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Thermal response functions of strongly correlated electron systems are of appreciable interest to the larger
scientific community both theoretically and technologically. Here, we focus on the infinitely correlated t-J
model on a geometrically frustrated two-dimensional triangular lattice. Using exact diagonalization on a finite
sized system, we calculate the dynamical thermal response functions in order to determine the thermopower,
Lorenz number, and dimensionless figure of merit. The dynamical thermal response functions are compared to
the infinite frequency limit and shown to be very weak functions of frequency, hence, establishing the validity
of the high frequency formalism recently proposed by Shastry �Phys. Rev. B 73, 085117 �2006�� for the
thermopower, Lorenz number, and the dimensionless figure of merit. Further, the thermopower is demonstrated
to have a low to intermediate temperature enhancement when the sign of the hopping parameter t is switched
from positive to negative for the geometrically frustrated lattice �A. P. Ramirez, in More Is Different, edited by
N. P. Org and R. N. Bhatt �Princeton University Press, New Jersey, 2001�, p. 255� considered.
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I. INTRODUCTION

There is current interest in the physics as well as indus-
trial and engineering communities regarding thermoelectrics
of strongly correlated electron systems. This interest has
been recently revived by the demonstration of the unexpect-
edly high thermopower seen in the very interesting material
sodium cobalt oxide1–3 �NCO�. Theoretically, thermoelectrics
have been a long standing problem in physics especially
when concerned with strongly correlated systems which are
not amenable to perturbative treatments.

Essentially, there are two standard theoretical approaches
concerning the problem of thermoelectrics �see Refs. 4–7�.
The first makes use of Boltzmann theory often comple-
mented with standard Fermi liquid theory. This methodology
is reliable for weakly coupled problems where long lived
quasiparticles remain well defined and where perturbation
theory remains valid. The second approach is to use the full
rigor of the Kubo formalism which is valid for all situations
but whose dynamical character makes it unyielding and dif-
ficult to make any real progress, especially for strongly cor-
related systems.

Recently, Shastry8–10 has proposed a third method which
handles the strong electron interactions with the respect
which they deserve while avoiding the complexity of the full
dynamics of the Kubo formalism. Very briefly, this method-
ology considers the ultimate quantities one is usually inter-
ested in when calculating conductivities. Often, there is more
interest in certain combinations of conductivities, which
form more experimentally accessible quantities �such as the
thermopower or Seebeck coefficient, Lorenz number, dimen-
sionless figure of merit, the Hall coefficient, etc.�, than in the
conductivities �electrical, thermal, etc.� themselves. The ba-
sic proposal is that certain combinations of conductivities
have weak dynamical character �weak frequency depen-
dence�, and thus lend themselves to a high frequency expan-
sion. The upshot of this expansion is that it yields formulas
that are much simpler, although nontrivial, than the Kubo
formulas and yet the interactions are fully respected com-

pared to the usual approximations which risk missing impor-
tant effects.

Nearly 15 years previously, this basic high frequency ex-
pansion methodology was originally employed by Shastry et
al.11 to calculate the Hall coefficient �at high temperatures�
for a strongly correlated electron model �t-J model� with
success. In the last year, the present authors12,13 have applied
this high frequency expansion to calculate the Hall coeffi-
cient and thermopower for the very interesting NCO system
explaining in both quantitative and qualitative detail the
physics of the so-called Curie-Weiss metal for NaxCoO2 at
electron doping x�0.7. This Curie-Weiss metal displays be-
havior that is an interesting hybrid between those of insulat-
ing and metallic systems. The high frequency formalism al-
lowed the investigation of this complicated system
successfully by incorporating the important effects of inter-
actions.

Interestingly, Shastry, via the high frequency expansion,
was able to predict a low to intermediate temperature ther-
mopower enhancement due to a change in sign of the hop-
ping parameter t of the t-J model for a geometrically
frustrated14 two-dimensional triangular lattice.8,9 This corre-
sponds to a fiduciary hole doped CoO2 layer of NCO that has
yet to be realized experimentally. The lattice topology plays
a crucial role in this enhancement as it owes its existence
primarily to electron transport and is not thermodynamic or
entropic in origin. This prediction was put on firmer footing
by the present authors in Ref. 12 concerning the Curie-Weiss
metallic phase of NCO which itself has an underlying two-
dimensional triangular lattice. We emphasize that we work
with a hole doped system �0�n�1, n electron density�, and
in order to compare with experiments on NCO, we perform a
suitable particle-hole transformation.8,9,12,13

In this work, we establish the validity and accuracy of the
high frequency formalism for the thermopower, Lorenz num-
ber, and figure of merit for the strongly correlated electron
t-J model on a two-dimensional triangular lattice. This is
accomplished by comparing the high frequency expressions
with those obtained via the full Kubo formalism. This com-
parison for a strongly correlated system, such as our model,
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is only possible through numerical exact diagonalization of a
relatively small system �L=12 site lattice�. However, we feel
that our results provide a much desired and important bench-
mark for the high frequency formalism establishing its effec-
tiveness and usefulness.

Furthermore, the t-J model is generally representative of
strongly correlated electron models so our results should be
applicable to other strong correlation models such as the
Hubbard model for large U. While the geometrically frus-
trated triangular lattice provides an interesting enhancement
of the thermopower for intermediate temperatures, the gen-
eral validity of our results should obtain for other lattice
topologies �frustrated and nonfrustrated�.

The plan of this paper is as follows: In Sec. II, we de-
scribe the details of our model and the exact diagonalization
used. Section III generally quotes the Kubo formulas for the
considered conductivities and the high frequency formulas
from Shastry.8,9 In Secs. IV–VI, we report results for the
thermopower �for both positive and negative hopping t�, the
Lorenz number, and the figure of merit �both for positive
hopping t�0�, respectively. Section VII concludes, while
some formulas are given for completeness in the Appendix.

II. t-J MODEL AND DIAGONALIZATION

As mentioned above, we study the t-J model Hamiltonian
which describes a strongly correlated hole doped Mott insu-
lator. The Hamiltonian is

Ĥ = − �
r��� �

t��� �c̃r�+�� �
† c̃r�� +

1

2�
r���

J��� �S�r� · S�r�+�� , �1�

where c̃r��
† �c̃r���= P̂Gcr��

† �cr���P̂G are Gutzwiller projected fer-
mion creation �destruction� operators where the projection

operator P̂G projects out all doubly occupied lattice sites. The
lattice vector �� connects nearest neighbors which are
coupled �with strength J��� �� via their spin degree of freedom

�S�r� is the three-component spin operator�. For simplicity, we
take the hopping t��� �= t and spin J��� �=J coupling param-
eters to be constants and the lattice constant has been set to
unity.

In this work, we also aim to apply our calculations to the
experimental system of NCO which is electron doped and
has been previously modeled using the t-J model.12,15–17 We
use the symmetry of the Hubbard model with regard to half
filling to map our system to NCO, i.e., we apply the replace-
ment rules t→−t, doping x= �1−n�, and qe→−qe, where n is
electron density per site and qe=−�e� is the electron charge.
At this point, we will abandon referencing particular systems
by the electron density and instead reference them by the
doping x�n−1.

Thermodynamics will be considered within the canonical
ensemble, and considering that the goal of this paper is to
calculate full thermodynamic Kubo formulas, it is a prereq-
uisite that we obtain the full eigenspectrum of the system in
order to calculate all relevant current matrix elements. There-
fore, we make progress through the exact numerical diago-
nalization of a finite system. At this level of study, various

approximations such as the finite temperature Lanczos
method,18 dynamical mean field theory,19 etc., could perhaps
muddy the issue of comparing the high frequency expansion
of various thermoelectric properties to their full Kubo formu-
lations and, hence, will not be considered. Further, we are
interested in the behavior of the system over a whole range
of densities and do not wish to confuse the results by con-
sidering a smattering of small system sizes along with their
particular inherent and unavoidable finite size effects. There-
fore, we find that the largest two-dimensional lattice that we
can fully diagonalize in a satisfactory way is an L=12 site
toroidal lattice �see Fig. 1�. Another reason for using this
lattice is that it was used extensively in the present authors’
previous works12,13 on the two-dimensional triangular lattice
t-J model applied to NCO.

To reduce the computational demand of the exact diago-
nalization to a more manageable size, we employ a number
of symmetries. First, we consider only the largest Sz sector of
the full Hilbert space, i.e., the smallest �Sz� subspace which is
�Sz�=0 �� /2� for even �odd� number of electrons. This sector
of the full Hilbert space dominates the physics so this “ap-
proximation” is as good as exact.20 The most useful symme-
try employed is translational invariance which essentially re-
duces the Hilbert space dimension by a factor of L. Our
largest Hilbert space dimension occurs for x=1/3 corre-
sponding to 34 650 states in the �Sz�=0 subspace, and after
applying translational symmetry, we need only diagonalize
matrices of dimension �2900. While this matrix dimension
is not particularly huge in the realm of matrix diagonaliza-
tion, we must consider a double sum over these �2900 states
to calculate the Kubo formulas. This double sum is quite
time consuming and limits our abilities to consider larger
lattices and, in fact, it limits our abilities to consider all dop-
ing values x on the chosen L=12 site lattice used here. The
dopings where we can calculate the full Kubo formula are
limited to x�0.5 and x�0.2.

III. DYNAMICAL THERMAL RESPONSE FUNCTIONS

In this section, we quote the formulas for the Kubo linear
response for thermoelectrics following very closely the work
of Shastry.8–10 In particular, we are interested in the electrical
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FIG. 1. �Color online� L=12 site torus geometry used through-
out this work. We diagonalize the Hamiltonian at all densities of
this lattice for the t-J model; however, as explained in the text, we
label the electron densities in terms of hole doping x.
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��� ,T�, thermoelectrical 	�� ,T�, and the thermal 
�� ,T�
conductivities, respectively. In terms of these conductivities,
the ultimate goal of this work are commonly measured
physical quantities of interest such as the thermopower S, the
Lorenz number L, and the dimensionless figure of merit ZT
commonly defined4,6,7 as

S��,T� =
	��,T�
���,T�

, �2�

L��,T� =

��,T�

T���,T�
− 	S��,T�
2, �3�

and

Z��,T�T =
	S��,T�
2

L��,T�
. �4�

These conductivities all have familiar Kubo formulas
which, in the Lehmann representation, are written as

���c,T� =
i

��cL���̂xx
 +
�

Z�
n,m

e−�
n − e−�
m


n − 
m + ��c
��n�Ĵx�m
�2� ,

�5�

	��c,T� =
i

��cTL���̂xx
 +
�

Z�
n,m

e−�
n − e−�
m


n − 
m + ��c
�n�Ĵx�m


��m�Ĵx
Q�n
� , �6�

and


��c,T� =
i

��cTL���̂xx
 +
�

Z�
n,m

e−�
n − e−�
m


n − 
m + ��c
��n�Ĵx

Q�m
�2� .

�7�

In the above, �k
 is a normalized eigenstate of the Hamil-
tonian with energy 
k, Z=�k exp�−�
k� is the canonical par-
tition function, and �=1/kBT is the inverse temperature. A
thermal average is indicated by �¯
. The dynamical tem-
perature variation is turned on adiabatically from the infinite
past, i.e., �c=�+ i0+.

In Eqs. �5�–�7�, the charge current Ĵx is formally given by

Ĵx = − lim
kx→0

d

dkx
�K̂�kx�,qen̂�− kx�� , �8�

while the heat current Ĵx
Q is

Ĵx
Q = − lim

kx→0

1

2

d

dkx
�K̂�kx�,K̂�− kx�� . �9�

Here, K̂= Ĥ−�n̂ is the grand canonical Hamiltonian and

Â�k��=� exp�ik� ·r��Â�r�� is the Fourier decomposition for mode

k of a local operator Â�r�� which operates at position r�. It
should be noted that the heat and charge currents are related

via the energy current as Ĵx
Q= Ĵx

E− �� /qe�Ĵx with

Ĵx
E = − lim

kx→0

d

dkx
�T̂�kx�,

1

2
T̂�− kx� + Û�− kx�� , �10�

with T̂ and Û being equal to the kinetic and potential energy
operators,21 respectively.

From Refs. 8–10, the definitions for stress tensor �̂xx, the

thermoelectric operator �̂xx, and the thermal operator �̂xx are

�̂xx = − lim
kx→0

d

dkx
�Ĵx�kx�,qen̂�− kx�� , �11�

�̂xx = − lim
kx→0

d

dkx
�Ĵx�kx�,K̂�− kx�� , �12�

�̂xx = − lim
kx→0

d

dkx
�Ĵx

Q�kx�,K̂�− kx�� . �13�

The explicit forms of these operators for the t-J model are
given in the Appendix.

Throughout this work, we take the chemical potential
��T� in the above formulas to be that obtained from
the canonical ensemble, i.e., ��T�=�F /�N, where F
=−�1/��ln�Z� is the Helmholtz free energy. For a finite sized
system, we approximate this partial derivative as ��T�
= �FN+1−FN−1� /2 for an N electron system.22

When calculating the full frequency dependent conduc-
tivities for finite sized clusters, one must take into account
the discreteness of the energy spectrum caused by the finite
nature of the cluster. This is done by introducing a broaden-
ing factor � where the frequency then becomes �c→�+ i�.
The broadening factor is taken to be the mean energy spacing
between states with nonzero current matrix elements. Table I
provides values of � for the systems considered here and � is
generally weakly dependent on x and of order ��3�t�.

Following the work of Refs. 8–10, one can consider the
high frequency limit of the thermopower, Lorenz number,
and figure of merit in the hope and expectation that for
strongly correlated systems modeled by the t-J model, these
combinations of conductivities will have weak frequency de-
pendence and yet still capture the essential strongly corre-
lated physics, i.e., the Mott-Hubbard physics. For notational
convenience, we indicate the high frequency expansions by
an asterisk, that is,

TABLE I. Broadening factor � for the t-J model on a two-
dimensional triangular lattice with L=12 sites. Both positive and
negative values of the hopping t are given. The value of J has very
little effect on � compared to the weak x dependence.

x � / �t��J=0.2�t� , t�0� � / �t��J=0, t�0�

0.83 3.229589 2.678842

0.75 4.198734 4.221241

0.67 4.659046 4.697231

0.58 4.922330 4.934004

0.17 3.786627 3.772738

0.083 2.803789 2.769104
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S*�T� = lim
w→�

S��,T� =
��̂xx

T��̂xx


, �14�

L*�T� = lim
w→�

L��,T� =
��̂xx


T2��̂xx

− 	S*�T�
2, �15�

and

Z*�T�T = lim
w→�

Z��,T�T =
	S*�T�
2

L*�T�
. �16�

While the high frequency quantities with asterisk are not
trivial to calculate, they are considerably simpler than the
full dynamical Kubo formulas �Eqs. �2�–�4�� as they are
equilibrium expectation values and not dynamical in nature.
It is also reasonable to expect that in the future, approximate
methods could be used to calculate their full temperature
dependence that are not as limited as the exact diagonaliza-
tion brute force methods used here. However, one must be
very careful when aiming to establish new approximation for
strongly correlated systems and, hence, the need for the brute
force calculations in this work.

IV. THERMOPOWER

The thermopower can be factored instructively12 as

S��,T� =
	��,T�
���,T�

=
	̃��,T�
���,T�

−
��T�
qeT

, �17�

where 	�� ,T�= 	̃�� ,T�− ���T� /qeT���� ,T� defines 	̃�� ,T�.
This factorization displays clearly the two contributions
composing the thermopower; one arising from electron trans-
port and the other from thermodynamics �entropy�. This is
discussed in detail below.

As was mentioned previously, calculating this type of for-
mula for strongly correlated systems is very difficult. Often,
there is a desire to give the transport term little importance
and, therefore, drop it. This leaves merely the second term in
Eq. �17� involving the chemical potential alone. This is the
so-called Mott-Heikes �MH� term for the thermopower
which is valid at high temperatures and is described in more
detail below. However, as will be shown below, for low to
intermediate temperatures, this approximation is not ad-
equate.

On physical as well as theoretical23 grounds, one expects
the thermopower to vanish at T=0, and for a noninteracting
system, it is simple to show this. For our purposes, it is
instructive to describe this vanishing through a delicate bal-
ancing act where the transport term exactly equals the MH
term as the temperature tends toward zero, i.e.,

lim
T→0

� 	̃��,T�
���,T�

−
��T�
qeT

� = 0. �18�

Achieving this balance in a finite sized system is not pos-
sible explicitly, even for noninteracting electrons. However,
it does suggest a formulation of the thermopower into the
two contributing terms mentioned above: a frequency depen-

dent transport term Str�� ,T� and a frequency independent
MH term SMH�T� both defined through

S��,T� =
1

T
�T	̃��,T�

���,T�
−

T	̃��,0�
���,0� � − ���T� − ��0�

qeT
�

= Str��,T� + SMH�T� . �19�

Therefore, even for a finite sized system, one can obtain a
transport term and a MH term that independently equal zero
at T=0, ensuring that S�� ,T� vanishes in the zero tempera-
ture limit as expected. This is not the complete picture, how-
ever. The MH term contains the chemical potential which is
expected to behave quadratically in T as T→0 for thermo-
dynamically large systems. Finite systems have two particu-
lar differences. One is that the spectrum is discrete, giving
rise to a ground state energy gap in situations without degen-
eracies. In those instances, there will be a low temperature
exponential behavior of ��T� which is not really a problem
for our purposes because ��T� /T will still vanish in the zero
temperature limit. The existence of ground state degenera-
cies, on the other hand, is a bigger concern. Their existence
causes the chemical potential to behave linearly in T at low
temperatures which, in turn, produces a MH term that does
not vanish. We argue that this is an unwanted unphysical
result and our solution is to merely discount this ground state
degeneracy �when it exists� when calculating ��T�, ensuring
that the MH term vanishes as T→0.

The high frequency expansion of S�� ,T� is similarly writ-
ten as

S*�T� =
1

T
���̃ˆ xx�T�


��xx�T�

−

��̃ˆ xx�0�

��xx�0�


� + SMH�T�

= Str
* �T� + SMH�T� . �20�

Again, we have defined �̃
ˆ

xx similarly to 	̃�� ,T� through

�̂xx=�̃
ˆ

xx− ���T� /qe��̂xx.
The transport term of the thermopower eventually van-

ishes as T becomes large so we know that the Mott-Heikes
term eventually dominates the thermopower and becomes
useful for a number of reasons. One reason is that it is not a
dynamical quantity and, hence, is easier to compute. Second,
it is often hoped that the MH term dominates the ther-
mopower and one only needs to consider it. This is due to the
fact that at high temperatures, it approaches a constant since
��T� is eventually linear in T. Previous work by Beni24 and
Chaikin and Beni25 worked out the infinite temperature limit
of SMH�T� for a number of systems. There is elegance and
simplicity to these formulas since the infinite temperature
limit of SMH�T� is determined merely from counting argu-
ments related to the Hilbert space dimension of the problem
at hand. A central question regarding the MH term is at how
low temperature does the MH limit remain a valid approxi-
mation to the full thermopower. We provide an answer to that
question for the t-J model in this work which is discussed
later.

The two MH limits we consider here are for the uncorre-
lated band26 and for the t-J model,8,25,27
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lim
T→�

SMH�T�

=�
kB

qe
ln�2 − n

n
� , uncorrelated with 0 � n � 2

kB

qe
ln�2�1 − n�

n
� , t-J with 0 � n � 1

−
kB

qe
ln�2�n − 1�

2 − n
� , t-J with 1 � n � 2,

�
�21�

remembering that qe=−�e� is the electric charge.
Although a somewhat blunt formulation, the Mott-Heikes

limits already contain a plethora of information. For ex-
ample, for the uncorrelated model, even with a finite inter-
action parameter U, the thermopower diverges at x→1 �n
→0�, is positive for all hole dopings x�0 �n�1�, and is
exactly zero for the half filled case x=0 �n=1�. For electron
doping, the thermopower would be purely negative, diverg-
ing negatively as x→1 �n→2�. In the whole range of den-
sities �0�n�2�, the MH limit would predict a single sign
change.

For the t-J model, the essentially infinite strength interac-
tions of the electrons cause two additional sign changes com-
pared to the uncorrelated or finite U Hubbard model. The

thermopower still diverges as x→1, is positive for x�1/3,
is negative for x�1/3, and diverges negatively at half fill-
ing. For electron doping, we use particle-hole symmetry to
get precisely the opposite behavior: a positive divergence at
half filling, positive for x�1/3, a sign change to negative
thermopower for x�1/3, and a negative divergence as x
→1. Hence, two additional zero crossings emerge due to the
interactions.

In the following sections, we report results for S*�T�, the
difference S�� ,T�−S*�T�, and the Mott-Heikes term SMH�T�
for both positive �Sec. IV A� and negative �Sec. IV B� signs
of the hopping t. In all figures, the thermopower is given in
experimental units of �V/K where kB / �qe�=86 �V/K, and
we have multiplied by �−1� to facilitate comparison with the
electron doped NCO system �see Eq. �21��.

A. Positive hopping t�0

Figure 2 shows S*�T� as a function of both doping and
temperature for the case of positive hopping t�0. We have
computed S*�T� for two different values of J, namely, J=0
�Fig. 2�a�� and J=0.2�t� �Fig. 2�b��. Projected onto the T
=10�t� plane are the two MH limits: the uncorrelated model
�blue dashed line� and the t-J model �solid red line�. The
high temperature behavior of S*�T� matches the t-J model
MH limit expectation quite satisfactorily, producing a sign
change near x=1/3. The slight difference between S*�T
=10�t�� is a combination of T=10�t� being large but finite and
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FIG. 2. �Color online� S*�T� �black curve� as a function of dop-
ing x and temperature T for positive hopping t�0 corresponding to
NCO after particle-hole transformation. Panels �a� and �b� are for
J=0 and 0.2�t�, respectively. Projected onto the T=10�t� plane are
the Mott-Heikes limits for the uncorrelated �blue �black� dotted�
and the t-J models �solid red �gray��, respectively. S*�T� approaches
the MH limit for the t-J model relatively quickly, i.e., by approxi-
mately T�6�t�. The horizontal black dotted lines indicate the posi-
tion of zero thermopower.
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FIG. 3. �Color online� The Mott-Heikes term of the ther-
mopower SMH�T� versus doping x and temperature T for positive
hopping t�0 corresponding to NCO after particle-hole transforma-
tion. Panels �a� and �b� are for J=0 and 0.2�t�, respectively. The
black curve is SMH�T�, while the red �gray� curve is the full S*�T�.
The MH limits are projected onto the T=10�t� plane as in Fig. 2.
The horizontal black dotted lines indicate the position of zero
thermopower.
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finite size effects coming from the finite dimension of the
Hilbert space, yielding a discrepancy even at T=�.

For large dopings x�0.58, the thermopower monotoni-
cally grows to a somewhat large value of 100–200 �V/K,
growing faster with temperature the higher the doping. The
value of J has little to no effect in this range of doping. The
thermopower is pinned at zero for T=0 and needs to even-
tually increase to its MH limit which in this range of doping
is positive and large. Since the doping is large, there is little
interaction between electrons and evidently they effectively
avoid one another. Hence, the transport term Str

* �T� has very
little impact on the full thermopower. This physics is borne
out by comparing S*�T� to only the Mott-Heikes term SMH�T�
which is shown in Figs. 3�a� and 3�b�, where there is very
little difference between S*�T� and SMH�T�.

For dopings x�0.5, strong electron correlation effects are
obtained. This is due to the transport term which acts to

reduce the thermopower at low to intermediate temperatures.
S*�T� no longer monotonically approaches its MH limit.
Again, this is shown more distinctly when one compares
S*�T� to SMH�T� in Figs. 3�a� and 3�b�, where the MH term
overestimates the thermopower indicative of a very active
and important transport term Str

* �T� which serves to reduce
the thermopower. Eventually, the transport term vanishes as
T becomes large and the MH term again dominates.

As the doping approaches half filling �x→0�, the ther-
mopower begins to be purely negative and nearly monotoni-
cally approaches its now negative MH limit. Some of the
violent behavior at the lowest temperatures reported is no
doubt due to peculiarities of the finite sized lattice. That
aside, the transport term has an increasingly important role to
play at low to intermediate temperatures as the doping is
reduced. Again, this is quite obvious in Figs. 3�a� and 3�b�,
where the MH and transport terms are quite divergent.
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FIG. 4. �Color online� S�� ,T�−S*�T� as a function of frequency � and temperature T for J=0.2�t�, positive sign of the hopping t�0
�corresponding to NCO after particle-hole transformation�, and for dopings �a� x=0.83, �b� x=0.75, �c� x=0.67, �d� x=0.58, �e� x=0.17, and
�f� x=0.083. The frequency dependence is evidently quite weak for dopings x�0.58 ��a�–�d��. For x=0.17 and 0.083 ��e� and �f��, there is
a much stronger frequency dependence that occurs at extremely small � and T. This is most likely due to finite size effects of our L=12 site
lattice and not an intrinsic property of the t-J model at these dopings. For parameters ��3�t� and T�2�t�, the frequency dependence is
approximately flat. The doping of x=0.92 corresponds in our case to only one electron and, hence, has no frequency dependence.
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Hence, it is definitely not a good approximation to use
SMH�T� as a representative of the thermopower in low doping
regions of strongly correlated systems for low to intermedi-
ate temperatures �T�5 � t � �.

The value of J has almost no effect on the thermopower
until a doping of x=0.25 is reached. Similar results for J
=0.4 � t� are not shown.

It is interesting to note that S*�T� can be well approxi-
mated by the infinite temperature MH limit for all dopings
and all J when the temperature is at or above approximately
5 � t � �T�6 � t�, as the thermopower has an overwhelming
MH contribution by that temperature.

Last, we justify the use of S*�T� instead of the full dy-
namical thermopower S�� ,T�. Figures 4�a�–4�f� show
S�� ,T�−S*�T� as a function of temperature and frequency �
for dopings x=0.83, 0.75, 0.67, 0.58, 0.17, and 0.08. The
dopings x=0.5, 0.42, 0.33, and 0.25 cannot be calculated at
this time due to computational constraints, i.e., the double
sum over the current matrix elements in Eqs. �5� and �6� is
quite prohibitive. For x�0.58, the difference between the
dynamical thermopower and the infinite frequency expansion
is less than 2.5 �V/K and hence has very little absolute
effect �approximately less than �2% difference�. Further, it
should be noted that for values of ��3�t� and temperatures
T�2 � t�, the frequency dependence of the thermopower is
nearly nonexistent.

For smaller dopings, i.e., x=0.17 and 0.083, a more se-
vere difference between S�� ,T� and S*�T� is found. How-
ever, this larger difference takes place at extremely small

frequencies and temperatures especially considering that this
calculation is done for a finite sized system. Recall from Fig.
2�b� that at temperatures below approximately T�0.3�t�, the
thermopower displays a drastic behavior as it approaches T
=0. This extreme behavior is almost certainly a consequence
of the finite sized lattice on which we work and not an in-
trinsic property of the t−J model. In fact, in Figs. 4�e� and
4�f�, we have cut the temperature off below T=0.3�t� as the
thermopower is badly divergent. Therefore, it should be con-
cluded that the frequency dependence of S�� ,T� is most
likely weak even for very small dopings.

B. Negative hopping t�0

We now consider the thermopower for a fiduciary system
where we have switched the sign of the hopping t, i.e., t
�0. Since we study 0�n�1, by a particle-hole transforma-
tion, this corresponds to t�0 for 1�n�2, which differs
from NaxCoO2 in the sign of the hopping �t�0 for NCO�.
Such a system does not exist in the laboratories, and our
hope is that our result will stimulate the search for a hole
doped CoO2 system.

In view of the topology of the geometrically frustrated
triangular lattice, there is the possibility of important effects
coming from primarily the transport term. In Ref. 8, Shastry
obtained a high temperature expansion of S*�T� for the trian-
gular lattice which we quote here for completeness for the
situation corresponding to 0�n�1 and t�0,
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FIG. 5. �Color online� S*�T� �black curve� as a function of dop-
ing x and temperature T for negative hopping t�0 corresponding to
a fiduciary hole doped CoO2 compound. Panels �a� and �b� are for
J=0 and 0.4�t�, respectively. Projected onto the T=10�t� plane are
the MH limits �cf. Fig. 2�. S*�T� approaches the MH limit for the
t−J model relatively quickly, i.e., by approximately T�6�t�. The
horizontal black dotted lines indicate the position of zero
thermopower.
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FIG. 6. �Color online� The Mott-Heikes term of the ther-
mopower SMH�T� versus doping x and temperature T for negative
hopping t�0 corresponding to a fiduciary hole doped CoO2 com-
pound. Panels �a� and �b� are for J=0 and 0.4�t�, respectively. The
black curve is SMH�T�, while the red �gray� curve is the full S*�T�.
The MH limits are projected onto the T=10�t� plane as in Fig. 2.
The horizontal black dotted lines indicate the position of zero
thermopower.
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S*�T� =
kB

qe
�ln� 2x

1 − x
� − t

1 + x

2T
� + O��2t2� , �22�

with hole doping x=1−n. Comparison with an electron
doped system such as NCO is facilitated through the particle-
hole transformation given previously �see Sec. II�. The first
term in Eq. �22� is the Mott-Heikes term. The second term is
due to the transport and serves to reduce the thermopower
from its large MH upper limit as the temperature is de-
creased. Importantly, it depends on a single power of the
hopping t. Hence, if one could switch the sign of the hop-
ping, then S*�T� would evidently grow to a maximum as the
temperature was decreased before approaching its zero value
at T=0. A term similar to the second term in Eq. �22� with an
odd power of t is only present in cases where the topology of
the underlying lattice is geometrically frustrated.

Figures 5�a� and 5�b� show S*�T� for the case of negative
hopping as a function of x and T for J=0 and J=0.4�t�, re-
spectively �recall that we actually plot �−1��S*�T� to facili-
tate comparison with NCO�. The prediction of thermopower
enhancement is quite clearly visible. For dopings x�0.5,
instead of monotonically decreasing from its upper MH
limit, the thermopower grows to a maximum at approxi-
mately 1�t��T�2�t� before being pinned by its T=0 con-
straint. The enhancement is also larger for larger dopings.
Again, the value of J has little effect other than at extremely
low temperatures which most assuredly suffer from finite
size effects. As expected, the thermopower obtains its MH
limit when T reaches 5�t��T�6�t� just as for the positive
hopping situation.

The origin of the thermopower enhancement stems from
the transport term Str

* �T� as expected. Figures 6�a� and 6�b�
show the Mott-Heikes formula for the thermopower along
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FIG. 7. �Color online� S�� ,T�−S*�T� as a function of frequency � and temperature T for J=0, negative sign on the hopping t�0
�corresponding to a fiduciary hole doped CoO2 compound�, and dopings �a� x=0.83, �b� x=0.75, �c� x=0.67, �d� x=0.58, �e� x=0.17, and �f�
x=0.083. The general frequency dependence is quite similar, albeit larger �discussed further in the text�, to that shown in Fig. 4 for positive
hopping.
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with the full S*�T� for the negative hopping case. The MH
term clearly underestimates the magnitude of the enhance-
ment and nearly misses it all together. Obviously, the trans-
port term has a much more sensitive dependence on the lat-
tice topology than the MH term.

The magnitude of the enhancement is also quite striking.
A value of thermopower greater than 150 �V/K is already
anomalously large for a seemingly metallic system such as
this. However, upon switching the sign of the hopping pa-
rameter, a value of the thermopower of nearly 350 �V/K is
obtained. Clearly, one should consider the intermediate tem-
perature transport effects when attempting to discover and
/or design large thermopower materials; for NCO ��t�
�100 K �Refs. 8, 9, 12, and 13��, the intermediate tempera-
ture range corresponds to approximately room temperature.

The intermediate temperature enhancement of the ther-
mopower is very similar in magnitude and shape to the en-
hanced thermopower of NCO at high dopings observed re-
cently by Lee et al.28 Although there is, at present, no reason
to believe that the experimental system has an inversion of
the sign of the hopping as the doping is increased from the
Curie-Weiss metallic phase, the similarity between our cal-
culation and the data is striking.

For completeness, Figs. 7�a� and 7�f� display the full fre-
quency dependence of S�� ,T� compared to S*�T� for the
negative hopping. The same general behavior is shown com-
pared to the positive hopping situation in Figs. 4�a�–4�f�. The
main difference between the two cases is that the deviation
of S�� ,T� and S*�T� is slightly more extreme. However,
similarly, this is seen to occur at low temperatures, frequen-
cies, and dopings, and is most likely a finite size artifact.

V. LORENZ NUMBER

The Lorenz number is an important thermoelectric quan-
tity, and no less important is its role in the dimensionless
figure of merit �FOM�. The FOM is an extremely important
quantity when determining the technological usefulness and
performance of a thermoelectric material where values of
FOM in excess of unity are highly desirable.

Recall the definition of the Lorenz number from Eq. �3�,

L��,T� =

��,T�

T���,T�
− S��,T�2, �23�

which can be simplified as

L��,T� =

̃��,T�

T���,T�
− � 	̃��,T�

���,T��2

, �24�

with 
�� ,T�= 
̃�� ,T�− �2��T� /qe�	̃�� ,T�+ ���T� /�Tqe�2

���� ,T� being used to define 
̃�� ,T�. The chemical poten-
tial drops out of this formula entirely; hence, one could cal-
culate L�� ,T� in a purely canonical ensemble. For noninter-
acting electrons, it is easy to show that at T=0, the Lorenz
number is equal to L0= ��kB /�3qe�2. This result is simply the
familiar Wiedemann-Franz law �see Refs. 4 and 29�. The

way this number is obtained in the noninteracting case via
our formalism is that at T=0, there is a delicate balance
similar to that in the thermopower, namely,

lim
T→0

�T2 
̃��,T�
���,T�

− �T
	̃��,0�
���,0��2� = 0. �25�

The value of L0 comes from the temperature dependence of
both terms. As T→0, both 
̃�� ,T� /T��� ,T� and
�	̃�� ,T� /��� ,T��2 behave quadratically in temperature and
the difference in the coefficients multiplying each quadratic
term is equal precisely to L0.

In our finite sized system, we have neither the delicate
balance of the T=0 behavior nor the quadratic low tempera-
ture behavior present. Using the same “trick” as we used for
the thermopower, we force each term to separately vanish at
T=0, i.e.,

L��,T� =
1

T2�T
̃��,T�
���,T�

−
T
̃��,0�
���,0� �

−
1

T2��T	̃��,T�
���,T�

�2

− �T	̃��,0�
���,0�

�2� , �26�

to keep L�� ,T� from badly diverging. At low temperatures,
the exponential behavior caused by the discrete nature of the
energy levels of the finite system rears its head causing prob-
lems as T→0.
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FIG. 8. L*�T� /L0 �black curve� as a function of doping x and
temperature T for positive hopping t�0 �corresponding to NCO
after a particle-hole transformation� where L0= ��kB /�3qe�2. Panels
�a� and �b� are for J=0 and 0.2�t�, respectively. The horizontal black
dotted lines indicate L*�T� /L0=1.
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At present, we are only able to consider a couple of issues
regarding the Lorenz number. First, we can still quite satis--
factorily determine the accuracy of using the high frequency
expansion of L*�T� in place of L�� ,T�. Second, we can de-
termine generally qualitative aspects of the Lorenz number
for strongly correlated systems as a function of both tem-
perature and doping. Our qualitative determination of
L�� ,T� also allows us to look at the dimensionless figure of
merit which we investigate in Sec. VI again at a qualitative
level.

The high frequency expansion of L�� ,T� is

L*�T� =
��̃ˆ xx
��̂xx
 − ��̃ˆ xx
2

T2��̂xx
2 , �27�

where similar to 
̃�� ,T� we have defined �̃
ˆ

xx through �̂xx

=�̃
ˆ

xx− �2��T� /qe��̃
ˆ

xx+ ���T� /qe�2�̂xx. After forcing each
term to vanish at T=0, Eq. �27� becomes

L*�T� =
1

T2
���̃ˆ xx�T�


��xx�T�

−

��̃ˆ xx�0�

��xx�0�


�
−

1

T2
���̃ˆ xx�T�
2

��xx�T�
2 −
��̃ˆ xx�0�
2

��xx�0�
2
� . �28�

In Figs. 8�a�, 8�b�, and 9�a�–9�f�, we report results
for L*�T� /L0 and �L�� ,T�−L*�T�� /L0 for the case of the
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FIG. 9. �Color online� �L�� ,T�−L*�T�� /L0 as a function of frequency � and temperature T for J=0.2�t�, positive hopping t�0 �corre-
sponding to NCO after a particle-hole transformation�, and dopings �a� x=0.83, �b� x=0.75, �c� x=0.67, �d� x=0.58, �e� x=0.17, and �f�
x=0.083. The frequency dependence is weak for dopings x�0.58 ��a�–�d��. For x=0.17 and 0.083 ��e� and �f��, there is strong dependence
occurring at small � and T. Note that in �e� and �f�, we are only considering temperatures T�0.5�t� as the Lorenz number badly diverges
below that temperature. This is most likely a finite size effect and not an intrinsic property of the t-J model at these dopings.
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hopping relevant to NCO. The dotted black line in Figs. 8�a�
and 8�b� is to indicate unity. It is a reasonable assumption
that at T=0, a thermodynamically large system would have a
finite value of L*�T� at T=0. Whether this finite value is
equal to L0 is an open question and one we are unfortunately
not able to shed light upon at this time.

For the noninteracting case, the behavior of L*�T� quickly
deviates from L0 where it is pinned at T=0 as a function of
temperature. For the interacting case shown here, the Lorenz
number quickly decays to very small values as T increases as
well. However, our results indicate that the intermediate tem-
perature behavior of L*�T� generally grows with decreasing
doping x, i.e., interactions evidently increase the Lorenz
number. The effect of J is much harder to discern due to
presumably finite size effects and low temperature diver-
gences. J seems to have little effect except for the highest
dopings calculated x=0.17 and 0.083.

Figure 9 is similar to Figs. 4 and 7. For dopings x
�0.58, the frequency dependence of L�� ,T� is very weak
and only on the order of ��2–3�% or less. At the low dop-
ings of x=0.17 and 0.083, there is again a much stronger
frequency dependence that is likely due to finite size effects
and not intrinsic to the t-J model.

With confidence in the weak frequency dependence of the
thermopower and the Lorenz number, we proceed to calcu-
late the dimensionless FOM for the situation applicable to
NCO.

VI. FIGURE OF MERIT

A value of the dimensionless figure of merit greater than 1
is indicative of a good thermoelectric material and is there-
fore desired. Of course, throughout this work, we have ne-
glected the lattice contribution to the Lorenz number which
will add to our calculation of L�� ,T� and consequently serve
to decrease the FOM that we calculate below.

Recall that the FOM is given in Eq. �4�, while the high
frequency expansion is given by Eq. �16�. The numerator is
just the square of the thermopower and vanishes at zero tem-
perature and eventually obtains the square of the MH limit,
i.e., 	�86 �V/K�ln�2x / �1−x��
2. However, the denominator
is the Lorenz number which starts out finite at T=0 and
quickly decays to zero as T→�. Therefore, we expect the
FOM to begin at zero and grow without bound as T in-
creases.

Figures 10�a� and 10�b� show the FOM for J=0 and J
=0.2�t� for the positive case of the hopping t as a function of
both the doping and temperature. True to expectations, the
FOM quickly grows from zero at T=0 to well above unity
for dopings x�0.58. At intermediate dopings �0.5�x
�0.17�, the FOM remains very small up to the largest tem-
peratures calculated and never reaches unity. This is under-
standable when one considers that the thermopower in this
regime has a small absolute value for all temperatures and
the Lorenz number only serves to diminish this value. At the
smallest doping calculated �x=0.083�, the FOM just reaches
unity as T�10�t�.

Note that in Fig. 10 we have indicated the point at which
Z*�T�T equals 1 by a red box. Projected onto the T=10�t�
plane is the “normalized” square of the MH term, i.e.,
	ln�2x / �1−x��
2, indicating an interesting doping behavior of
the relative magnitudes of the figure of merit. This behavior
is most certainly due to the MH term of the thermopower.
Nonzero J has a nearly negligible effect except at the lowest
dopings where it serves to slightly reduce the highest tem-
perature value of the FOM.

The full frequency dependence of Z�� ,T�T is understand-
ably weak �not shown� since both the thermopower and Lo-
renz number have been shown to be weakly frequency de-
pendent.

VII. CONCLUSION

In this work, we have established the general validity of
the high frequency expansion of the thermopower, Lorenz
number, and figure of merit for strongly correlated electron
models. This high frequency expansion is much simpler to
consider than the full Kubo formalism and yet complicated
enough to capture the full interaction effects. This estab-
lished validity should provide a benchmark encouraging the
theoretical community to obtain useful approximate methods
to calculate these high frequency formulas.

We also provide theoretical evidence supporting the
authors’ previous calculations in regard to the Curie-Weiss
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FIG. 10. �Color online� Z*�T�T �black curve� as a function of
doping x and temperature T for �a� J=0 and �b� 0.2�t�. The red
�gray� squares indicate the point at which Z*�T�T=1, while the
black dotted line indicates unity as well. Projected onto the T
=10�t� plane is the “normalized” square of the MH term, i.e.,
	ln�2x / �1−x��
2 �blue �black� dotted curve�.
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metallic phase of NCO12,13 being qualitatively and quantita-
tively described by a two-dimensional t-J model on a trian-
gular lattice. Further, we have provided predictions for so-
dium cobalt oxide concerning the Lorenz number and figure
of merit �Secs. V and VI�. In Refs. 12 and 13, the present
authors used an experimental hopping parameter of �t�
�100 K taken from both photoemission experiments30,31

and chemical potential measurements,32 indicating NCO to
have a very narrow band system. Therefore, one should scale
the temperature in this work by this value of the hopping
when making experimental comparisons.

The predicted thermopower enhancement discussed in
Sec. IV B should stimulate an experimental search of lattice
based strongly correlated materials to provide useful ther-
molectric materials. Perhaps, it is possible to custom design a
high thermopower material armed with the knowledge of the
behavior of the transport term alone for strongly correlated
systems.
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APPENDIX: OPERATOR EXPRESSIONS

This appendix presents formulas taken from Refs. 8–10
for completeness and clarity and additional ones used in the
present work.

In discussing the explicit forms of the operators, we in-
troduce the so-called Hubbard operators to act to simplify the
formulas somewhat. The Hubbard operators are defined as
follows:

X�0�r�� � c̃r��
† , �A1�

X0��r�� � c̃r��, �A2�

X����r�� � c̃r��
† c̃r��� = X�0�r���X0���r��� , �A3�

X00�r�� � c̃r��c̃r��
† = X0��r��X�0�r�� . �A4�

They have modified anticommutation relations

	c̃r��
† , c̃r���
 = �X�0�r��,X0��r���� = �r�r���X����r�� + ����X00�r���

� �r�r��Y����r��� , �A5�

where the last line defines Y����r��. Using this notation, the
charge and energy currents defined in Eqs. �8� and �10� are
given by

Ĵx = − lim
kx→0

d

dkx
�K̂�kx�,qen̂�− kx�� = iqet�

r��

�xX�0�r� + �� �X0��r��

�A6�

and

Ĵx
E = − lim

kx→0

d

dkx
�T̂�kx�,

1

2
T̂�− kx� + Û�− kx�� = −

it2

2 �
r������

��x + �x��Y����r� + �� �X�0�r� + �� + �� ��X0���r�� +
iJt

4 �
r����

	�x�� �r�

+ �� ,r�� · �S�r�+��� + S�r�+�� +���� + ���x + 2�x��S�r�+�� +��� + ��x − 2�x��S�r�+���� · �� �r� + �� ,r��
 , �A7�

respectively.
The stress tensor is simply

�̂xx = − lim
kx→0

d

dkx
�Ĵx�kx�, q̂en�− kx�� = qe

2t�
r��

�x
2X�0�r� + �� �X0��r�� , �A8�

while the modified thermoelectric and thermal operators ��̃ˆ xx and �̃
ˆ

xx� have the form

�̃
ˆ

xx = − lim
kx→0

d

dkx
�Ĵx�kx�,Ĥ�− kx�� = − qe

t2

2 �
r������

��x + �x��
2Y����r� + �� �X�0�r� + �� + �� ��X0���r�� +

qetJ

4 �
r����

	�x��x�� �r�

+ �� ,r�� · �S�r�+��� + S�r�+�� +���� + ���x + 2�x��S�r�+�� +��� + ��x − 2�x��S�r�+���� · �� �r� + �� ,r���
 �A9�
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and

�̃
ˆ

xx = − lim
kx→0

d

dkx
�Ĵx

E�kx�,Ĥ�− kx�� =
t3

4 �
r�����

��
�

��x + �x���− �x + �x� − �x���	X�̄0�r� + �� �X0��r� + �� + �� �� − X�̄0�r� + ��

+ �� ��X0��r� + �� �
X�0�r� + �� + �� ��X0�̄�r�� − 	X�̄0�r� + �� �X0�̄�r� + �� + �� �� − h.c.
X�0�r� + �� + �� ��X0��r��� + �
�����

��x + �x�

+ �x����x + 2�x� + �x��Y����r� + �� �Y�����r� + �� + �� ��X��0�r� + �� + �� � + �� ��X0���r��� +
t2J

16 �
r�����

��x + �x����
���

���x

− �x��X�0�r� + �� + �� ��X0���r���X���̄�r� + �� �X�̄��r� + �� + �� �� − X�̄��r� + �� �X���̄�r� + �� + �� ��� − ��x + �x��Y����r� + �� �X�̄0�r�

+ �� + �� ��X0���r��X��̄�r� + �� + �� � + �� �� − ��x + �x��Y����r� + �� �X�0�r� + �� + �� ��X0�̄�r��X�̄��r� + �� �� + ��x − �x� + 2�x��

��X�̄��r� + �� + �� ��X���̄�r� + �� � − X���̄�r� + �� + �� ��X�̄��r� + �� ��X�0�r� + �� + �� ��X0���r�� − ��x + �x� + 2�x��X��̄�r� + ��

+ �� � + �� ��Y����r� + �� �X�̄0�r� + �� + �� ��X0���r�� − ��x + �x� − 2�x��X�̄���r� + �� ��Y����r� + �� �X�0�r� + �� + �� ��X0�̄�r�� − ��x

+ �x� − �x��Y����r� + �� �X�0�r� + �� + �� ��X0���r���nr�+����� − nr�+����̄� − ��x + �x� + �x��Y����r� + �� ��nr�+�� +���+����

− nr�+�� +���+����̄�X�0�r� + �� + �� ��X0���r��� + �2�x − 2�x� + 2�x���
�

�nr�+�� +���� − nr�+�� +����̄�X�̄��r� + �� �X�0�r� + �� + �� ��X0�̄�r���
+

tJ2

8 �
r�����

��
��	

i���	��x�
��r� + �� ,r���Sr�+���

� ��x

4
Sr�+���

	 −
�x

4
Sr�+�� +���

	 −
��x − 2�x��

2
Sr�+�� +���

	 � + Sr�+�� +���
� ��x

4
Sr�+���

	

−
�x

4
Sr�+�� +���

	 +
��x + 2�x��

2
Sr�+�� +���+���

	 �� + �x� ��x − 2�x��
4

Sr�+���
� −

��x + 2�x��
4

Sr�+�� +���
� −

��x − 2�x� − 2�x��
2

Sr�+�� +���
� ����r�

+ �� ,r��Sr�+��
	 + �x� ��x − 2�x��

4
Sr�+���

� −
��x + 2�x��

4
Sr�+�� +���

� +
��x + 2�x� + 2�x��

2
Sr�+�� +���+���

� ����r� + �� ,r��Sr�+�� +���
	 + ��x + 2�x��

��Sr�+�� +���
� ���r� + �� ,r����x

4
Sr�+�� +���

	 −
�x

4
Sr�+���

	 −
��x + 2�x��

2
Sr�+�� +���+���

	 � + � ��x + 2�x��
4

Sr�+�� +���
� −

��x − 2�x��
4

Sr�+���
�

−
��x + 2�x� + 2�x��

2
Sr�+�� +���+���

� �Sr�+�� +���
� �	�r� + �� ,r��� + ��x − 2�x���Sr�+���

� ���r� + �� ,r����x

4
Sr�+�� +���

	 −
�x

4
Sr�+���

	

+
��x − 2�x��

2
Sr�+�� +���

	 � + � ��x + 2�x��
4

Sr�+�� +���
� −

��x − 2�x��
4

Sr�+���
� +

��x − 2�x� − 2�x��
2

Sr�+�� +���
� �Sr�+���

� �	�r� + �� ,r����
+ �

�
��x

2

8
X�0�r� + �� �X0��r��	Sr�+���

� + Sr�+�� +���
� 
	Sr�+���

� + Sr�+�� +���
� 
 + ��x��x − 2�x��

8
Sr�+���

� +
�x��x + 2�x��

8
Sr�+�� +���

� �X�0�r�

+ �� �X0��r��	Sr�+���
� + Sr�+�� +���

� 
 +
��x + 2�x��

8
	Sr�+�� +���

� X�0�r� + �� �X0��r����xSr�+���
� + �xSr�+�� +���

� � + ���x − 2�x��Sr�+���
� + ��x

+ 2�x��Sr�+�� +���
� �Sr�+�� +���

� X�0�r� + �� �X0��r��
 +
��x − 2�x��

8
	Sr�+���

� X�0�r� + �� �X0��r����xSr�+���
� + �xSr�+�� +���

� � + ���x − 2�x��Sr�+���
�

+ ��x + 2�x��Sr�+�� +���
� �Sr�+���

� X�0�r� + �� �X0��r��
�� , �A10�

respectively. In the above expression for �̃
ˆ

xx and �̃
ˆ

xx, we
have used the bond spin operators defined as

�z�r�,r��� =
1

2
�X↑0�r��X0↑�r��� − X↓0�r��X0↓�r���� , �A11�

�y�r�,r��� =
1

2i
�X↑0�r��X0↓�r��� − X↓0�r��X0↑�r���� , �A12�

�x�r�,r��� =
1

2
�X↑0�r��X0↓�r��� + X↓0�r��X0↑�r���� . �A13�
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Further, note that for Eq. �A10�, we have used the definition

Ĵx
E�kx� = − lim

qx→0

d

dqx
�1

2
�T̂�qx + kx�,T̂�− qx��

+ �T̂�qx + kx�,V̂�− qx��� �A14�

allowing the establishment of the identity �using the Jacobi
identity�

lim
kx,qx→0

d2

dkxdqx
���T̂�kx + qx�,V̂�− qx��,T̂�− kx��

−
1

2
��T̂�kx + qx�,T̂�− qx��,V̂�− kx��� = 0, �A15�

simplifying the calculation of Eq. �A10� tremendously.
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