the Potts representations.
When calculating the spin autocorrelation funct(sfsﬁ), the
summation in Eq(26) for Z is evaluated with an extra factor
of mym.
|t is convenient to change variables &f'=2p{'-1 and Monte Carlo simulations were performed on the Ising and
=1- 2pJ . We then have gicoupled Ising chain&s from Potts representations given by E@26) and (29). For the

IV. NUMERICAL RESULTS
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FIG. 1. Log-log plot ofC(r), the magnitude of the spin autocor-  FIG. 2. Plot of C%(r)r'* as a function of Ir for s=1. This is
relation function, as a function affor s=1. System sizes ranging Predicted to be a straight line, with finite size corrections. System
from L=128 toL=2048 are plotted. The error bars are comparablesizes fromL=128 toL=2048 are plotted. The error bars are com-
to the point size. The data are consistent with a power law formparable to the point size.
with exponent—0.68. Since logarithmic corrections are expected, a
scaling collapse is not shown. 30000 times the former if the readings were uncorrelated.
or our simulations, the actual ratio ranged from about
0 000 to 300, confirming that in all cases the blocks are
ncorrelated even when the individual readings are not.

Figure 1 shows the spin autocorrelation functiGr)

Ising case, the constraint that the total spin along any chaig
and for all replicas at a site must be zero prevents usin
single spin flip dynamics. In a Monte Carlo move, two rep-
licas (a,8) on two adjacent site§,k) were chosen at ran- ; g :
dom. If the Ising spins at these four locations satisfy =(=1(s;s;+r) as a function of for differentL, for s=1. The
=of, UEBZU?, and o' # Ujﬁ, it is possible to flip all the four a_ntlferromagnetlc interaction down the chalns causes the os-
spins simultaneously without violating the constraint. TheCillatory (1) factor. It is clear from the figure that the cor-
ratio of the probab|||ty of the f||pped Conﬁguration to the relation function does not decay eXponentia”y. As seen in the
probability of the unflipped configuration is calculated, with figure, the autocorrelation function seems to decay a¢ 1/
appropriate factors ofV(m) included if the move would With «~0.68. However, motivated by the analytical consid-
change the magnetization at the sites, i.eqi2s<g or  erations discussed in Sec. I, we try the functional form
B=2s<a. The move is accepted or rejected using the stan-
dard Metropolis criterion.

For the Potts representation, two adjacent <iigle) were
chosen at random, arid;,q,) were attempted to be changed. with ©=0.75. This is because the power-law part Qi)
For the case o$=1, Eq.(30) required that ifg;+0+#0, the  should scale as-1/r* with ©=3/(2s+2)=0.75 for s=1,

only possible move was to exchange them, whilejit g, with possible logarithmic corrections from the marginally ir-
=0, one could attempt to replace them with either of the

C(r)=[A+BIn r]l’zr% (30)

other two pairs ofj values. Fois> 1, a table was constructed 1 :

at the beginning of the numerical simulation. For any pair of . ;gg N
q values(qy,q,), the table listed all pair&y; ,q;) that(g;,gy) . 512«
could change to, while respecting the magnetization con- ‘--.ﬁ ;gig °

straints on the underlying Ising spins. In any Monte Carlo
step, this table was used to randomly select an allowable
move to attempt. For both the Ising and the Potts represen-
tations, the long range logarithmic interaction down the
chains made calculating the probability of an attempted
move anO(L) long calculation for a chain of length. As a
result, very large values df could not be simulated.

In both cases, error bars on the measured correlation func-
tion were estimated by taking blocks of 30 000 readings, 0.01 - '
calculating the average correlation function within each 1 10 100
block and then the interblock variance. Even if the individual '
readings are taken too frequently and are therefore corre- F|G. 3. Log-log plot ofC(r), the magnitude of the spin autocor-
lated, this procedure should be reliable so long as the block&lation function, as a function offor s=3/2. System sizes ranging
are sufficiently large to be uncorrelated. It is also useful tofrom L=128 toL=2048 are plotted. The error bars are comparable
compare the variance of the block averages to the variance @ the point size. The data are consistent with a power law form,
the individual readings within a block. The latter would be with exponent—0.51.

i+

1000
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FIG. 4. Plot ofC2(r)rl2 as a function of Irr for s=3/2. System
sizes fromL=128 toL=2048 are plotted. The error bars are com-
parable to the point size.

FIG. 6. Plot of C3(r)rl0 as a function of Ir for s=2. System
sizes fromL=64 toL=1024 are plotted. The error bars are compa-
rable to the point size.

relevant operator. Accordingly, Fig. 2 plo@(r)r'®, which
should be a linear function of In This expectation is borne . . .
out by the plot. Logarithmic dependences are known to b onsistent with the ex;zectatlon that gax:b?rresponQS to a
hard to distinguish from weak power laws, and the plots ZW model of orderk=2s. The effectlve,u,s from Figs. 3
cannot be used to choose between R{) and the pure and .5 are 0‘51. and 0.40, respecnv_ely._ .

power law decay of Fig. 1[It would be even harder for the Since t_here IS no clear Imegr region in .F'g' .6' we also plot
data to discriminate between more subtle differences, e.gth? data in a manner that ghmmates finite size effects. For
Eq. (31) with different exponents to the logarithmic term in ﬁmte system sizd, the leading effect oi©(r) is to change
the numeratof.However, from Fig. 2, the data are certainly its form from Eq.(31) to

in agreement with the analytical expectation.

Figures 3 and 4 are the counterparts of Figs. 1 and 2,
respectively, fors=3/2. Based on the analytical prediction,
Fig. 4 plotsC%(r)r!2 as a function of I, since the power
law decay part ofC(r) should have an exponent of
=3/(2s+2)=0.6. Likewise, Figs. 5 and 6 are fer=2, with
C2(r)r1? plotted in Fig. 6. Although the results f@=3/2

half-integer spin chains, respectively. The decayCor) is

C(r)=[A+BlIn r]”zri#F(r/L), (31

whereF is an unknown function. Since=0.5 fors=2, we

plot C2(r)r for fixed r/L as a function of IrL. The result
should be a straight line, with slof(r/L). The results are
ands=2 are not as clear as those fr 1, we see tha€(r)  Shown in Fig. 7. For all the values ofL shown, there is an

definitely does not decay exponentially o2, or as~1/r upward curvature to the plots. T_his is pres_umably due to
for s=3/2, the generic behavior expected for integer and subleading corrections to the scaling form, since the leading

YR 12 .
. 128  «x r= L8 -+
1F m 256  «x 1 r= L4 x
Ta, 512 o 101 r=3L/8 = b
"s..% 1024 = r= /2 = m
i++
M > 8f P
= o = "os
51 .!"“iig? & o @ £ 1
h‘\ (@] 6 2 * x
01 L A <] L] * = - *
4' ™ x o -
1 1 2 1 1 1 1 1 1 1
1 10 100 1000 3 4 5 6 7 8 9 10 11
r log, L

FIG. 5. Log-log plot ofC(r), the magnitude of the spin autocor- FIG. 7. Plot of C(r)r for fixed r/L as a function of logL, for
relation function, as a function of for s=2. System sizes ranging s=2. Four different values af/L are shown. The vertical bars are
from L=64 toL=1024 are plotted. The error bars are comparable tahe error bars. There is a noticeable odd-even effect$dr/8 and
the point size. The data are consistent with a power law form, withr =3L/8 for L=8. For all the values of/L, the plots curve slightly
exponent—0.40. upward.
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correction is large enough to change the effecjiven Eq.  all half-integer spin and an exponential decay for integer
(31) from 0.5 to 0.4. spin. This result was obtained through numerical simulations
for s=1, % and 2, after mapping the model to a classical
V. CONCLUSION statistical mechanical model with long range interacting spin

chains.

In this paper, we have proposed a generalization of the |n summary, we have taken free fermionic wave functions
Gutzwiller wave function for spir% chains that yields simple and found a way of projecting them in a fashion that yields
wave functions for spin chains Witﬁ>%. Remarkably, the the WZW theory exponents, a possibility that has been pre-
spin spin correlation functions for these wave functions havesaged in Ref. 17. It remains to be seen if there is a systematic
the same power law decay as Wess Zumino Witten modelgiay of finding Hamiltonians for which the wave functions
with k=2s, in contrast to the generic expectationksfl for  presented here are ground states.
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