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Electronic spectral properties of the two-dimensional infinite-U Hubbard model
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A strong-coupling series expansion for the Green’s function and the extremely correlated Fermi liquid (ECFL)
theory are used to calculate the moments of the electronic spectral functions of the infinite-U Hubbard model.
Results from these two complementary methods agree very well at both low densities, where the ECFL solution
is the most accurate, and at high to intermediate temperatures, where the series converge. We find that a modified
first moment, which underestimates the contributions from the occupied states and is accessible in the series
through the time-dependent Green’s function, best describes the peak location of the spectral function in the
strongly correlated regime. This is examined by the ECFL results at low temperatures, where it is shown that the
spectral function is largely skewed towards the occupied states.
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I. INTRODUCTION

A long-standing theme in the dynamics of strongly interact-
ing systems is the reconstruction of dynamics from the knowl-
edge of the first few moments.1 Its appeal lies in the relative
ease with which these moments can be computed, in contrast to
computing the complete dynamical correlation functions. The
method of moments works well in cases where the qualitative
features of the correlation functions are somewhat understood
by other arguments, including conservation laws in the case
of spin dynamics. In the important problem of the strong-
coupling Hubbard model, the moments are dominated by the
energy scale U ,2 the on-site repulsive Coulomb interaction,
and hence rendered useless. In contrast, for the t-J model
embodying extreme correlations, i.e., U → ∞ at the very
outset, a better prospect exists. The moments are blind to the
scale of U , since it does not occur in the Hamiltonian, and
therefore one expects them to be meaningful in determining
the broad features of the dynamics. With this in mind, we
study a simple version of the t-J model by focusing on
J = 0, which is identical to the U = ∞ Hubbard model,
thereby making more tools available for the analysis. As
we show in what follows, we have developed the capability
to compute the moments of the electron spectral function
of this model by utilizing series expansions.3,4 Experiments
using angle-resolved photoemission spectroscopy (ARPES)5–8

directly measure this spectral function, providing an added
impetus.

An independent source of information about the electronic
spectral function is the recent analytical theory of extremely
correlated Fermi liquids (ECFL). This theory has been devel-
oped in recent publications,9,10 and several results of the model
pertaining to the detailed line shapes find close agreement with
experiment.5 On the calculational front, the theory provides a
systematic methodology for computation, and the initial low
order implementation yields the single-electron spectral func-
tion for particle densities in the range 0 � n � 0.7. The line
shapes of this calculation for n � 0.5 display a characteristic
skewed shape found in the experimental curves in ARPES, as
detailed in Ref. 10. The computed spectra are available at any
temperature (high or low), and the only limitation at present

is the inability to access the regime close to half filling with
density greater than n ∼ 0.75. Given the inherent complexity
of the newly developed ECFL formalism, the possibility of
an objective cross-check using series expansions is a very
attractive one, and here we provide a comparison.

We compute and compare the moments of the t-J model
with J = 0 in two dimensions by utilizing a series expansion11

and the ECFL theory. The two techniques are largely com-
plementary. While they individually run into difficulties in
different regimes, namely, at low temperatures for the series
expansion and high densities for the ECFL, there is sufficient
overlap in densities and temperatures where both methods give
reliable results. This provides us with a unique opportunity to
test the validity of the answers. For ECFL, this provides a
stringent test of the resulting moments by comparing with the
series expansion. For the series expansion, the availability of
an analytical theory and hence, of the entire spectrum, is of
great advantage in interpreting the distinctions between three
types of moments that can be computed [see Eq. (7) below].
We find that especially at high densities, the line shape of
the spectral function is skewed towards occupied energies,
ω � 0, therefore the spectral peak (SP) location (the maximum
location in the energy distributed curves) is best estimated
by the first moment of a modified function with dominant
contribution from unoccupied states.

In the rest of this Rapid Communication, we first explain
how the series expansion and ECFL results are obtained
(Sec. II). In Sec. III, we compare the results from the two meth-
ods, and discuss our findings. A summary follows in Sec. IV.

II. PRELIMINARIES

A. Definitions of computed coefficients

We denote the imaginary-time Green’s function for the U =
∞ Hubbard model, or equivalently, the t-J model with J =
0, as G(i,τi ; j,τj ) = − 〈Tτ Ĉiσ (τi)Ĉ

†
jσ (τj )〉, where Tτ is the

time-ordering operator and 〈.〉 denotes the thermal expectation
value. We thus study the limit of extreme correlations. The
operators are Gutzwiller-projected Fermi objects and related
to the Hubbard X operators as Ĉiσ ≡ X0σ

i , etc. As usual,12
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this object is a function of the time difference τ ≡ τi − τj ,
and we will study its spatial Fourier transform G(k,τ ). Our
study begins with the following expansions:

G(k,τ > 0) = (−1)
∞∑

m=0

(−1)m
τm

m!
am(k), (1)

G(k,τ < 0) =
∞∑

m=0

(−1)m
τm

m!
bm(k), (2)

where the coefficients am are computed analytically as a
series in the hopping amplitude t . The series expansion can
be carried out to the fourth order by hand,13 and pushed to
the eighth order by a highly efficient computer program11

based on Metzner’s linked-cluster formalism.14 This order is
the limit achievable by currently available supercomputers.
Using antiperiodic boundary conditions, G(τ − β) = −G(τ ),
we obtain Eq. (2) from Eq. (1). Here β = 1/(kBT ) is the
inverse temperature (we set t = 1 as the unit of energy, and
kB = 1). Therefore, the main calculation focuses on Eq. (1). Its
Fourier series in Matsubara frequencies, ωn = (2n + 1)π/β,
is obtained from G(k,iωn) = ∫ β

0 eiωnτG(k,τ )dτ . The spectral
function at momentum k and for the real frequency ν is denoted
by ρG(k,ν) and determines the Green’s function through the
relation G(k,iωn) = ∫ +∞

−∞
ρG (k,ν)
iωn−ν

dν. At high frequencies ωn,
we have an expansion

G(k,iωn) =
∞∑

m=0

cm(k)

(iωn)m+1
,

involving the “symmetric” coefficient, cm(k) (see below). The
time domain Green’s function is also given in terms of the
spectral function by the important representation

G(k,τ ) =
∫ +∞

−∞
dν ρG(k,ν)e−ντ [	(−τ )f (ν) − 	(τ )f̄ (ν)],

(3)
where

f (ν) = 1

1 + eβν
and f̄ (ν) = 1

1 + e−βν
. (4)

The three sets of coefficients αm (i.e., am, bm, and cm) are easily
seen to originate from the spectral function convoluted by a
different filter function χ (ν) [respectively, f̄ (ν),f (ν),1] as

αm(k) =
∫ ∞

−∞
νmχ (ν)ρG(k,ν)dν. (5)

Using this and the identity f + f̄ = 1, we see that the
symmetric coefficients satisfy the important relation

cm(k) = am(k) + bm(k). (6)

B. Definition of moments

Equation (5) gives the power integrals of the effective
spectral function χ (ν)ρG(ν), and naturally leads to three sets of
moments at each k, εχ

m(k) = αm(k)/α0(k). Thus, the moments
can be obtained from the coefficients am,bm,cm, and contain
complementary information as we discuss below. We assign
them suggestive names

ε>
m(k) = am(k)

a0(k)
, ε<

m(k) = bm(k)

b0(k)
, ε0

m(k) = cm(k)

c0(k)
, (7)

the greater, lesser, and symmetric moments, respectively.15

The superscripts in the notations ε> and ε< signify that the
contribution to these energy moments comes predominantly
from the weight of the spectral function that lies above or below
the chemical potential, and hence the unoccupied or occupied
states. The coefficients at m = 0 have special meanings: By
computing the anticommutator of Ĉ and Ĉ†, and taking
its average we find c0(k) ≡ c0 = 1 − n

2 in this model. The
coefficient b0(k) is also the momentum distribution function,

mσ (k) = 〈Ĉ†
kσ Ĉkσ 〉 = b0(k). (8)

Using Eq. (6), we find a0(k) = 1 − n
2 − m(k).

In this work, we study only the first moments, i.e., m = 1.
We argue below that these give an estimate of the quasiparticle
spectrum for a given k. It is particularly useful to study all
three moments separately since they exhibit different behavior,
and the comparison with the spectra of ECFL gives a clearer
understanding of their differences, as we discuss below.

C. Summary of relevant ECFL results

In Ref. 10, the formalism of ECFL for general J is
implemented to second order in the variable λ, which is closely
related to the density. A self-consistent argument indicates
that the calculation in Ref. 10 is valid for densities n � 0.7.
It has no limitation on the temperature or system size, since
it is essentially an analytical theory—resembling the skeleton
graph expansion theories of standard models in structure. We
note that the ECFL assumes a specific type of Fermi liquid with
strong asymmetric corrections,9 and the reasonable similarity
to the series data, as we will see in Sec. III, suggests that this
conclusion is fairly safe, at least for high enough temperatures.
At low temperatures, there could be other instabilities that
are hard to capture with the series analysis, and the present
versions of the ECFL.

The full spectral function ρG(k,ν) is computed and its
moments (for the case of J = 0) are readily available for
comparison with those from the series expansion. Also
available in this work is the location of the SPs εSP(k),
when they exist, the momentum distribution function, etc. It
is therefore possible to compute various dispersion curves,
relating the different characteristic energies (i.e., moments) to
wave vectors, and to compare them with the true SP dispersion.
The benchmarking of these moments provides us with valuable
insight for interpreting the series data, where the SPs are not
available, but the moments are.

III. RESULTS

In Fig. 1, we plot the symmetric first moment ε0
1(k) as a

function of momentum at T = 0.77 for five different densities
n = 0.2, 0.5, 0.7, 0.8, and 0.9. We find excellent agreement
between the results from the series and the ECFL for n = 0.2
for all the momenta around the irreducible wedge of the
Brillouin zone. At higher densities up to n = 0.7 (beyond
which the ECFL results are not quoted), the agreement is
still very good, except around the zone corner, where the
disagreement grows as the density increases.18 The results for
the series are obtained from Padé approximations as the bare
results show divergent behavior at T < 1. The number of terms
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FIG. 1. (Color online) The first symmetric moment ε0
1(k) at T =

0.77 vs momentum around the irreducible wedge of the Brillouin zone
(the path is shown in the right inset). Lines are results from the series
and symbols for n � 0.7 are from ECFL calculations. Left inset:
ε0

1(k) for n = 0.2 at k = (π/2,π/2) from the ECFL (diamonds), up
to orders seven and eight of the series (labeled Series7 and Series8),
and up to the eighth order after various Padé approximations, vs
temperature on a logarithmic scale. The numbers in the subscripts of
“Padé” labels represent the order of the polynomial in the numerator
and in the denominator of the Padé ratio, respectively. “Avg.” denotes
the average between Padé{4,5} and Padé{5,4}. In the main panel, the
results for the series are either the average between Padé{4,5} and
Padé{5,4} or Padé{5,5} and Padé{5,4},16 with the “error bars” defined as
the differences between the two.17

in the series is large enough to justify the utilization of Padé
approximations in order to extend the convergence to lower
temperatures. A comparison of several of these approximations
with the ECFL results for a (low) density of n = 0.2 is shown
in the inset of Fig. 1. In that case, we see that the agreement
between the two methods extends to temperatures as low as
T = 0.3 using Padé approximations.

The greater moment ε>
1 (k) is plotted in Fig. 2(a) at the

same temperature and densities as in Fig. 1. For ε>
1 (k), the

overall agreement between the series expansions and the ECFL
results for all n � 0.7 is better than for ε0

1(k), especially
around the X point. We also note that ε>

1 (k) exhibits a more
intriguing behavior than ε0

1(k). One of the prominent features
of the former, seen in Fig. 2(a), is the significant narrowing
of the band by increasing the density. In Fig. 2(b), we plot
the bandwidth [i.e., max(ε>

1 ) − min(ε>
1 )] from the series as

a function of density at T = 1.52, 1.00, and 0.77. It appears
that the bandwidth deviates from a linear dependence on n

by decreasing the temperature, and saturates for n → 1 at a
nonzero value that decreases towards zero with decreasing
T . Close to n = 1 at T = 0.77, we find a weaker agreement
between different Padé approximations, leading to larger error
bars. The version of ECFL in Ref. 10 cannot be used to study
this effect as the high-density region n ∼ 1 is beyond its regime
of validity.

Another interesting feature of ε>
1 (k) [Fig. 2(a)] is the change

in sign of its slope near the � point as the density increases
towards unity. To better study this feature, in Fig. 2(c), we
report only the results along the nodal direction. We find
that for n � 0.7, the greater moment initially decreases as

X Γ-1

0

1

2

3

ε> 1(
k)

n=0.2
n=0.5
n=0.7
n=0.8
n=0.9

Γ M X

0
2
4
6
8

ε> 1(
k)

0.6 0.8 1
n

0

1.5

3

4.5

B
an
dw
id
th

T=1.52
T=1.00
T=0.77

T=0.77

(a) (c)

(b)

Γ

FIG. 2. (Color online) (a) The first greater moment ε>
1 (k) at T =

0.77 vs momentum for the same path around the irreducible wedge of
the Brillouin zone as in Fig. 1. Lines and symbols are also the same
as in Fig. 1. (b) The bandwidth of ε>

1 (k), defined as the difference
between its maximum and minimum values at momenta shown in
panel (a), vs density for T = 1.52,1.00, and 0.77. Panel (c) zooms
in the results in panel (a) for k along the nodal direction. The two
methods more or less agree with each other, within the error bars,
in this window for n � 0.7, and therefore, we show only the ECFL
results for the latter cases.

the momentum increases from zero, leading to a negative
curvature, or effective mass, at the � point. This feature
becomes more pronounced as we increase the density, or
decrease the temperature (see Fig. 3). These results hint at a
possible reconstruction of the Fermi surface, i.e., the negative
mass persisting and extending in k space so as to reach the
Fermi momentum. The appearance of such a hole pocket in
the (hole) underdoped regime, could be of interest in ARPES
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FIG. 3. (Color online) Comparison of the SP location εSP(k)
(symbols) and the three moments from ECFL at T = 0.28 and for
(a) n = 0.2, (b) n = 0.5, and (c) n = 0.7. Right panels show the
corresponding spectral functions and their products to f̄ (ω) and f (ω)
at � for the same densities shown in the left panels. Dark (light)
arrows show the values of ε0

1 (ε>
1 ). At low densities, the SP location

is estimated well by the first symmetric moment. At higher density,
the spectral function is skewed and the greater moment, which is
calculated for the spectral function after most of its weight in the
negative frequency region is cut off, provides a better estimate.
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and quantum oscillation studies. However, establishing this
firmly requires higher order terms in the series, and is therefore
difficult.

So far, we have seen that for intermediate temperatures
and at relatively small densities, the ECFL agrees extremely
well with the results of the series expansion. But, unlike the
series expansion, ECFL is not limited to high temperatures
at those densities and can be used to study the moments,
and more importantly, the real-frequency spectral functions,
at much lower temperatures. Therefore, we focus on the
ECFL results at n = 0.2, 0.5, and 0.7, and at a reduced
temperature of T = 0.28, a temperature at which the series
do not converge. In Figs. 3(a)–3(c), we plot ε0

1(k), ε>
1 (k), and

ε<
1 (k) from the ECFL, along with εSP(k), obtained from the

spectral functions, at different momenta. We find that in the
physically interesting region of low temperatures and high
densities, where correlation effects are strongest, the location
of the SP is generally better estimated by the greater moment
than by the symmetric, or the lesser one [see Fig. 3(c)].

The spectral functions shown in Figs. 3(d)–3(f) help
us understand why this is the case. There, we plot the
spectral functions ρG(k,ω), ρG(k,ω)f̄ (ω), and ρG(k,ω)f (ω),
corresponding to the three moments at k = (0,0), where the
differences between the moments are the most pronounced,
vs frequency. At n = 0.2, there exists a relatively sharp
quasiparticle peak in ρG whose location matches the first
symmetric moment (marked by a dark arrow) very well. ε>

1 (k),
on the other hand, falls slightly to the right of the quasiparticle
peak (marked by a light-colored arrow) as most of the spectral
weight in negative frequencies is cut off after multiplying ρG
by f̄ (ω) [see Eq. (5)]. Also, since there is very little spectral
weight in the positive frequency side, ε<

1 (k) is very close in
value to ε0

1(k). As the density is increased to n = 0.5, the
spectral function is skewed as a result of correlations. In
this case, at small k, there is much more spectral weight on
the left of the SP than on the right, causing the symmetric
moment to be smaller than εSP(k). This feature becomes more

significant at a higher density of n = 0.7, where almost all
of the spectral weight is in the negative frequency side. As a
result, multiplying ρG by f̄ (ω) helps in neglecting the excess
weight on the left side of the SP. Hence, ε>

1 (k), which is readily
available from the series at even higher densities, may be used
as an indicator of εSP(k) using this insight from the ECFL
spectra.

IV. SUMMARY

We employ two complementary methods, namely, a strong-
coupling series expansion and the ECFL, to calculate the
moments of the spectral functions for the infinite-U Hubbard
model. Unveiling the basic physics of the model is benefited
by the complementarity of those approaches. Furthermore,
the series expansion results provide the first independent
check of the ECFL theory, which has been self-consistently
established. At intermediate temperatures and low densities,
where the results from both methods are available, we find
very good agreement between the two. Unlike ECFL, the
series is not limited to small densities and, by increasing the
density in the series to near half filling, we find interesting
features in the dispersion of the moment with dominant
contributions from unoccupied states (the greater moment).
These include a significant narrowing of its band as well as
hints of Fermi-surface reconstruction. Unlike the series, the
ECFL is not limited to high temperatures and, by exploring
the ECFL results at lower temperatures, we find that the greater
moment better describes the location of the SP as the density
increases. This is understood based on the skewing of the
spectral functions in the negative frequency region in the
strongly correlated regime.
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series order by order exactly up to the eighth order. Nevertheless, we
find that Padé{5,5}, for which one assumes that the coefficient of the
ninth-order term in the series is zero, often results in less spurious
features than with Padé{4,5}, and therefore is used instead of the latter
for n = 0.2 and 0.9. On the other hand, since ε>

1 (k) is itself a ratio
of two polynomials, either of the above two Padé approximants is
equally valid. In this case (Fig. 2), we use the average of Padé{5,4}
and Padé{5,5} for n = 0.8 and Padé{5,4} and Padé{4,5} for the rest.

17There is no error per se in the calculation of the coefficients of terms
in the series. The so-called error bars are merely a measure of the

convergence limit for the Padé approximations at low temperatures,
where the bare results show divergent behavior. They do not
represent statistical or particular systematic errors.

18We may take the curves of ε0
1(k), or more accurately, ε>

1 (k) as
estimates of the SP dispersion εSP(k), after shifting them by a
constant chosen to pass them through zero energy at the Fermi
momentum (as in Figs. 1 and 2). The magnitudes of the shift
constants are on the scale seen in Figs. 3(d)–3(f) as the separation
between the peak locating the εSP(k) and the arrows locating the
moments.
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