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Abstract
We study a recently proposed quantum integrable model defined on a lattice
with N sites, with fermions or bosons populating each site, as a close relative of
the well known spin- 1

2 Gaudin model. This model has 2N arbitrary parameters, a
linear dependence on an interaction type parameter x, and can be solved exactly.
It has N known constants of motion that are linear in x. We display further
constants of motion with higher fermion content that are linearly independent
of the known conservation laws. Our main result is that despite the existence of
the higher conservation laws, the model has only N functionally independent
conservation laws. Therefore we propose that N can be viewed as the number
of degrees of freedom, in parallel to the classical definition of integrability.

PACS numbers: 02.30.Ik, 03.65.Aa

Introduction

Quantum integrable systems have emerged from an esoteric beginning in the pioneering
works of Bethe, Onsager, Yang, Baxter [1] and others, and in recent years have been of
interest to a much wider community. Optical lattices where quantum quenches can be realized
to study dynamics away from equilibrium [2–4], transport theory [5, 6] and considerations
of entanglement entropy [7] are some areas where the non-standard models of quantum
integrability, such as the Ising model in a transverse field, the anisotropic Heisenberg or XXZ
model, and the 1D Hubbard model find a wide range of applications unanticipated in the
pioneering studies.

In this renewed era of interest, some basic questions about quantum integrability remained
unanswered. While the Yang–Baxter equations provide a deep mathematical underpinning to
this field and indeed are the source of most quantum integrable models, there are good reasons
to look more broadly at the field. For instance, there are other families of quantum integrable
models that do not fit naturally into this scheme, such as the Calogero–Sutherland systems.
Also, classical integrable systems have a well evolved language [8] of ‘degrees of freedom’
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and matching ‘functionally independent conservation laws’, that are not easily translated to
the quantum arena. The meaning of the phrase degrees of freedom is not always clear in many
models of current interest. The number of conservations laws, even of well established models,
such as the XXZ model, is not quite a settled matter, since new conservation laws have been
found in very recent studies [5], with important implications for the transport behaviour of
this model [6]. Discussions of the meaning of quantum integrability are therefore of interest
and have been addressed in recent literature [9–12].

In this work, we study a recently proposed quantum lattice model [9] that is defined on
a lattice of N sites, with either fermions or bosons at each site, which is similar to the well
known Gaudin spin- 1

2 model [1, 13]. For the fermion model, we show that N, the number
of lattice sites, can be viewed as the number of degrees of freedom in close analogy to
the classical definition. To do this, we are able to enumerate the basic N conservation laws
from the one-particle sector. These basic conservation laws are linear in a parameter x; this
linearity (or simple polynomial dependence) has been highlighted in a recent work [12]. This
reference also gives the interested reader an extended discussion of the relationship between
the present model and its parameters, and the well known families of models described by
the Yang–Baxter equations. Our most important result is as follows. We find that while other
non-trivial (i.e., four-Fermi and six-Fermi) conservation laws do exist in the higher particle
sector, even linearly independent from the basic ones, these are functionally dependent on
the basic ones. We display the generating functions for the higher conservation laws, and the
non-trivial functional relation between these. In the case of bosons and the Gaudin model,
using an interesting algorithm, we have checked that up to at least N = 20, there are no
other non-trivial conservation laws that are polynomial in the parameter x, and hence the N
conservation laws available from the single particle sector are again the entire set.

To summarize the models studied here, let us note that a prototypical quantum integrable
model can be built up in two steps.

Step I. We identify a family of real symmetric commuting matrices H(x) and H̃(x) in the
N dimension, that depend linearly on a parameter x:

[H(x), H̃(x)] = 0, for all values of x. (1)

This problem leads to several classes of solutions that differ in the number of independent
Hamiltonians H̃(x) that can be found for a given H(x). These are referred to as type M, with
various values for M as in [14, 15]. Type 1 represents a maximal set of such matrices with
at most N commuting partners (including the identity matrix), where all such matrices can
be expressed in terms of the projection operators πi j = |i〉〈 j| and 3N arbitrary real constants
{γi, εi, di} as:

H(x) =
∑

i

diZi, (2)

Zi = πii + x
′∑

j

γiγ j(πi j + π ji) − γ 2
i π j j − γ 2

j πii

εi − ε j
. (3)

The prime indicates the exclusion of the summed index with the fixed index. The commutation
of the N basis operators [Zi, Zj] = 0 is at the heart of this construction, and provide the N
‘higher constants of motion’ or dynamical symmetries, which depend parametrically on x.
This is the maximal set of commuting operators, whose number equals the dimension of the
defining space N.

Step II. The next step is to embed the operators of equation (3) into Fock space,
thus Zi → Ẑi by writing these in terms of quantum field operators acting upon suitable
spaces. This procedure thereby gives rise to a quantum integrable model with Hamiltonians
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H → Ĥ =
∑

i di Ẑi. We may use spins (i.e. hard core bosons), canonical bosons or fermions
to get models that coincide in the single particle subspace, but that in higher subspaces are
essentially different models. Let us note the Fermi model:

Ẑr ≡ nr + x

′∑

s

γrγs
(
a†

r as + a†
s ar

)
− γ 2

r ns − γ 2
s nr

εr − εs
, (4)

where {ai, a†
j} = δi j, nr = a†

r ar, and [Ẑr, Ẑs] = 0 for all r, s = 1, 2, . . . , N and for all values of
x. Different commuting operators, linearly dependent on the parameter x, are expressible as in
equation (2). With (canonical) bosons we get yet another model. Also, with spins in place of
fermions and with coefficients γi → 1, this model reduces to the well known Gaudin model.
In all higher particle number sectors, these operators for any choice of the embedding Fock
space have obvious descendent representatives that commute with each other and with Ĥ. For
instance, in the two-particle sector for fermions or the spin- 1

2 Gaudin model, the Hilbert space
has a dimension of

(N
2

)
, where the above operators provide N commuting operators. These

are of limited interest to us. Our aim is to seek out operators that are linearly independent
of these descendent operators. In this larger space we could, for instance, independently
construct type 1 matrices that are

(N
2

)
in number. Ostensibly there is room for additional, as

yet undiscovered conservation quantities that act in the two-particle sector but are null in the
one-particle sector.

In fact, our main goal in this work is to examine the proposal that N is the maximum
number of functionally independent commuting operators for Ĥ. Our search for functional
independence starts with the more restrictive but technically feasible search for linear
independence, followed by the test of functional dependence.

Algorithm for finding additional conservation laws

To uncover any such additional conservation laws, one can use an algorithm that we next
describe. This algorithm can be implemented numerically for a relatively small size of the
Hilbert space N , as an illustration for fermions N ∼

(N
r

)
where r is the number of particles.

We used N !
(10

3

)
in our studies of the Fermi, Bose and spin- 1

2 Gaudin models, and the results
are described below.

The algorithm uses the matrix decomposition outlined in [9, 14] and the current-
constructing algorithm outlined in [15]. In N dimensions, if [H(x), H̃(x)] = 0, it can be
shown that there exists an antisymmetric matrix S such that

H(x) = T + x([T, S] + W )

H̃(x) = T̃ + x([T̃ , S] + W̃ )
(5)

where T, T̃ ,W,W̃ all mutually commute and, without loss of generality, we take them to be
diagonal matrices. Given this decomposition equation (1) is satisfied if

[[T, S], [T̃ , S]] + [W, [T̃ , S]] − [W̃ , [T, S]] = 0. (6)

For a given H(x), S, T and W can be determined. Finding a conserved current H̃(u), i.e.
finding a solution for the non-zero elements of diagonal matrices T̃ and W̃ , is then a matter
of solving

(N
2

)
simultaneous linear equations in 2N unknowns, where the number of linearly

independent solutions is the number of independent conservation laws1.

1 It should be emphasized that this algorithm yields trivial H̃(x) for general H(x). The algorithm will only yield
non-trivial results for an integrable matrix H(x).
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Fermions: the four-Fermi conserved current

We applied the above algorithm to the matrices arising from the action of the type 1 fermionic
Hamiltonian Ĥ =

∑
j d jẐ j equation (4), in the two-particle sector and found that there is a

2N − 3 member family of mutually commuting currents. N of these are just the action of the
original currents Ẑr (see equation (4)) in that sector. The N − 3 other conserved quantities
correspond to the particle action of four-Fermi operators with a generating function of the
form:

Q̂(α) = 1
2

′∑

i j

nin j

(α − εi)(α − ε j)
+ 1

2
x

′∑

i, j,k

φi jk

(α − εi)(α − ε j)(α − εk)
, (7)

where φi jk ≡ ωi jnk + nin jγ
2
k and ωi j ≡ γiγ j(a

†
i a j + a†

jai)− niγ
2
j − n jγ

2
i . Operators analogous

to equation (4) that are indexed by ‘r’ can be found by taking residues

Q̂r = lim
α→εr

(α − εr) Q(α), (8)

these are seen to be (i) linear in x, (ii) are N − 3 in number, and (iii) linearly independent
of Ẑr. Result (ii) requires an elaborate proof of three relationships between the apparently
independent Q̂r. In particular one can show that

∑
i Q̂i = 0, and we skip the remaining two

for brevity.

Analytical proof of commutation

In what follows we will prove that the generating function Q̂(α) is conserved i.e.

[Ẑr, Q̂(α)] = 0 (9)

for all r = 1, 2, . . . , N and all values of x and α. To this end it is useful to define the quantity
βi j ≡ a†

i a j − a†
jai.

The commutator has terms of O(xn) with n = 0, 1, 2 and each must vanish identically.
The O(x0) terms vanish as all number operators mutually commute.

To satisfy equation (9) to O(x) we must show2 that
′∑

jk

[
wi j

εi − ε j
,

nink

(α − εi)(α − εk)
+ n jnk

(α − ε j)(α − εk)

]

=
′∑

j,k

[
φi jk

(α − εi)(α − ε j)(α − εk)
, ni

]
, (10)

where we will subsequently follow the convention in which the prime on summation implies
that all indicated indices are distinct. The RHS evaluates to

−
′∑

j,k

γiγ jβi jnk

(α − εi)(α − ε j)(α − εk)
.

In the LHS, we note that [wi j, nink] = −[wi j, n jnk] = −γiγ jβi jnk and using the partial fraction
identity

1
εi − ε j

(
1

α − εi
− 1

α − ε j

)
= 1

α − εi
× 1

α − ε j
, (11)

we see that equation (10) is satisfied.

2 We have used the identity [wi j, nin j] = 0 and also noted that on the right-hand side, the density ni commutes with
the variables labelled by k in φi, j,k.
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To O(x2) we need to show
′∑

j

[wi j, Q̂′(α)]
εi − ε j

= 0, (12)

where Q̂′(α) = d
dx Q̂(α). We see from equation (7) that Q̂′ depends on three indices and so

for the fixed pair in wi j in the equation (12), we may organize Q̂′ as follows. The terms not
involving either i or j commute and can be neglected. We may have both these indices in a
class of terms Q̂′, or only one index in another class of terms. Let us look at them separately.

Two indices common

The relevant part of Q̂′ in equation (12) may then be written as

′∑

k

1
(α − εi)(α − ε j)(α − εk)

(φi jk + φki j + φ jki).

Now wi j commutes with the first of these terms and for the others we calculate

[wi j,φki j] = −
(
γ 2

i + γ 2
j

)
βi jnk + γiγkβ jkni − γ jγkβikn j, (13)

and the term [wi j,φ jki] is obtained by exchanging i ↔ j in equation (13), giving the negative
of the first so that the sum vanishes identically.

One index common

The relevant terms in equation (12) may be written as

′∑

j,k<l

[
wi j

εi − ε j
,

(
φikl + φilk + φkli

(α − εi)(α − εk)(α − εl )
+ (i → j)

)]
, (14)

where we have used the symmetry of φi jk in the first two indices to isolate all terms with a
triple of indices ilk that have one index i. It is easy to see that

[wi j,φkli] = −γiγ j βi jwkl (15)

[wi j,φikl + φilk] = −γiγ jγk(βikγ j − β jkγi)nl − (k ↔ l) (16)

[wi j,φkliφikl + φilk] = γiγ jMi jkl . (17)

Here γiγ jMi jkl is defined as the sum of the two terms equations (15) and (16). It is clearly
symmetric in k ↔ l and also antisymmetric in exchanging i ↔ j, so that using equation (11)
we can rewrite the LHS of equation (12) as

′∑

j,k<l

γiγ jMi jkl

(α − εi)(α − ε j)(α − εk)(α − εl )
. (18)

We note an identity satisfied by cyclically permuting the indices jkl:

γ jMi jkl + γkMikl j + γlMil jk = 0, (19)

whereby the commutator vanishes identically.
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Functional relationship between the generating functionals

Let us note the generating function for the two-Fermi currents:

Ẑ(α) =
∑

i

ni

α − εi
+ 1

2
x

′∑

i j

wi j

(α − εi)(α − ε j)
, (20)

so that [Ẑ(α), Ẑ(β)] = 0 for any α,β, and

Ẑi = lim
α→εi

(α − εi)Z(α). (21)

This is similar to the generating function for the four-Fermi currents in equation (7). For
completeness we note that from equation (8)

Q̂i =
′∑

j

nin j

εi − ε j
+ x

′∑

j,k

φi jk + φk ji

(εi − ε j)(εi − εk)
. (22)

To summarize, we computed a bilinear generating function in equation (20) and showed that it
has a four-fermionic set of constants of motion Q̂r in equation (8), with a generating function
equation (7), which are linear in x and also linearly independent of the Ẑr in equation (21).
Remarkably these four-Fermi currents, while linearly independent of the Ẑ are not functionally
independent of them. Indeed a brief calculation shows that

Q̂(α) = 1
2

[
Ẑ(α)2

1 − x
x̃(α)

+
(

1 − x
x̃(α)

)
d

dα

(
Ẑ(α)

1 − x
x̃(α)

)]

(23)

where x̃(α) ≡
(∑

m γ 2
m/(α − εm)

)−1.
To gain a feel for these generating functions, it is useful to transform to the diagonal

representation for the quadratic fermion model. In [9] one finds modes that diagonalize all the Ẑi

and, by extension Ẑ(α) by constructing the x-dependent canonical fermion creation/annhilation
operator set:

d†
i =

∑

j

φiγ j

λi(x) − ε j
a†

j , with {di, d†
j } = δi j, (24)

where we require that φ−2
i =

∑
j

(
γ j/(λi(x) − ε j)

)2 and
∑

m γ 2
m/(λi(x) − εm) = 1/x. It

follows that the two-Fermi generating function can expressed as

Ẑ(α) =
(

1 − x
x̃(α)

) ∑

m

ñm

α − λm(x)
, (25)

where ñm ≡ d†
mdm, x-dependent fermionic number operator. Equation (23) can be rewritten in

terms of these operators as:

Q̂(α) =
(

1 − x
x̃(α)

)∑

i< j

ñiñ j

(α − λi(x))(α − λ j(x))
. (26)

In this representation, since both generating functions consist of the number operators in the
diagonal basis, their mutual commutation is evident. However, the known linear dependence
of the two generating functions on the parameter x is now hidden.
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Higher order fermionic conservation laws

We can continue the logic of the above section to higher particle sectors. While a more
complete discussion is not possible, we shall content ourselves with a short presentation of
our results. The type 1 fermionic model appears to possess a hierarchy of conservation laws,
e.g. four-, six-, eight-Fermi terms, etc which are linear in x. We find from the above algorithm
that a sequence of generating functions exist with m = 1, 2, 3, . . . , where

Ĉ(m)(α) ≡ 1
m!

(
1 − x

x̃(α)

) ′∑

k1,k2,...,km

m∏

j

ñk j

α − λk j (x)
, (27)

is a 2m-Fermi conserved current also linear in x, for m < N. Thus Ẑ and Q̂ discussed
above correspond to m = 1, 2. If we denote reduced generating functions by Ĉ(m)(α) =
(1 − x

x̂(α)
) Ĉ(m)

red (α), then these satisfy the differential equation

Ĉ(m)
red (α) = 1

m

(
d

dα
+ Ĉ(1)

red (α)

)
Ĉ(m−1)

red (α). (28)

Though the commutativity of the generating functions is a straightforward consequence
of equation (27), deriving the linearity in x of Ĉ(m)(α) is a bit more involved. In the (unrotated)
original representation the linear x-dependence can be made explicit, i.e.

Ĉ(m)(α) =
′∑

k1,k2,...,km





1
m!

m∏

j

nk j

α − εk j

(

1 − x
∑

s>m

γ 2
ks

α − εks

)

︸ ︷︷ ︸
c(m)

1

+ x
1

2(m − 1)!

∑

s>m

γksγkm

a†
ks

akm + a†
km

aks

(α − εks )(α − εkm )

m−1∏

j

nk j

α − εk j

︸ ︷︷ ︸
c(m)

2




, (29)

where k1, k2, . . . , kN is an arbitrary permutation of the list of integers from 1 to N. For example,
the six-Fermi conserved current is:

Ĉ(3)(α) =
′∑

k1,k2,k3

[
1
6

nk1 nk2 nk3

(α − εk1 )(α − εk2 )(α − εk3 )

(

1 − x
∑

s>3

γ 2
ks

α − εks

)

+ x
1
4

∑

s>3

nk1 nk2

(
a†

k3
aks + a†

ks
ak3

)

(α − εk1 )(α − εk2 )(α − εk3 )(α − εks )

]

. (30)

The proof that this expression satisfies equation (28) proceeds by induction. Assume
equation (29) to be true for Ĉ(m−1)(α). Note that the product (1−x/x̃(α))−1Ĉ(1)(α)·Ĉ(m−1)(α)

contains (m − 1)-Fermi terms, as well as m-Fermi ones—we are concerned with the latter,
as the former are exactly cancelled in equation (28) by the d

dα
Ĉ(m−1)(α) term. The m-Fermi

terms are given by
[
c(1)

1 c(m−1)
1

]
m =

′∑

k1,k2,...,km

[

m
(

1 − x
x̃(α)

)2

+ x
m∑

i

γ 2
ki

α − εki

(
1 − x

x̃(α)

)

+ 2x2
′∑

i, j

γ 2
ki
γ 2

k j

(α − εki )(α − εk j )

]
1

m!

m∏

j

nk j

α − εk j

(31)
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[
c(1)

1 c(m−1)
2 + c(1)

2 c(m−1)
1

]
m =

′∑

k1,k2,...,km

[

m
(

1 − x
x̃(α)

)
+ 2x

m∑

i

γ 2
ki

α − εki

]

· x
1

2(m − 1)!

∑

s>m

γksγkm

a†
ks

akm + a†
km

aks

(α − εks )(α − εkm )

m−1∏

j

nk j

α − εk j

(32)

[
c(1)

2 c(m−1)
2

]
m = −2x2

′∑

k1,k2,...,km




′∑

i, j

γ 2
ki
γ 2

k j

(α − εki )(α − εk j )

1
m!

m∏

j

nk j

α − εk j

+ dm

m∑

i

γ 2
ki

α − εki

∑

s>m

γksγkm

a†
ks

akm + a†
km

aks

(α − εks )(α − εkm )

m−1∏

j

nk j

α − εk j



 (33)

where dm = (2(m − 1)!)−1. Summing these terms yields a (1 − x/x̃(α))−1Ĉ(1)(α) · Ĉ(m−1)(α)

linear in x and, thus, Ĉ(m)(α) is also linear in x.

Bosonic and spin models

We have used the above algorithm to study the higher particle number sectors for bosons on
a lattice with N ! 6 and the number of particles 2 ! n ! 6 and find that there are no linear
conservation laws beyond the Ẑ j that are linear in x. For the spin- 1

2 Gaudin model, we have
studied higher particle number sectors, where the operators analogous to Zj do exist. In that
case we find that again there are no other conservation laws that are linear in x.

Discussion

The type 1 fermionic model appears to be unique in possessing these ‘extra’ conservation
laws linear in the parameter x. Not only do the type 1 bosonic and Gaudin models not have
them, but numerical experiments with randomly generated type M—M > 1—fermionic and
bosonic models similarly exhibit no such additional conservation laws. As we have shown,
however, these extra type 1 conservation laws are functionally dependent on the N ‘original’
ones—the Ẑ j.

In conclusion, we have provided a non-trivial example of the enumeration of dynamical
symmetries in the model considered. It appears to be the first case where one can establish
the functional dependence between a ‘higher set’ of conservation laws on a more fundamental
set, both surprisingly being linear in the parameter x. With this, we have a close parallel to the
classical idea of integrability, and a well defined enumeration of the degrees of freedom that
have so far been missing.
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