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Motivated by the form of recent theoretical results, a quantitative test for an important dynamical

particle-hole asymmetry of the electron spectral function at low energies and long wavelengths is

proposed. The test requires the decomposition of the angle resolved photo emission intensity, after a

specific Fermi symmetrization, into odd and even parts to obtain its ratio R. A large magnitude R is

implied in recent theoretical fits at optimal doping around the chemical potential, and I propose that this

large asymmetry needs to be checked more directly and thoroughly. This processing requires a slightly

higher precision determination of the Fermi momentum relative to current availability.
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Introduction.—The search for a microscopic theory of
the normal state of the cuprates is one of the main themes
in condensed matter physics for the last two decades. The
recent suggestions of describing the normal state in terms
of theories with a quantum critical point [1] have also
created wide interest in other branches of physics such as
string theory and quantum gravity [2]. An initial theoretical
objective is the derivation of the normal state low energy

long wavelength single electron spectral function !Gð ~k; !Þ
[or equivalently Að ~k; !Þ], encoding the complete set of
symmetries.

In this Letter, I discuss the behavior of !Gð ~k; !Þ under a
dynamical particle-hole transformation simultaneously in-
verting the wave vector and energy relative to the chemical
potential ! as

ð ~̂k; !Þ ! !ð ~̂k; !Þ; with ~̂k ¼ ~k! ~kF: (1)

Invariance under this transformation has often been in-
voked in analyzing angle resolved photoemission
(ARPES) data [3]. It is an emergent symmetry of the
Fermi-liquid in the sense of Ref. [4], arising when correc-
tion terms of Oð!="FÞ3 are neglected [5]. Fermi-liquids
without disorder at intermediate coupling are invariant [6]
under Eq. (1), as are most other contemporary theories of
cuprates that I am aware of.

On the other hand two recent theories, the extremely
correlated Fermi-liquid theory (ECFL) proposed by the
author in Ref. [7], and the hidden Fermi-liquid theory
proposed by Casey and Anderson (CA) in Ref. [8], yield
a spectral function that lacks invariance under Eq. (1). In
Ref. [9], a comparison between the ECFL spectral function
and a large set of data at optimal doping shows excellent
agreement and provides a useful parametrization of the
data. To quantify the asymmetry: for optimally doped
cuprates, in an energy range of %25 meV around !, the
theories and the fits of Ref. [9] (extrapolated to lower !)
yield an asymmetry ratio R [defined below Eq. (3)] be-
tween&7% and 10%. Because a large asymmetry makes a

decisive ruling on the allowed theories, we propose the
direct experimental measurement of this effect and indicate
a procedure for the same.
I first discuss a Fermi symmetrization procedure quite

distinct from the symmetrization in Refs. [3,10]. I con-

struct an object SGð ~k; !Þ [Eq. (2)] from the observed
ARPES intensity and find expressions for this in the
Fermi-liquid and the ECFL model. I further show how
the momentum dependence of the dipole transition proba-
bility and the Fermi-liquid parameter Zk can be absorbed
into the constants.

The SGð ~k; !Þ function is detailed for a simplified ver-
sion of ECFL (SECFL), providing an idealized picture of
the predicted asymmetry effect in cuprates. I further dis-
cuss a related asymmetry of the tunneling conductance in
the normal state, and also the expected angle integrated
spectrum. Within the SECFL model, where the quasipar-
ticle peaks are sharp over a large fraction of the zone, these
exhibit unusual and possibly measurable features.
Fermi symmetrization.—Our first goal is to formulate a

procedure for isolating terms in the spectral function near
the Fermi energy that are linear in wave vector and fre-

quency &"k !! (with "k ¼ ~̂k ' ~v ~kF
) found in the recent

work [7]. The ARPES intensity is given in terms of the
spectral function within the sudden approximation by the

expression Ið ~k; !Þ ¼ Mð ~kÞf!!Gð ~k; !Þ, where Mð ~kÞ is
the dipole transition probability which is expected to be

a smooth function of ~k and independent of !. It
also contains the Fermi function for occupied states f! ¼
f1þ expð#!Þg!1, a nonsymmetric function of !.
Therefore, we first formulate a Fermi symmetrized object:

S Gð ~k; !Þ ) f! !f!!Gð ~k; !Þ ¼ 1

Mð ~kÞ
!f!Ið ~k; !Þ; (2)

where !f! ¼ 1! f! ¼ f!!. We may now decompose

SGð ~k; !Þ under Eq. (1) into its antisymmetric

Sa-s
G ð ~kFj ~̂k; !Þ and symmetric Ss

Gð ~kFj
~̂k; !Þ combinations
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respectively 1
2 ½SGð ~kF þ ~̂k; !Þ + SGð ~kF ! ~̂k;!!Þ,. We will

also define the important asymmetry ratio:

RGð ~kFj ~̂k; !Þ ¼ Sa-s
G ð ~kFj ~̂k; !Þ=Ss

Gð ~kFj
~̂k; !Þ; (3)

where normalization factors cancel out, giving a dimen-
sionless function of order unity. Its magnitude can there-
fore be compared across different systems. We will quote
RG and Ss

G below for various theoretical models; Sa-s
G can

be reconstructed from Eq. (3).
Dynamical particle-hole symmetry of the Fermi-liquid

theory.—We begin by considering SG for the Fermi-liquid

theory. The spectral function of a Fermi-liquid !FL
G ð ~k; !Þ is

given in terms of a smooth background plus a quasiparticle
peak as in Eq. (4). Near the Fermi surface, we can linearize
various objects in k̂ and !. With ~v ~kF

, the Fermi velocity

vector at ~kF, the quasiparticle piece is specified by three
parameters (i) renormalization factor Z~k, with a linear

dependence Z~k ¼ Z~kF
½1þ c1ð ~̂k ' ~v ~kF

Þ,, (ii) the quasipar-

ticle energy E~k vanishing linearly at the Fermi surface

E~k ¼ m
m- ð ~̂k ' ~v ~kF

Þ with an effective mass renormalization
m
m- , and (iii) the line width $ ~k / ½E2

~k
þ ð%kBTÞ2, vanishes

symmetrically at the Fermi surface. Thus near the Fermi
surface:

!FL
G ð ~k; !Þ & !ðbgÞ

G ð ~k; !Þ þ Z~k

%

$ ~k

$2
~k
þ ð!! E~kÞ2

: (4)

For ~k close to the Fermi surface, the background part is
neglected compared to the large quasiparticle part.
Defining the quasiparticle peak part

Q ð ~̂k; !Þ ¼
Z~kF

4%cosh2ð#!=2Þ
$ ~kF

$2
~kF
þ ½!! m

m- ð ~̂k ' ~v ~kF
Þ,2

;

(5)

we write the Fermi symmetrized functions of ð ~̂k; !Þ:

fSs
GFL

;RGFL
g ¼ fQð ~̂k; !Þ; c1ð ~̂k ' ~v ~kF

Þg; (6)

where we retained only terms linear in k̂, ! beyond the

quasiparticle peak termQð ~̂k; !Þ. Observe that toOð!2Þ the
asymmetry ratio R is independent of !. The requirement
of neglecting the background is necessary, because it is
hard to make a general statement about the (k, !) depen-
dence of the background part. Therefore, the discussion
becomes sharp only in situations where the peak term
overwhelms the background part—thus, forcing us to low
temperatures. The same issue also impacts the synchrotron
data adversely compared to the laser ARPES data, if we
interpret the former to have more substantial elastic scat-
tering correction as argued in Ref. [9].

We make a few remarks next. (1) The coefficient c1
vanishes in theories where the self-energy is ! dependent

but ~k independent. To the extent that we can experimen-
tally identify a ! independent but k dependent term as in
Eq. (6), one can say that the Fermi-liquid spectrum pos-
sesses the dynamical particle-hole invariance. (2) The mo-
mentum dependence of the dipole transition probability

Mð ~kÞ, if any, can be absorbed into c1 in Eq. (6) by Taylor
expansion. This implies that the expression [Eq. (6)] is
valid for the S,R constructed from the ARPES intensities
directly [i.e., omitting the 1=M term in Eq. (2)]. The
important asymmetry ratio R gets rid of the overall scale
factors. Therefore, its magnitude is a meaningful quantita-
tive measure of the asymmetry. (3) It follows that the
frequency independence of R is also true for any theory
where the Dyson self-energy =m"ðk;!Þ is even (i.e., not
necessarily quadratic) in !, such as the marginal Fermi-
liquid [11] and also various refinements of the RPA.
Subleading corrections of the type !. T2 or !3 in
=m"ðk;!Þ [5], as well as intrinsic particle-hole asymmet-
ric density of states (DOS) terms can lead to a nontrivial
R. However, these are estimated [5,6] to be an order of
magnitude smaller than the predicted asymmetry of the
theories discussed next.
The asymmetry ratio in ECFL.—In the recent work

on the ECFL [7] !Gð ~k; !Þ is the product of a Fermi-liquid

spectral function !gð ~k; !Þ and a caparison factor

½f1! n
2gþ

"k!!

#ð ~k;!Þ þ &ð ~k; !Þ,, explicitly containing a linear

dependence on the energy !. This important term redis-
tributes the dynamical spectral weight within the lower
Hubbard band, in such a way as to preserve the Fermi
volume. In a further approximation of the formalism, a
SECFL theory emerges where we obtain explicit analytical

results. In this version, &ð ~k; !Þ is negligible and the coef-
ficient # is a constant determined by the number sum rule.
In Refs. [9,12], the SECFL was tested against data on the
high Tc cuprate Bi2Sr2CaCu2O8þ'. The test spans a sub-
stantial range of occupied energies &1 eV, with quantita-
tive fits in the 0.25 eV energy range. The remarkably close
agreement between data and theory over the broad range of
data sets appears to vindicate the form of the spectral
function. The test proposed in this Letter is somewhat
complementary, it is over a smaller energy range &2kBT,
probing the asymptotic low energy region centered around
the Fermi energy.
With the assumption of a smooth k dependence of

&ð ~k; 0Þ and #ð ~k; 0Þ in the expression for the spectral func-
tion [13] and p ¼ d0 þ ð1! n

2Þ, we obtain

S GECFL
&Q

!
pþ d1

~̂k ' ~v ~kF
þ d2!þ

ð ~̂k ' ~v ~kF
!!Þ

#ð ~kFÞ

"
:

Here the term d0 arises from Taylor expanding &ð ~kF; 0Þ
and also from the shift of the chemical potential from the
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free value, d1 from the momentum dependence of Zk and
this term can also absorb the momentum dependence of
MðkÞ, and d2 from the frequency dependence of &ðk;!Þ.
We can thus compute the symmetric and antisymmetric
parts fSs

GECFL
;RGECFL

g as

&
#
pQ;

d1
p

~̂k ' ~v ~kF
þ d2

p
!þ

ð ~̂k ' ~v ~kF
!!Þ

p#ð ~kFÞ

$
: (7)

The asymmetry ratio R therefore has a linear ! and k̂
dependence. Using the frequency dependence as the sig-
nature, one should be able to distinguish between the
results of Eqs. (6) and (7).

The SECFL model is described in detail in Ref. [12],
where we write the spectral function near the Fermi energy

!Peak
GSECFL

ð ~kF þ ~̂k; !Þ as

1

%

Z2
k$k

Z2
k$

2
k þ ð!! EFL

k Þ2
n2

4#0
f"0 þ "k !!g; (8)

where "0 ¼ #0
4
n2
ð1! n

2Þ. Here EFL
k ¼ Zk"k, in view of the

form of the self-energy %. To leading order, we can

set Zk ! ZF independent of k, and "k ¼ ~̂k ' ~v ~kF
, EFL

k ¼
ZF

~̂k ' ~v ~kF
, and set $k ¼ &þ %C%½ð%kBTÞ2 þ ðEFL

k Þ2,,
where & is the elastic broadening introduced in Ref. [9]

[distinct from &ð ~k; !Þ]. For the model Eq. (8), we can set
$k ! $kF and thus obtain the leading behavior near the
Fermi energy of fSs

GSECFL
;RGSECFL

g as

&
!%

1! n

2

&
Qð ~̂k; !Þ;

f ~̂k ' ~v ~kF
!!g

"0

"
; (9)

where Qð ~̂k; !Þ is obtained from Eq. (5) by replacing

m=m- ! ZF and $k ! $kZk. Note that, e.g., at ~̂k ¼ ~0
and any convenient !0, jRð0; !0Þj ¼ !0="0, and thus its
magnitude yields the important energy scale #0. We em-
phasize that Eq. (7) is more generally true within the ECFL
approach. We display Sa-s in Fig. 1 for a model calculation
based in the SECFL model with a flat DOS [see Ref. [12],
Sec. (IV.F)]. The values of the basic parameters in all
figures are as follows: T ¼ 180 K, !c ¼ 0:25 eV, C% ¼
1 ðeVÞ!1. Notice the distinctive increasing linear behavior

with ~̂k and a decreasing linear one with !, as in Eqs. (7)
and (9).

Single particle tunneling into the extremely correlated
state.—In the simplest model of tunneling in the t-J model,
the conductance is given in terms of the local DOS

!ðlocalÞ
G ð!Þ ¼ P

~k!Gð ~k;!Þ. Its convolution with f! and !f!
gives half the occupied n

2 , and the unoccupied (1! n)
densities, thus providing useful sum rules for tunneling
[14]. The sum rule implies asymmetry between adding
particles and holes and thus a downward sloping conduc-
tance [15,16]. Recent experiments in the overdoped regime

[17,18] display the same asymmetry, providing strong
confirmation that t-J model type extreme correlations are
operative at high hole doping levels as well, and not just
near half filling. More detailed information on the fre-
quency dependence is clearly of experimental interest.
We note that the angle integrated photo emission (AIP)
technique obtains the local DOS. f!, and provides a
complementary view to tunneling. Figure 2 presents the
results from the SECFL model for both the (local) DOS
and DOS. f! at various densities and elastic scattering
parameter &. It shows an overall decrease of the local DOS
with energy. Interestingly, the tunneling curve in the inset
(III) shows an upturn followed by a rising piece near
!& 0, and the AIP curve shows a related shallow mini-
mum at !&!0:2 eV.
To understand the unusual result, consider integrating

the spectral function in Eq. (8) over "k. As discussed in
Refs. [9,12], when the energy is less than &1 eV, the
quasiparticles become sharp and this integral can be
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FIG. 1 (color online). Top inset shows the large predicted
asymmetry Ra-s

GSECFL
versus " in the small energy range of

150 meV. Similar magnitudes are found as functions of ! at
various ". The figure shows Sa-s

GSECFL
from Eq. (9) versus " (main),

! (inset) in electron volt at various ! (main), " (inset). Arrows
indicate the direction of increasing energies. We used n ¼ 0:85,
& ¼ 0:05 eV, and #0 ¼ 0:0796 eV here.

FIG. 2 (color online). (I) The predicted AIP spectrum showing
a shallow minimum at !&!0:2 eV, and a rise as the binding
energy j!j increases. The rise is greater as the particle density n
increases (bottom to top). Inset (II) reveals the role of elastic
scattering width & (top to bottom). Inset (III) shows the local
DOS relevant to the tunneling conductance, for the same pa-
rameters as in (II) with a remarkable rising piece near zero bias.
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estimated by replacing the Fermi-liquid Lorentzian by

'ð ~̂k ' ~v ~kF
! m-

m !Þ. This yields the quasiparticle peak

contribution:

lim
!/"0

!ðlocalÞ
G;Peakð!Þ & const.

#
"0 þ

%
m-

m
! 1

&
!
$
: (10)

Because m / m-, it follows that the slope is positive and
hence the rising conductance! In the general version of
ECFL, different parts of the Fermi surface contribute ac-

cording to the weight of 1=#ð ~kFÞ. We expect the resulting
average to be less favorable to a rising term than in the
SECFL model.

Other theories.—CA in Ref. [8] provide a spectral func-
tion that may be Taylor expanded at finite T and low
enough energies as follows. With q ¼ 1! 1

4n
2 depending

on the filling n, and $k̂ ¼ AðkBTÞ þ Cv2
kF
k̂2, their expres-

sions yield:

fSs
CA;R

a-s
CAg ¼

#
Q0; cotðq%=2Þ ðvFk̂!!Þ

$0

$
; (11)

with Q0 ¼ const. sinðq%=2Þ
4%cosh2ð#!=2Þ =½$2

0 þ ð!! vFk̂Þ2,q=2.
Therefore, this work also implies a nontrivial R with a
linear !, k̂ dependence, similar in form to that in ECFL,
although with a non-Lorentzian peak factor replacing the
Q factor in Eq. (7). It is seen that the asymmetry of this
theory as well as that of the ECFL theory vanishes con-
tinuously at low particle density n ! 0. An important
characteristic energy #-ðx; TÞ, say the inverse of the slope
of the linear in ! term inR contains much physics. In the
CA theory #-ðx; TÞ / $0 vanishes at all densities x as
T ! 0, thereby defining a line of quantum critical points.
On the other hand in the ECFL calculations, the energy
#-ðx; T ! 0Þ is nonzero but much smaller than the (bare)
Fermi energy. However, it could vanish at a specific filling
xc: as #-ðxc; T ! 0Þ ! 0, thereby locating an isolated
quantum critical point.

Other contemporary theories have a different prediction
from the ECFL and CA. The popular marginal Fermi-
liquid model [11] for the spectral function has a Dyson
self-energy that is symmetric under the transformation
Eq. (1). Therefore, it leads to an! independent asymmetry
ratio at small energies, as in the usual Fermi-liquid [6]. A
similar ! independent R occurs for the RPA and its many
variants emphasizing fluctuation contributions.

Conclusions.—The program of extraction of the asym-
metry ratio from the ‘‘ideal’’ spectral weight is summarized
in Fig. 3. A window of size &2kBT in ! and vFk̂ are
highlighted in this construction. It is proposed that a care-
ful examination of the ARPES intensity along these lines
would determine the existence of dynamical particle-hole
asymmetry. This asymmetry also relates to the difference
in velocities (and amplitudes) of quasiparticles and quasi-
holes, of the type that are invoked in explaining the

peculiar sign of the Hall effect in the mixed state [19].
We thus expect it to be important in Hall and analogous
transport contexts such as thermopower. This search is
complementary, as well as a prerequisite, to the detailed
characterization of the symmetric part Ss. Specifically I
propose that the search for a nontrivial (i.e., ! linear)
asymmetry ratio R is important for identifying the correct
underlying theoretical description of the cuprates.
In order to implement the transformation Eq. (1) on the

experimental data, we need a high resolution in frequency
as well as momentum. Because the bare Fermi velocities
are high @vF & 5 eV &A, the momentum resolution becomes
critical. An error #"& 15–20 meV can lead to quite in-
correct conclusions. Thus, in order to draw unambiguous
conclusions we require #k& 0:001 ð &AÞ!1, i.e., #"&
5 meV or better, thereby posing an interesting challenge
to the experimental ARPES community.
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