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Abstract We consider the problem of defining quantum integrability in systems with finite
number of energy levels starting from commuting matrices and construct new general classes
of such matrix models with a given number of commuting partners. We argue that if the
matrices depend on a (real) parameter, one can define quantum integrability from this feature
alone, leading to specific results such as exact solvability, Poissonian energy level statistics
and to level crossings.

Keywords Integrability · Yang Baxter · Energy level statistic · Dynamical conservation
laws

1 Introduction

The field of quantum integrable systems, originally a somewhat abstruse topic, has received
a great deal of attention in recent years with the realization that many typical models are real-
izable in atomic, mesoscopic and macroscopic many-body systems. In describing molecular
systems such as benzene, we deal with Hamiltonians defined on a finite-dimensional Hilbert
space. These arise from a lattice of finite size, with spins, fermions or bosons populating
the sites. In condensed matter systems too, one often studies finite size systems as a prelude
to taking the thermodynamic limit or to obtain finite size corrections. Our concern in this
work is with the construction of general quantum integrable models, their characterization
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and definition of quantum integrability in a finite dimensional context,1 a task that is con-
siderably more delicate than the corresponding classical case.

We may view typical condensed matter problems as models with a finite number of
discrete single-particle energy levels, and sometimes (but not always) with a fixed number
of particles. The Hamiltonian is then ‘just’ an N × N Hermitian matrix, with a suitable
N . This description is, by design, far removed from its parentage in the space of many
body models. Given such a Hamiltonian matrix, can we say whether it is integrable or not?
What is the precise notion of quantum integrability in this case; can we separate N × N

Hermitian matrices into two clearly distinct classes—integrable and otherwise? If yes, what
are the consequences of quantum integrability that can be derived from its definition, i.e. the
characteristic properties of such ‘integrable’ matrices?

In this paper, we present a coherent view point that emerges from our recent exploration
of such questions. We present a summary of our previous [1–5] and new results and list some
open questions that remain unanswered. To put this enquiry into context, note that in the
thermodynamic limit N → ∞, impressive alternative approaches are available. For example
Baxter’s work on the spectra of infinite dimensional corner transfer matrices [6] culminates
in the realization of extra symmetries and structure arising in that limit, formalized by the
Yangian approach [7, 8]. Another viewpoint is of geometric origin due to Sutherland [9] and
emphasizes non-diffractive scattering as a true hallmark of quantum integrability. Much as
we admire these powerful viewpoints, our chosen task of understanding finite dimensional
matrix systems takes us in quite a different direction.

In classical mechanics a system with n degrees of freedom is said to be integrable if
it has n functionally independent integrals of motion that Poisson commute [10], i.e. are
in involution. An exact solution of equations of motion follows from this definition, and it
further can be shown that the motion is confined to invariant tori cut out in the phase space
by the conservation laws. Unfortunately, a straightforward import of this elegant notion of
integrability into quantum mechanics is problematic.

The difficulties are at least two fold: firstly what is a degree of freedom? In quantum
models with a fixed number of particles, this number seems closest to the classical notion
of a degree of freedom. However, in addition to the particle number there are other integer
parameters to take into account such as the number of sites or the magnitude of spins. For
example, in the Hubbard model with L sites do we count the number of electrons ne or the
number of holes 2L − ne? Or does the Heisenberg model for L spin- 1

2 particles have the
same number of degrees of freedom as that for L spin-5 particles?

The second difficulty is in defining what constitutes a nontrivial integral of motion. From
an elementary theorem in algebra [11], we know that an arbitrary N × N Hermitian matrix
commutes with N other Hermitian matrices that may be chosen as the projection operators
along each component in the diagonal representation. We could equivalently express the ma-
trix and all its commuting partners as a power series in some chosen non degenerate matrix.
A similar statement can be proved for general commuting Hermitian operators with discrete
or continuous spectra [12–14]. If now we are given a special Hamiltonian matrix, and told
that it is quantum integrable (in some specific sense that is yet to be defined), possessing n

equally special commuting partner matrices; we might (rather stubbornly) ignore this extra

1Imagine that we are given a specific Hermitean 6 × 6 matrix, can we determine if it is the descendant of a
quantum integrable model in a particular number-symmetry subsector? An explicit example might be from
the numerical study in Ref. [17], where a number of matrices are found by restricting the Hubbard model to
a particular number sector with all space time symmetries factored out. We provide a systematic method of
looking at such questions in this work.
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information and compute the N elementary commuting partners of the given matrix as per
the earlier prescription. Don’t we then have too many partners? What, if any, is the distinc-
tion between these two sets of commuting partners? From such questions and considerations
one seems to be forced to call integrable either all or none Hamiltonians with finite Hilbert
spaces.

Our goal here is to attempt a resolution of these difficulties and provide a practically use-
ful, simple and at the same time rigorous definition of quantum integrability for Hamiltonian
matrices. Our interest is of course not in the definition per se but mostly in a systematic con-
struction of new quantum integrable models and a clear delineation and derivation of their
properties starting from the definition. Characteristics normally attributed to integrable mod-
els include: exact solution for their spectra, Poisson level statistics, crossings of levels of the
same symmetry in parameter-dependent Hamiltonians etc. However, they are never derived
from one another or within some unified framework, but each property has to be established
independently and on a model by model basis.

Consider, for example, the 1d Hubbard model. Shortly after the model was exactly solved
via Bethe’s Ansatz [15, 16], a separate rigorous study by Heilmann and Lieb [17] of its pa-
rameter independent symmetries revealed numerous level crossings violating the Wigner
von Neuman non-crossing rule for eigenvalues in generic systems. These findings can be
rationalized by the notion that copious level crossings are a hallmark of quantum integra-
bility, and hint at parameter dependent conservation laws in such a model. Furthermore, by
solving the Bethe ansatz equations [18], it was shown that some degenerate energy levels
that can not be explained in terms of U-independent symmetries have distinct values with
respect to higher conserved quantities. Much later, one of us [19, 20] found an embedding
of the 1d Hubbard model into the Yang–Baxter scheme, thereby displaying an explicit set of
parameter dependent conservation laws. Not surprisingly, a numerical analysis [21] of level
spacings finds Poisson statistics that crosses over to GOE when ‘integrability’ is destroyed
by adding an off-site Coulomb repulsion. Further work [1] by us on making a causal link
between the conservation laws and the level crossings in the 1d Hubbard model has been a
fruitful source of insights that we have subsequently explored and report here.

Often, one of the above characteristics is singled out and adopted as a definition (see e.g.
Ref. [22] for examples). It seems to us that while level statistics and crossings are useful,
and even powerful tests of integrability, these are hardly suitable as definitions. These criteria
arguably encompass a broader class of systems than those normally thought integrable.2 It is
also difficult to see how, starting from either of them, one could derive other properties, e.g.
an exact solution. Universal statistics emerges only in the limit of large matrices, N → ∞,
or for an ensemble of matrices, while here we are looking for a notion that also works for
a stand-alone Hamiltonian matrix with fixed N . In addition, there are exceptional points
in parameter space of systems usually recognized as integrable, where the statistics is non-
Poissonian, e.g. for Gaudin magnets [23]. Starting from a well-defined notion of integrability
that we propose below, we construct broad classes of new integrable models where such
deviations occur more generally and explain their origin. Similarly, we find examples that
fail the level crossing test—such as ‘accidental’ degeneracies in non-integrable systems and
(rare) instances of integrable systems without crossings.

It turns out that such a simple and yet well-defined notion can in fact be formulated as
we recognized in a series of papers [1–5]. The main distinguishing feature of our approach

2For example, the Anderson localization of electrons in a random potential is often viewed as a transition
from Poisson (localized) to GOE (extended) statistics. In this context it is not obvious if or how the concept
of quantum integrability plays a role.
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is that it leads in a unified fashion to a general construction of new quantum integrable
models, their exact solution as well as allows for a systematic study of various properties
such as level crossings, level statistics etc. The main idea is to consider the dependence of
commuting operators on a real parameter, which we denote u. This is typically an interac-
tion constant or an applied field, e.g. Coulomb interaction constant in the Hubbard model,
magnetic field in Gaudin magnets [24, 25], pairing strength in the BCS and anisotropy in
the XXZ Heisenberg models, etc. Besides usual space-time and internal space symmetries,
which are parameter independent, these models have u-dependent conservation laws (alter-
natively termed dynamical symmetries or conserved currents) as discussed above. For the
BCS and Gaudin models the Hamiltonian and all conserved currents are linear in the pa-
rameter [24–26]. In the XXZ and Hubbard models the Hamiltonian and the first dynamical
symmetry are linear in u; the rest are polynomials in it of order two and higher [19, 27–32].

The rest of the paper is organized as follows. In Sects. 2 through 6 we present a compre-
hensive summary of our previous results. For a detailed discussion and relevant derivations
we refer the reader to Refs. [2–5]. Sections 7 and 9 are devoted to new results. In Sect. 7 we
provide a link between our notion of quantum integrability and the conventional approach
based on the Yang–Baxter equation. Section 9 summarizes our upcoming publication [33]
on level statistics in models that are integrable under our definition.

2 Definition

In several examples of quantum integrable models of interest, such as the anisotropic
Heisenberg model and the Hubbard model, there is a set of commuting operators linear
or polynomial in an interaction type parameter, termed u here. This set of course includes
the Hamiltonian, which is typically linear in u—e.g. the interaction constant U for the Hub-
bard model. This seems to be the most common situation in parameter dependent integrable
models and leads us [2–5] to consider operators of the form H(u) = T + uV , where T and
V are N × N Hermitian matrices. A key observation is that fixed u-dependence implies a
natural well-defined notion of a nontrivial integral of motion. A typical (e.g. randomly gen-
erated) H(u) commutes only with (a + bu)1 + cH(u), a trivial operator linear in u. Here
a, b, and c are real numbers and 1 is the identity operator.

The requirement that there exist a nontrivial commuting partner linear in u severely con-
strains the matrix elements of H(u). In fact, as we will see below, a real symmetric H(u)

that has such a partner is fixed by less than (N − 1)(N + 8)/2 real parameters. In con-
trast, N(N + 1) real parameters are necessary to specify the matrix elements of T and V

for a generic H(u), indicating that matrices with fixed parameter-dependence split into two
non-overlapping sets—those with nontrivial commuting partners and those without.

Moreover, there is a natural classification of integrable families according to the number
n of linearly independent commuting operators. Specifically, we define an integrable family
as a vector space of n linearly independent N × N Hermitian matrices

Hk(u) = T k + uV k such that,
[
Hi(u),Hj (u)

]
= 0 for all u and i, j = 1, . . . , n. (1)

In addition, we impose an (optional) condition that Hi(u) have no common u-independent
symmetries—there is no constant matrix Ω ( %= a1) such that [Ω,H i(u)] = 0 for all u and i.
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If there are such symmetries, Hi(u) are simultaneously block-diagonal and Eq. (1) reduces
to that for smaller matrices (blocks) without u-independent symmetries.3

Linear independence means that
∑

i aiH
i(u) = (a + bu)1 with real ai if and only if

all ai = 0 and a = b = 0. Note that, for convenience, we chose to separate multiples of
identity from our list of nontrivial commuting matrices Hk(u). Finally, n is defined as the
maximum number of nontrivial independent commuting matrices in a given family, i.e. any
H(u) = T + uV that commutes with all Hi(u) can be written as

H(u) =
n∑

i=1

akH
k(u) + (a + bu)1. (2)

Thus Hi(u) act as basis vectors in the n-dimensional vector space Vn of commuting matri-
ces, defined up to a multiple of identity matrix 1.

We propose the following classification of integrable matrices linear in a parameter into
types. The maximum possible number of linearly independent N ×N commuting Hermitian
matrices is n = N − 1, not counting multiples of the identity matrix. We call this a type 1 or
maximally commuting family of matrices. Similarly, families with n = N − 2 independent
commuting Hi(u) are termed type 2, and a general type M family is defined through n =
N − M . The maximum value of M is M = N − 2 when there are two nontrivial members
in the family in addition to (a + bu)1. Note that M = N − 1 means n = 1, i.e. an arbitrary
nonintegrable matrix that has no commuting partners besides itself and the identity. Since
we study integrable matrices in this paper, everywhere below M ≥ N − 2.

We argue that the following properties are direct consequences of the above definition of
quantum integrability: (1) an exact solution for the eigenspectra of Hi(u) in terms of roots
of a single algebraic equation, (2) Hi(u) satisfy Yang–Baxter equation, (3) eigenvalues of
Hi(u) typically (but not always) cross as functions of u; the number of crossings depends
on both N and M , (4) eigenvalues have Poisson statistics in N → ∞ limit except for some
special cases of certain measure zero in the space of all integrable families. Below we prove
statements (1) through (3) for type 1 families (in this case crossings are always present) and
comment on similar results of [5] for other types. Poisson statistics will be demonstrated
numerically in a separate paper; here we briefly discuss some of its main findings.

Equation (1) can be solved for matrix elements of Hi(u) at least for some types of inte-
grable families. All type 1 families were constructed in [2, 3]. In [5] all type 2, 3 and some
type M for arbitrary M were obtained. To facilitate further discussion, let us first cast Eq. (1)
into a different form. Using Hk(u) = T k +uV k and equating to zero terms at all orders of u,
we obtain

[
T i,V j

]
=

[
T j ,V i

]
,

[
T i, T j

]
=

[
V i,V j

]
= 0. (3)

It is convenient to choose the basis in the target Hilbert space to be the common eigenbasis
of the mutually commuting matrices V i . The first commutation relation in Eq. (3) in this

3For example, in the 1d Hubbard model Hi(u) represent blocks of the Hamiltonian and linear in u conserved
currents corresponding to a certain complete set of u-independent symmetry quantum numbers, see [5] for
more details.
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basis reads4 T i
km/(di

k − di
m) = T

j
km/(d

j
k − d

j
m) ≡ Skm, where di

k are the diagonal elements
of V i . This implies that T i can be written as

T i = Wi +
[
V i, S

]
(4)

where Wi is a diagonal matrix. Note that the antihermitian matrix S is the same for all
members of the family and is therefore independent of the basis in Vn. Now the commuta-
tion relations [V i,V j ] = 0 and [T i,V j ] = [T j ,V i] are satisfied. The remaining equation,
[T i, T j ] = 0, takes the form

[[
V i, S

]
,
[
V j ,S

]]
=

[[
V j ,S

]
,W i

]
−

[[
V i, S

]
,Wj

]
. (5)

Before we proceed with type 1, let us discuss the number of parameters involved in
constructing a generic real symmetric integrable family.

We can generate integrable families of various types by solving Eq. (5) numerically [5].
The algorithm is as follows. First, we arbitrarily specify some diagonal matrices V i,V j ,W i

and Wj (4N real inputs) and solve for the antisymmetric matrix S. This yields a discrete
set of solutions for S and two commuting matrices Hi,j (u) = Wi,j + [V i,j , S] + uV i,j for
each S. To determine, the remaining basic matrices Hk(u) in the family with a given S, we
take j = k in Eq. (5) (with V i , Wi and S obtained before) and solve this equation for V k

and Wk .
Some choices of the 4N inputs in the above procedure produce the same commuting

family. In fact, as seen from Eq. (2), there is 2(n + 2)-parametric freedom (values of ak , a

and b) in picking two matrices within the family. This means that we can fix 2(n + 2) out of
4N parameters by taking linear combinations within the family, i.e. by going to a different
basis in the vector space of commuting matrices. In addition, Eqs. (5) and (4) are invariant
with respect to rescaling V i → αV i and S → S/α, which fixes one more parameter in V i .
This leaves 4N − 2(n + 2) − 1 = 2N + 2M − 5 real parameters to specify a generic type M

family.
To further select a particular matrix H(u) = T + uV within the family, one needs to

pick n + 2 coefficients in Eq. (2), in addition to 2N + M − 5 parameters that specify the
commuting family, i.e. a general type M matrix involves 4N − n − 3 = 3N + M − 3 real
parameters. Since M ≤ N − 2 the maximum number is 4N − 5. This counting has been
done in the common eigenbasis of V i . Going to an arbitrary basis in the target Hilbert space
adds another N(N − 1)/2 real parameters for a general orthogonal transformation. We see
that the total number of parameters is less than (N + 8)(N − 1)/2, about half of N(N + 1)

for a non-integrable real-symmetric matrix of the form A + uB .

3 Type 1

The ‘master’ equation (5) is simplest for type 1. In this case there are N linearly independent
Hi(u) (including the identity) and consequently N linearly independent diagonal matrices
V i . By taking linear combinations we can go to a basis in the vector space VN−1 such that

4More precisely it reads T i
km(d

j
k − d

j
m) = T

j
km(di

k − di
m). If di

k = di
m for some, but not all i, Skm is defined

through the non-degenerate eigenvalues. If di
k = di

m for all i, matrices V i share a common 2 × 2 identity
block. Then with a u-independent unitary transform one can go to a basis where T i

km = 0 for all i. In either
case Eq. (4) still holds.
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V i
kk ≡ dk = δik . Equation (5) reads f i

jk ≡ Wi
jj − Wi

kk = −SijSik/Sjk . These equations are
consistent when f i

jk + f i
kl + f i

lj = 0, yielding the following four index relation [2]:

SijSjkSklSli + SikSklSlj Sji + SilSlj SjkSki = 0. (6)

The most general solution of this equation is [3, 4]

Sjk = γjγ
∗
k

εj − εk

, (7)

where real εi and complex γi are unrestricted parameters that fix the commuting family.
Next, using Eq. (6) and V i

kj = δkjδik , we determine Wi from Eq. (5), which is lin-
ear in Wi , and T i from Eq. (4). The most general member of a type 1 family, H(u) =∑N

i=1 diH
i(u) with arbitrary real di , is

[
H(u)

]
mn

= γmγ
∗
n

(
dm − dn

εm − εn

)
, m %= n,

[
H(u)

]
mm

= udm −
∑

k %=m

|γk|2
(

dm − dk

εm − εk

)
.

(8)

Note that dm are eigenvalues of V by design. In particular, for basic operators Hi(u) we
have dk = δik , i.e. their nonzero matrix elements are

[
Hi(u)

]
ij

=
γiγ

∗
j

εi − εj

, j %= i,

[
Hi(u)

]
jj

= u δij −
∑

k %=j

|γk|2
(
δij − δik

εm − εk

)
.

(9)

4 Type M > 1

A similar construction is possible for real symmetric integrable families of arbitrary type M

[5], though the expressions for the matrix elements are somewhat more involved. Specifi-
cally, we have (see Ref. [5] for the derivation and more details)

Skl = 1
2

γkγl

εk − εl

(Γk + Γl ), (10)

where

Γm ≡ Γ (εm), Γ (σ ) = ±

√√√√
∏M

j=1 (φj − σ )
∏M

j=1 (λj − σ )
, (11)

γi , εi are arbitrary real parameters playing the same role as in Type 1. The sign in Eq. (11)
can be chosen at will individually for each εm. In addition, type M features M new real
parameters φi that need to be chosen so that the radicand in Eq. (11) is real (see below).

Finally, quantities λi in Eq. (11) are by construction solutions of the following equation
with arbitrary real B:

f (λi ) ≡
N∑

j=1

γ 2
j

λi − εj

= B. (12)
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All N roots λi of this equation are real. Indeed, f (λ) → +∞ as λ → ε+
k and f (λ) → −∞

as λ → ε−
k+1, where εk are ordered, ε1 < ε2 < · · · < εN . It follows that f (λ) = u has a real

solution between εk and εk+1 for any k, i.e. εm < λm < εm+1. One more root is located above
εN , λN > εN , for B > 0 and below ε1, λ1 < ε1, for B < 0, where we ordered λk so that
λ1 < λ2 < · · · < λN .

To ensure the reality of Γ (εm) for any εm it is sufficient (though not necessary) to choose
parameters φi so that εi < φi < λi for B > 0 and λi < φi < εi for B < 0. This is the only
restriction on φi .

The most general member of this type M commuting family is

[
H(u)

]
mn

= γmγn

(
dm − dn

εm − εn

)
Γm + Γn

2
, m %= n,

[
H(u)

]
mm

= udm −
∑

j %=m

γ 2
j

(
dm − dj

εm − εj

)
1
2

(Γm + Γj )(Γj + 1)

Γm + 1
,

where, unlike the Type 1 case, dm are not arbitrary, but are given by

dm = g0 +
N−M∑

j=1

gj

λj+2 − εm

(13)

and gj are arbitrary real numbers.
Commuting families obtained by the above prescription (termed ansatz type M families

in Ref. [5]) contain 2N +M +1 arbitrary parameters—2N of γi ’s and εi ’s, M of Pi ’s and the
parameter B . As discussed in detail in Ref. [5], there are certain gauge transformations, such
as a uniform scaling of γi and εi or a uniform shift of εi , that leave the commuting family
invariant. This allows to fix three of the parameters meaning that the number of parameters
needed to uniquely specify a type M commuting family produced by this construction is
2N + M − 2.

On the other hand, we argued in Sect. 2 based on numerical evidence and other consider-
ations that a general type M ≥ 3 family is uniquely specified by 2N + 2M − 5 parameters.
This suggests that our construction can produce all real symmetric commuting families only
for M = 1,2,3, while for M > 3 it yields only a subset of such families. The complete-
ness for M = 1,2 was explicitly demonstrated in Refs. [3, 5], while for type M = 3 it is
supported by numerical tests.

In fact, a correspondence between real symmetric type M families and compact Riemann
surfaces of genus g ≥ M −1 was conjectured in Ref. [5]. It turns out that the above formulas
produce families that correspond to hyperelliptic Riemann surfaces of genus g = M −1. All
Riemann surfaces of genus 0, 1, and 2 are hyperelliptic which explains the completeness of
the construction for M = 1,2,3.

5 Exact Solution

The exact spectra of type 1 matrices were obtained in [3]. The components of an eigenvector
(column) *vm(u) of H(u) given by (8) are

[
*vm(u)

]
j
= γj

λm − εj

, (14)



Quantum Integrability in Systems with Finite Number of Levels

with respective eigenvalue

Em(u) =
N∑

k=1

dk|γk|2
λm − εk

, (15)

where the λi , i = 1, . . . ,N are determined from a single algebraic equation

f (λm) ≡
N∑

j=1

|γj |2
λm − εj

= u. (16)

As discussed in the previous section all N roots λi of this equation are real.
The above equations can be verified directly by evaluating

∑
j [H(u)]ij [*vm(u)]j . Ansatz

type M families of Sect. 3 have an exact solution in terms of a single equation similar to
Eq. (16)

N∑

j=1

1
2

γ 2
j

σ − εj

(
Γ (σ ) + Γj

)
− B

2

(
Γ (σ ) − 1

)
= u. (17)

Having solved this equation for σ , we obtain the eigenvalues

Eσ (u) =
∑

k,j

dk

λk − εj

γ 2
j

σ − εj

1
2

(
Γj + Γ (σ )

)
, (18)

and the corresponding eigenvectors

[
*vσ (u)

]
j
= 1

2
γj

σ − εj

(
Γ (σ ) + Γj

)
. (19)

6 Level Crossings

First, we show that any type 1 matrix H(u) = T + uV has at least one level crossing [3]. To
this end, let us analyze the evolution of eigenvalues Em(u) with u. We observe that λm →
εm as u → +∞. In this limit the main contribution to Eqs. (15) and (16) comes from the
j = m term, yielding Em → |u|dm. Similarly, we obtain xm → εm+1 and Em → −|u|dm+1

for u → −∞. It is not surprising that eigenvalues of H(u) tend to ±|u|dk since dk are
eigenvalues of V and uV dominates H(u) for large u. What is important however is that
we know to which particular udk a given Em(u) tends in both limits. Symbolically, we can
write k → k − 1 (mod N) meaning the eigenvalue goes from −|u|dk on the left (u → −∞)
to |u|dk−1 on the right (u → +∞).

The presence of levels crossings can now be proved by contradiction. Suppose there are
no crossings. Since eigenvalues are continuous functions of u, this implies that their ordering
must be the same at all u. The top level must connect the largest eigenvalue at u → −∞
to the largest eigenvalue at u → +∞, the bottom level goes from the lowest eigenvalue
at u → −∞ to that at u → +∞, etc. Let dk be ordered as5 di < dj < · · · < dm. Then,
the largest (lowest) eigenvalue at u → −∞ is −|u|di (−|u|dm) and the largest (lowest)

5Degenerate dk are regarded as level crossings at u = ∞. That such definition is necessary is seen e.g. by
redefining the parameter u → 1/x and multiplying the matrices by x. We have the same commuting family
now linear in x, but with the crossing moved to x = 0. Note also that we cannot fix the order of dk without
loss of generality, because we have already chose our indexing so that εk are ordered.
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Fig. 1 A schematic energy level
diagram for N = 5 demonstrating
maximum number of crossings
(N − 1)(N − 2)/2. The diagram
is for the ordering
d1 > d2 > · · · > dN and uses the
rule k → k − 1 derived in the text

eigenvalue at u → +∞ is |u|dm (|u|di ), i.e. we have i → m and m → i for the top and
bottom levels, respectively. On the other hand, according to the k → k − 1 rule established
above this implies m = i − 1 (mod N) and at the same time i = m − 1 (mod N). We obtain
0 = 2 (mod N), which does not hold for any N ≥ 3, i.e. the above assumption that levels do
not cross cannot be true. Thus, at least one level crossing is inevitable.

Allowed values of the total number of crossings n× in a type 1 matrix can be determined
by analyzing the representation of an arbitrary type 1 matrix H̃ (u) in terms of powers of
any other nontrivial H(u) that belongs to the same commuting family. One finds [3] that
this expansion is necessarily of the form

H̃ (u) =
N−1∑

m=0

Qm(u)

P H (u)

[
H(u)

]m
, (20)

where P H (u) is a polynomial in u of degree (N − 1)(N − 2)/2 with real coefficients that
depend on matrix elements of H(u) only. Qm(u) are polynomials in u of order m − 1 lower
than P H(u). This expansion breaks down at a given value of u = u× only when H(u) has a
crossing at u = u× and P H (u×) = 0. Thus, crossings of H(u) occur at the roots of P H (u)

(see [3] for a detailed proof). We conclude that the maximum number of crossings in a type 1
matrix is

nmax
× = (N − 1)(N − 2)

2
. (21)

This upper bound is realized e.g. for matrices (8) such that d1 > d2 > · · · > dN , see Fig. 1.
n× has a definite parity, that of nmax

× , because the coefficients of P H (u) are real and its
complex roots therefore come in conjugate pairs. For example, 4 × 4 type 1 matrices have
either 1 or 3 crossings, n× = 2,4,6 for 5 × 5 etc.

Crossings are also ubiquitous in type M > 1 integrable families. It is possible however to
deliberately engineer 4 × 4 type 2 matrices without crossings [3]. Other than that, we do not
have rigorous results for higher types. Empirically, one finds [5] that the expansion (20) still
holds, but the degree of P H (u) and therefore the maximum number of crossings is reduced
to (N − 1)(N − 2)/2 − g, where g ≥ M − 1 is the genus of the corresponding Riemann
surface, typically g = M − 1 (see the end of Sect. 3).

Interestingly, one can also construct 4 × 4 real symmetric matrices A + uB that have
crossings but no u-independent symmetry and no commuting partners linear in u (this is
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impossible for N = 3), see [1, 3] for details. This indicates that either ‘accidental’ degen-
eracies are possible or one can meaningfully introduce nonlinear in u conserved currents in
such cases.

7 Yang–Baxter Equation for the Matrix Model

We next show how the Type-1 matrices can be fit into the Yang–Baxter formulation of
integrable systems, by displaying matrix objects S, Eq. (24), that play the role of scattering
amplitudes.6 Let us note that this construction has not yet been realized for general Type-M
matrices. Thus we consider a purely matrix model in N dimensions with states |i〉, 1 ≤ i ≤
N , the projection operators πij and the identity matrix 1:

πij = |i〉〈j |
1 =

∑

i

πii

With i %= j , let us define a ‘dressed’ permutation operator

Πij = |γi |2 + |γj |2
2

1 + γiγ
∗
j (πij + πj i) − |γi |2πjj − |γj |2πii .

If we set γi → γj , Π reduces to the permutation operator

Πij → |γj |2Pij , (22)

where Pij acts as:

Pij |k〉 = δik|j 〉 + δjk|i〉 + (1 − δik)(1 − δjk)|k〉. (23)

Let us introduce g as a coupling parameter and also the composite parameter x = (ε,γ )

so that the scattering operator Sij is defined as:

Sij (xj |xi) ≡ Sij = (εj − εi )1 + 2g Πij

(εj − εi ) + g (|γi |2 + |γj |2)
(24)

The action of a particular scattering matrix Snm on the relevant states is given by

Snm|k〉 = |k〉 (k %= n,m)

Snm|n〉 = t+nm|n〉 + rnm|m〉 (25)

Snm|m〉 = t−nm|m〉 + rnm|n〉
with the reflection (r) and transmission (t ) amplitudes defined by

rnm = 2gγnγ
∗
m

εm − εn + g(|γm|2 + |γn|2)
,

t+nm = εm − εn + g(|γn|2 − |γm|2)
εm − εn + g(|γm|2 + |γn|2)

, (26)

t−nm = εm − εn + g(|γm|2 − |γn|2)
εm − εn + g(|γm|2 + |γn|2)

.

6If we set γi = 1, this construction is a simple extension of the permutation operator for SU(N) in Yang’s
well known work [34] into matrix space, but seems to be new for the general case γi %= 1.
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We state the two operator relations that are needed, and readily verified, for any three
indices 1,2,3:

Π12Π32Π31 = Π31Π32Π12, (27)
[
Π12, (Π31 +Π32)

]
= 0. (28)

With Cij as constants we can now verify the condition

(C121 + gΠ12)(C321 + gΠ32)(C311 + gΠ31)

= (C311 + gΠ31)(C321 + gΠ32)(C121 + gΠ12), (29)

provided C’s satisfy the triangle law:

C32 = C31 + C12. (30)

Dividing by a suitable constant and consulting Eq. (25) we therefore verify the Yang–Baxter
equation for the S

Sik Sjk Sij = Sij Sjk Sik, (31)

and the initializing condition

lim
xj →xi

Sij (xj |xi) → Pij . (32)

We consider the N sites (indices) and add an auxiliary index α (that is outside the original
space of N states) so that πiα,παi ,παα are added to the list of operators. Now define a
(monodromy) matrix

Tα = Bα(xα)SNα SN−1 α · · · S1α. (33)

This is a function of all the indicated variables:

Tα ≡ Tα

(
xα|{x1, x2, . . . , xN }

)
, (34)

and also a boundary field term Bα(xα). For the boundary term (twist) to give commuting
operators, this term must be chosen to satisfy the condition [35]

[Sαβ ,BαBβ] = 0, (35)

whereby we choose

Bα(xα) = 1 + g

u
παα, (36)

with the freedom of an arbitrary parameter u.
The transfer matrix is obtained by tracing over the auxiliary index α

T
(
xα|{x1, x2, . . . , xN }

)
=

∑

α

〈α|Tα|α〉. (37)

Using Baxter’s classic proof [36] for commutation of transfer matrices, slightly generalized
to the case of twisted boundary conditions [24, 25, 35], we conclude that

[
T(xα),T(xβ)

]
= 0, (38)

for arbitrary xα and xβ while holding {xj }g,u fixed. We note that Eq. (38) is also valid as
xα → xi and hence conclude [Ti ,Tj ] = 0, where
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Tj = lim
xα→xj

T
(
xα|{x1, x2, . . . , xN }

)

= Sj−1,j (xj , xj−1) . . . S1,j (xj , x1).Bj (xj )SN,j (xj , xN) . . . Sj+1,j (xj , xj+1). (39)

An expansion in powers of the interaction strength g produces the currents:

Tj = 1 + g

u
Hj (u) + O

(
g2), (40)

with

Hi(u) = πii + u
∑

j

γiγ
∗
j (πij + πj i) − |γi |2πjj − |γj |2πii

εi − εj

.

Considering terms of order O(g) in [Ti ,Tj ], we conclude
[
Hi(u),Hj (u)

]
= 0. (41)

Note that Hi(u) are the exactly the basis operators of Eq. (9) written in terms of projection
operators [4].

8 Links to Various Models

First, note that one can choose an arbitrary Hermitian matrix V and still have H(u) = T +
uV to be a member of any given type 1 family. Indeed, Eq. (8) is written in the eigenbasis
of V . Both this basis and the eigenvalues of V —parameters dk—can be chosen arbitrarily.
By symmetry one can instead choose T at will, though this is not apparent from Eq. (8). But
as soon as e.g. V is fixed, T is severely constrained—one is left with only 2N parameters
γi , εi to specify its matrix elements. This ability to choose either V or T arbitrarily means
in particular that any u-independent Hamiltonian can be ‘embedded’ into a type 1 family in
many different ways. For example, one can choose V to be the isotropic Heisenberg model,
or the Haldane-Shastry model, and find T so that T + uV belongs to a given type 1 family.

Type 1 integrable families are closely related [3] to Gaudin magnets [24, 25] ĥi = Bŝz
i +∑

j %=i ŝi ŝj (εi − εj )
−1, where ŝj are quantum spins of arbitrary length sj . In the sector with

(conserved) Ŝz = ∑
j ŝz

i equal to its maximum (minimum) possible value less (plus) one, ĥi

are N commuting N ×N matrices which form a type 1 family with u = B and γ 2
j = sj . The

BCS model is obtained [26] as
∑

j εj ĥj for γ 2
j = sj = 1/2 and a replacement u = B → 1/g,

where g is the dimensionful BCS coupling constant.
Some blocks of the 1D Hubbard model characterized by a complete set of u-independent

symmetry quantum numbers are type 1 matrices, though most blocks are type M > 1 [5].
A similar typology can be developed for e.g. the 1D XXZ Hamiltonian and other sectors
of Gaudin and BCS models using the method of [5] for determining the type of parameter-
dependent matrices. Interestingly, this implies that at least in some blocks there is an exact
solution in terms of a single algebraic equation—Eq. (16) or a similar equation for higher
types [5]—a vast simplification as compared to Bethe’s Ansatz.

One can also construct fermionic (bosonic) Hamiltonians [4] out of type 1 matrices as

Ĥ =
∑

mn

[
H(u)

]
mn

a†
man, (42)

where an are the usual fermionic (bosonic) destruction operators. [Ĥ1, Ĥ2] = 0 as long as
the corresponding matrices H1(u) and H2(u) commute, i.e. belong to the same family.
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9 Level Statistics

We have performed an extensive numerical study of level statistics of type 1 and higher
type matrices [33] for various choices of parameters. Almost in all cases the statistics is
Poissonian for N - 1 with high accuracy, even when we deliberately attempt to adjust the
parameters to get a different statistics. Let us briefly describe the main results e.g. for the
level-spacing distribution.

It is convenient to redefine the parameter u → 1/x and replace T + uV → V + xT . To
get a proper large N limit one has to make sure that the scaling of parameters dk, εk,γk in
Eq. (8) and x with N is such that the eigenvalues of V and xT scale in the same way for
large N . As discussed above, the matrix V is arbitrary, so at x = 0 one can have any admissi-
ble level statistics. Consider, for example, three representative cases: (a) V is a random real
symmetric matrix with independent identically distributed matrix elements Vjk for j ≤ k,
(b) eigenvalues dk of V are independent uniformly distributed random numbers, and (c) dk

display level attraction, P (s) = asω exp(−bs1+ω) with −1 < ω < 0. The level-spacing dis-
tribution P (s) for V is Wigner-Dyson P (s) = 2ase−as2

in (a) and Poissonian P (s) = e−s in
(b). As soon as V is chosen, T is no longer arbitrary and we find that it has Poissonian P (s)

in all three cases for all choices of parameters γk and εk we considered as long as εk and dk

are uncorrelated.
Specifically, motivated in part by the BCS and Gaudin examples discussed in the pre-

vious section we took: (1) εk that are also eigenvalues of a random matrix and γk = const
independent of k, (2) same as (1) but with random uncorrelated γk and (3) independent uni-
formly distributed εk and γk = const. For all these choices the level-spacing distribution for
T is very well approximated by Poissonian P (s) = e−s , where s is the level-spacing in units
of the mean level-spacing. In case (a) above the level statistics of H(x) = V +xT at x = 0 is
Wigner-Dyson, but we find that it crosses over to Poisson at |x| ≈ 1/N and remains Poisson
for larger |x|. Case (c) is analogous to (a)—a crossover to Poisson behavior at |x| ≈ 1/N .
In case (b) the statistics is Poissonian for all x. Similar behavior is found in spectral rigidity.
We conclude that one can arrange for any statistics at a given value of the parameter x = x0,
but this becomes an isolated point in N → ∞ limit, while for x %= x0 integrability as defined
in Sect. 2 enforces Poisson statistics.

The only exception to Poisson statistics other than at an isolated value of x we were able
to identify is when parameters dk and εk are correlated, so that dk = f (εk), where f (ε) is a
smooth function of ε in N → ∞ limit7 and γk = const. This is the case in e.g. the BCS model
where dk = εk (see above). In such cases the statistics is distinctly non-Poissonian and,
moreover, in case (a) above, for example, P (s) crosses over at x = O(N0) ≡ O(1) from the
Wigner-Dyson P (s) = 2ase−as2

to a more repulsive distribution P (s) ∝ s4 for small s. The
repulsion is softened by randomizing γk . More importantly, the statistics quickly becomes
Poissonian when the correlation between dk and εk is destroyed, dk = f (εk)(1 + ηk), where
ηk are random. We find Poisson distribution already for ηk = O(1/N) at x = O(1), see
also [23] for a similar study of Gaudin model. dk = f (εk) define exceptional ‘surfaces’ of
certain measure zero in parameter space. This seems analogous to the harmonic oscillator
exceptions to the Poisson distribution in classical integrable systems [37]. There too one
finds increased level repulsion for oscillators instead of Poisson P (s).

7To obtain f (ε) in this limit, we scale εk and dk with N so that they fill finite intervals when N → ∞.
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Some of these numerical observations can be understood using perturbation theory. Ener-
gies to the first order in x are given by the second equation in (8), where we set |γj |2 = 1/N

to achieve proper scaling for large N as discussed above.8 We have

Em(x) ≈ dm − x

N

∑

j %=m

(
dm − dj

εm − εj

)
. (43)

The first term comes from V , which we take to have Wigner-Dyson P (s), the second—
from T , which is determined by the integrability condition (3) and whose level statistics we
do not control. Let us estimate x at which the two terms in Eq. (43) become comparable.
Without loss of generality we can take dk = O(N0) = O(1) and we must also take εk =
O(1) so that T and xV scale in the same way for large N . Suppose εk are ordered as
ε1 < ε2 < · · · < εN . When dk and εk are uncorrelated dm − dj is O(1) when j is close to
m, i.e. when (εm − εj ) = O(1/N). The second term in Eq. (43) is then xcm lnN , where
cm = O(1) is a random number only weakly correlated with dm.

If we now order dm, cm in general will not be ordered, i.e. if dm+1 > dm is the closest level
to dm and therefore (dm+1 − dm) = O(1/N), the corresponding difference (cm+1 − cm) =
O(1). The contributions to level-spacings from the two terms in Eq. (43) become compara-
ble for x = xc ≈ 1/(N lnN). It makes sense that the second term introduces a trend towards
Poisson distribution because it is a (nonlinear) superposition of εk and dk—eigenvalues of
two uncorrelated random matrices. Thus, we expect a crossover from Wigner-Dyson to Pois-
son distribution at x = xc .

This argument breaks down when dk = f (εk), since in this case (dm − dj ) = O(1/N)

when (εm −εj ) = O(1/N). The two terms in Eq. (43) become comparable only at x = O(1)

in agreement with the numerics for this case. Moreover, the second term no longer trends
towards Poisson statistics. Relaxing the correlation between dk and εk with dk = f (εk)(1 +
ηk) and going through the same argument, one expects a crossover to Poisson statistics at
x = O(1) for ηk = O(1/N).

10 Discussion

A distinct feature of the notion of quantum integrability proposed in this paper is the pa-
rameter (u) dependence. This is in contrast to the classical notion that does not require any
such dependence. We however find it necessary to be able to quantize the classical defini-
tion in a meaningful way. In this sense our definition is more demanding than its classical
counterpart.

On the other hand, there is another distinction from the classical notion that makes our
definition seem less stringent—even a single nontrivial integral of motion linear in u is suf-
ficient to declare the model integrable. This was originally motivated by the absence of a
well-defined analog of the number of degrees of freedom in quantum mechanics. There is
evidence however that the presence of a single such integral is actually much more conse-
quential in the quantum case. For example, for any H(u) = T + uV with a single nontrivial
commuting partner I (u) = K + uW 9 one also finds numerous (about N linearly indepen-
dent) integrals of motion quadratic in u that commute with both H(u) and I (u) [38]. We

8Equivalently, one can redefine x → x/N as in the BCS model for which x = g = λδ, where λ is the dimen-
sionless coupling and δ ∝ 1/N is the mean level spacing in εk .
9Such examples are available analytically (type N − 2 matrices) or can be generated numerically by solving
Eq. (5), see [5] for details.
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note that a generic matrix of the form A + uB has no quadratic integrals other than its own
square and a multiple of identity. One of the implications of this is that, for example, cur-
rents of higher order in the parameter in the 1D Hubbard and XXZ models might follow
from the linear ones, i.e. be in some sense trivial given the linear integral. These are however
open questions that require further research.

One can also consider e.g. a situation when a Hamiltonian of the form H(u) = T +uV or
T + uV + u2W has no nontrivial integrals linear in u, but a number of quadratic ones. Such
systems exist and can also be classified and, at least some of them, explicitly parametrized.
Nevertheless, this ‘higher order in the parameter’ integrability seems less relevant as in
most physical examples of parameter-dependent integrable models one is able to identify a
parameter such that the Hamiltonian and at least one of the currents are linear in it.

It is worth commenting on the relationship between our viewpoint and the usual set of
‘beliefs’ based on model integrable systems. Two related points emerge (i) the belief that
the number of constants of motion is ∼ L ∝ log(N ) where L is the number of sites and N
the size of the total Hilbert space and (ii) the so called ‘rule of three’, i.e. the belief that
any many body lattice model in 1-dimension with a fixed number of particles reveals its
integrability only in the three particle sector [39, 40],10 since the one particle sector and two
particle sectors have as many constants of motion as the particle number (total energy and
momentum).

With regard to (i), we distinguish between the much larger N and N of this work. By a
process of block diagonalizing the Hamiltonian operator into different sectors, one arrives
at a direct sum representation of the full Hamiltonian. Each sub block is ‘irreducible’ in
the sense that the space-time and internal space (parameter-independent) symmetries have
been extracted out, and our considerations revolve around such sub blocks with a smaller
and variable dimension N . Our point is that any such sub block must be special in the sense
discussed here. Stitching back the irreducible blocks to reconstruct the full Hamiltonian ma-
trix requires a detailed knowledge of the symmetries used in the first place. While possible
in principle, we regard this process as of secondary importance as compared to the one
undertaken here, namely the characterization of the sub blocks themselves.

With regard to (ii) our studies of two typical examples give some insight into this ques-
tion. Firstly, the Gaudin magnets show that the two and higher particle number sectors yield
matrices that have non linear conservations laws in addition to the linear ones discussed
here. Secondly, we can study the fermionic representation of type 1 matrices, Eq. (42). Here
n = L = N , the sector ne = 1 is isomorphic to type 1 matrix family (8), while other sectors
are much larger matrices of high types M =

(
N
ne

)
− N + 1,11 i.e. they are apparently dis-

tinct and much more complicated integrable matrix families. With the hindsight of Eq. (42)
it is evident that they all are different manifestations of the same type 1 model and are in
some sense equivalent, but can this be formulated generally so that all such similar ma-
trix integrable models are naturally grouped together and recognized to be related to each
other as different representations of the same underlying structure? Further work is needed

10The “rule of three”, a term coined by McGuire in [40] originates from the fact that for three particles
in one dimension, we have only two constants of motion generically. These are the total energy and the
total momentum, and thus exact solvability is not to be expected. If the three particle case is solvable in
some standard form, such as Bethe’s Ansatz, the rule empirically suggests the existence of sufficient further
conservation laws and hence of exact solvability with arbitrary number of particles.
11Individual sectors do not have additional sector-specific u-dependent integrals. This is the case for the
fermion (42) and Gaudin models, but not for the Hubbard model where there are numerous such sector-
specific integrals [5, 38].
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to obtain clarity on these questions. Recent work [41] throws light on further symmetries
in higher particle number sectors that are linear in the parameter u, and explores their non
linear relationship to the operators in Eq. (42).

Other open questions include: a general construction of type M > 3 integrable families,
analytical results for crossings in types M > 1 and for level statistics in all types, the rela-
tionship between the exact solution for types M > 1 through a single algebraic equation and
Bethe’s Ansatz.
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