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Extremely correlated Fermi liquid study of the U = ∞ Anderson impurity model
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We apply the recently developed extremely correlated Fermi liquid (ECFL) theory to the Anderson impurity
model, in the extreme correlation limit U → ∞. We develop an expansion in a parameter λ, related to nd , the
average occupation of the localized orbital, and find analytic expressions for the Green’s functions to O(λ2). These
yield the impurity spectral function and also the self-energy �(ω) in terms of the two self-energies of the ECFL
formalism. The imaginary parts of the latter have roughly symmetric low-energy behavior (∝ω2), as predicted
by Fermi liquid theory. However, the inferred impurity self-energy �′′(ω) develops asymmetric corrections near
nd → 1, leading in turn to a strongly asymmetric impurity spectral function with a skew towards the occupied
states. Within this approximation, the Friedel sum rule is satisfied but we overestimate the quasiparticle weight z

relative to the known exact results, resulting in an overbroadening of the Kondo peak. Upon scaling the frequency
by the quasiparticle weight z, the spectrum is found to be in reasonable agreement with numerical renormalization
group results over a wide range of densities.
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I. INTRODUCTION AND MOTIVATION

The extremely correlated Fermi liquid (ECFL) theory
has been recently developed to understand the physics of
correlations in the limit of infinite U and applied to the t-J
model in Refs. 1 and 2. Here, we apply the ECFL theory to
the problem of the spin- 1

2 Anderson impurity model (AIM) at
U = ∞. The ECFL theory is based on a systematic expansion
of the formally exact Schwinger equations of motion of the
model for the (Gutzwiller) projected electrons in powers
of a parameter λ. This parameter is argued to be related
to n the density of particles in the t-J model, and in the
same spirit, to nd the average impurity level occupancy in
the Anderson model considered here. Thus, at low enough
densities of particles, the complete description of the system,
including its dynamics, is expected in quantitative terms, with
just a few terms in the λ expansion. Presently, the theory to
O(λ2) has been evaluated for the t-J model,2 and higher-order
calculations in λ valid up to higher densities could be carried
out in principle. We thus envisage systematically cranking up
the density from the dilute limit, until we hit singularities
arising from phase transitions near n ∼ 1.3 This represents a
possible road map for solving one of the hard problems of
condensed matter physics and is exciting for that reason.

We apply the ECFL theory equations to O(λ2) to the AIM
model in this work. This problem was introduced by Anderson4

in 1961, and has been a fertile ground where several fruitful
ideas and powerful techniques have been developed, and tested
against experiments in Kondo, mixed valency, and heavy-
fermion systems. These include the renormalization group
ideas, from the intuitive poor man’s scaling of Anderson5,6

to the powerful numerical renormalization group (NRG) of
Wilson,7 Krishna-murthy et al.,8 and more recent work in
Refs. 9 and 10. A comprehensive review of the AIM and
many popular techniques used to study it, such as the large-N
expansion,11,12 slave particles,13 and the Bethe ansatz,14 can
be found in Ref. 15. In the AIM, the Wilson renormalization

group method provides an essentially exact solution of the
crossover from weak to strong coupling, without any inter-
vening singularity in the coupling constant. As emphasized in
Refs. 16–18, the ground state is asymptotically a Fermi liquid
at all densities. This implies that as a function of the density
nd (at any U ), the Fermi liquid ground state evolves smoothly
without encountering any singularity, from the low-density
limit (the empty orbital limit) to the intermediate-density limit
(the mixed valent regime), and finally through to the very
high-density limit (Kondo regime). In view of the nonsingular
evolution in density, the AIM provides us with an ideal problem
to benchmark the basic ECFL ideas discussed above.

The current understanding of the AIM model from Refs. 8,
16, and 17 is that Fermi liquid ground state and its attendant
excitation spectrum are reached in the asymptotic sense, i.e.,
at low enough energies and T . Our present study of this model
is somewhat broader. We wish to understand the excitations
of the model in an enlarged region, in order to additionally
obtain an estimate of the magnitude of corrections to the
asymptotic behavior. To motivate this remark, note that the
ECFL formalism yields an asymmetry in the excitations and
the spectral functions of the t-J model for sufficiently high
densities, with a pronounced skew towards ω < 0, arising
fundamentally from Gutzwiller projection. This skew can
be interpreted as an asymmetric correction to the leading
particle-hole-symmetric excitation spectrum of that model19

[e.g., corrections to �′′(ω) ∼ {ω2 + (πkBT )2} behavior of the
Fermi liquid of the form �′′(ω) ∼ ω3]. Such corrections have
been argued to be of central importance in explaining the
anomalous line shapes in the angle-resolved photoemission
spectra of high-Tc superconductors in the normal state.19,20

Therefore, it is useful and important to understand the line
shape and self-energy asymmetry in controlled calculations
of the Anderson model with infinite U , which shares the
local Gutzwiller constraint with the t-J model on a lattice.
A necessary condition for substantial asymmetry of the type
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seen in ECFL at U = ∞ appears to be a large U , and hence
is difficult to find from a perturbative expansion in U of the
type pioneered in Ref. 16. The study of the infinite-U limit
of the AIM is therefore particularly interesting in the present
context. AIM studies of the spectral functions21–24 using NRG
have become available in recent years. We will compare our
results with some of these calculations later in this paper.

In this paper, we use the ECFL machinery2 to obtain the
exact Schwinger equation of motion for the d-electron Green’s
function and represent it in terms of two self-energies. These
are further expanded in a series in the parameter λ mentioned
above, and the equations to second order are arrived at. These
involve a second chemical potential u0 that contributes to a
shift in the location of the localized energy level, bringing it
closer to the chemical potential of the conduction electrons.
The rationale for introducing this second chemical potential
is similar to that in the t-J model; the AIM possesses a shift
invariance identified in Eq. (11). Maintaining this invariance
to different orders in λ is possible only if we introduce u0.
The second-order equations are studied numerically, and the
solution for the spectral function is compared with the NRG
results.

Since we expect some readers to be interested in the AIM
more than in the t-J model, we provide a fairly self-contained
description of the ECFL method used here for the AIM. In this
spirit, let us note that a direct interpretation of the parameter λ

as a partial projector can be found from a simple calculation of
the atomic limit, with the parameter λ thrown in. Reference 2
(Appendix A1 and especially Fig. 6) explicitly shows that the
double occupancy goes from its maximum to zero as λ varies
from 0 to 1. Further, it is useful to view the λ parameter in
an operator sense, by writing a partially projected (d-orbital)
fermion operator f̂ †

σ (λ) = (1 − λ f
†
σ̄ fσ̄ )f †

σ and its adjoint
(here σ̄ = −σ ). The operator f̂ †

σ (λ) interpolates between the
unprojected Fermi operator f †

σ at λ = 0, and the Gutzwiller
projected Hubbard operator Xσ0

i at λ = 1. The Hamiltonian
is written in terms of f̂ †

σ (λ), f̂σ (λ), and expanding in λ

gives an effective Hamiltonian that generates the auxiliary
Green’s function g below. As explained in Ref. 2, the second
(caparison) part also has an expansion in λ that follows from
the Schwinger equation and the product form Eq. (12). At
the end, we set the parameter λ → 1 in the formal equations,
and only then begin the actual computations. Therefore, the
primary use of the parameter λ is to count the relative orders of
the terms that are higher than quadratic in the Fermi operators.

Let us first present an overview of the formal equations;
the AIM model impurity Green’s function G is written in the
presence of time- and spin-dependent potentials V , i.e., the
sources of Schwinger, and their exact Schwinger equation of
motion obtained in Eqs. (3) and (5). In terms of the auxiliary
Green’s function g and the caparison function μ, we introduce
a convolution ansatz G = g · μ in Eq. (12). Two types of
vertices are introduced by taking the functional derivatives δ

δV
of g−1 and μ, and in terms of these, we find exact Schwinger
equations of motion for g and μ in Eq. (14), which are
expressed in terms of the two self-energies [Eq. (15)]. The
auxiliary Greens’s function and the physical impurity Greens’s
function satisfy the number sum rules in Eqs. (19) or (23), and
are then expanded in the parameter λ discussed above. An
important shift invariance of the AIM is noted in the equations

of motion, and a second chemical potential u0 introduced as
a second Lagrange multiplier to satisfy the two sum rules.
To second order O(λ2), explicit equations are written out in
Eqs. (30)–(33). The Friedel sum rule in this scheme is written
out in Eq. (43), and shown to be satisfied exactly at T = 0.
The numerical solution of the equations is performed through
a spectral representation of the variables g, and in Eq. (50)
the two self-energies are written out in terms of these. These
are compared with the NRG results at the same densities and
results for the spectral functions of the Green’s function and
the self-energy are compared in detail, both before and after
scaling with z, the quasiparticle weight.

II. ECFL THEORY OF ANDERSON IMPURITY MODEL

A. Model and equations for the Green’s function

We consider the Anderson impurity model in the limit U →
∞ given by the following Hamiltonian:

H =
∑

σ

εdX
σσ +

∑
kσ

εknkσ

+ 1√
	

∑
kσ

(VkX
σ0ckσ + V ∗

k c
†
kσX0σ ), (1)

where 	 is the box volume, and we have set the Fermi energy
of the conduction electrons to zero. Here, Xab = |a〉〈b| is the
Hubbard projected electron operator with |a〉 describing the
empty orbital, and the two singly occupied states a = 0,±σ .
We study the impurity Green’s function

Gσiσf
(τi,τf ) = −〈〈X0σi (τi) Xσf 0(τf )〉〉, (2)

with Tτ the imaginary-time ordering symbol, the defini-
tion for an arbitrary time-dependent operator Q: 〈〈Q〉〉 =
〈TrTτ e

−AQ〉/〈TrTτ e
−A〉, and with the Schwinger source

term A = ∫ β

0 dτ Vσ1σ2 (τ )Xσ1σ2 (τ ), involving a bosonic time-
dependent potential V . Often, we abbreviate V(τi) → Vi . As
usual, this potential is set to zero at the end of the calculation. In
this paper, expressions such as G(τi,τf ) and V are understood
as 2 × 2 matrices in spin space. We assume a constant
hybridization Vk = V0, and a (flat) band of half-width D with
constant density of states ρ(ε) = ρ0θ (D − |ε|) with ρ0 = 1

2D
.

Taking the time derivative of Eq. (2), we obtain the
Schwinger equation of motion (EOM){(

∂τi
+ εd

)
1 + Vi

}
G(τi,τf )

= −δ(τi − τf ) × [1 − γ (τi)]

− 1√
	

[1 − γ (τi) + Di] ·
∑

k

Vk G(k,τi ; τf ), (3)

where γ (τi) = G(k)(τ−
i ,τi) following Ref. 1, Eq. (35), or

more explicitly in terms of spin indices as γσiσf
(τi) =

σiσfGσ̄f σ̄i
(τi,τ

+
i ), and with σ̄ = −σ . In the following,

we abbreviate γ (τi) → γi . Here, we introduced the mixed
Green’s function Gσiσf

(k,τi ; τf ) = −〈〈ckσi
(τi)Xσf 0(τf )〉〉, and

a functional derivative operator (Di)σiσj
= (σiσj ) δ/δV σ̄i σ̄j (τi).

In the ECFL formalism,1 Eq. (3) and similar equations are to
be understood as matrix equations in spin space. Following
the Schwinger technique, the higher-order Green’s
functions have been expressed in terms of the source
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functional derivatives of the basic ones; an example illustrates
this: σiσj 〈〈Xσ̄i σ̄j Q〉〉 = (γi − Di)〈〈Q〉〉. Proceeding further,
we take a time derivative of the mixed Green’s function to
find (

∂τi
+ εk

)
G(k,τi ; τf ) = − 1√

	
V ∗

k G(τi,τf ), (4)

so combining with Eq. (3) we find the exact EOM for the
localized electron Green’s function:{(

∂τi
+ εd

)
1 + Vi

}
G(τi,τf )

= −δ(τi − τf )(1 − γi)

− (1 − γi + Di) · �(τi − τj) · G(τj,τf ), (5)

with the convention that the time label in bold letters τj is to be
integrated over ∈ [0,β]. The conduction band enters through
the usual (V-independent) function

�(τi − τj ) = − 1

	

∑
k

|Vk|2
(
∂τi

+ εk

)−1
δ(τi − τj ), (6)

with a Fourier transform

�(iωn) = 1

	

∑
k

|Vk|2
iωn − εk

= V 2
0

∫
ρ(ε)dε

iωn − ε
. (7)

We will require below its analytic continuation iωn → ω + iη:

�(ω + iη) = �R(ω) − i�(ω); (8)

�(ω) = πV 2
0 ρ(ω); �R(ω) = �0

π
ln

|ω + D|
|ω − D| . (9)

Here, �0 = πV 2
0 ρ0. We now use the noninteracting Green’s

function

g−1
0 (τi,τf ) = −[

∂τi
+ εd + V(τi)

]
δ(τi − τf ) − �(τi,τf ),

(10)

and rewrite the fundamental equation of motion Eq. (5) as{
g−1

0 (τi,τj) + (γi − Di) · �(τi − τj)
} · G(τj,τf )

= (1 − γi)δ(τi − τf ). (11)

Let us note an important shift invariance of Eqs. (11) and (10).
If we consider a transformation �(τ ) → �(τ ) + ut × δ(τ )
with an arbitrary ut , it is possible to show that Eq. (11) is
unchanged, except for a shift of εd by −ut . The added term
ut (γi − Di)G(τi,τf ) vanishes upon using the Pauli principle
and the Gutzwiller projection applicable to operators at the
same time instant. We use this shift invariance below to
introduce a second chemical potential. In the ECFL theory,
we use a product ansatz

G(τi,τf ) = g(τi,τj) · μ(τj,τf ), (12)

where μ(τi,τj ) is the caparison factor, and we use
this in Eq. (11). It is useful to introduce two ver-
tex functions �σ1σ2

σ3σ4
(τn,τm; τi) = − δ

δVσ3σ4
i

g−1
σ1σ2

(τn,τm) and

Uσ1σ2
σ3σ4

(τn,τm; τi) = δ

δVσ3σ4
i

μσ1σ2 (τn,τm) as usual, and suppress-

ing the time indices, we note δ
δV · g = g · � · g. We now use

the chain rule and Eq. (12) to write D� · G = D� · g · μ =
ξ ∗� · g · �∗ · g · μ + ξ ∗� · g · U∗, with the matrix ξσσ ′ =
σσ ′. The ∗ symbol from Ref. 1 is illustrated in component form
by an example: . . . ξ ∗

σaσb
. . . δ/δV∗ = . . . σaσb . . . δ/δV σ̄a σ̄b , or

in terms of the vertex functions . . . ξ ∗
σaσb

. . . �σ ′σ ′′
∗ . . . =

. . . σaσb . . . �σ ′σ ′′
σ̄a σ̄b

. . ., with the upper indices of � governed
by the rules of the matrix multiplication. Following Ref. 1 we
define the linear operator L(i,j ) = ξ ∗�(i,j) · g(j,j ) · δ

δV∗
i

. We
can now collect these definitions to rewrite D� · G = ξ ∗� ·
g · �∗ · g · μ + ξ ∗� · g · U∗ = � · g · μ + �, and define the
two self-energies:

�(i,j ) = −L(i,r) · g−1(r,j ) = ξ ∗�(i,j) · g(j,k) · �∗(k,j ; i);

�(i,j ) = L(i,r) · μ(r,j ) = ξ ∗�(i,j) · g(j,k) · U∗(k,j ; i).

(13)

Summarizing, we may rewrite the exact EOM Eq. (11)
symbolically:{

g−1
0 + γ� − �

} · g · μ = (1 − γ )δ + �. (14)

This equation is split into two parts by requiring g to be
canonical:

g−1 = {
g−1

0 + γ� − �
}

and μ = (1 − γ )δ + �, (15)

bringing it into the standard form in the ECFL theory.1 Using
Eq. (13), we note that the formal solutions of Eq. (15) are
g−1 = (1 − L)−1 · (g−1

0 + γ�) and μ = (1 − L)−1 · (1 − γ )δ.
We introduce the resolvent kernel L using the identity
(1 − L)−1 = 1 + L where L = (1 − L)−1 · L. In terms of the
resolvent, we see that

� = L · (−g−1
0 − γ�

)
and � = −L · γ δ. (16)

Therefore, distributing the action of L over the two terms, we
can rewrite

� = χ + ��, (17)
with

χ = L · (−g−1
0

)
. (18)

Therefore, the self-energy � breaks up into two parts, as in
Eq. (17). Note that in Eq. (16), the expressions γ� and γ δ

involve multiplication at equal times, whereas in Eq. (17),
�� implies a convolution in time. The two Green’s functions
satisfy the pair of sum rules

g(τ,τ+) = nd

2
; G(τ,τ+) = nd

2
, (19)

where nd is the number of electrons on the d orbital nd =∑
σ 〈Xσσ 〉.
In the context of the t-J model in Ref. 2, the sum rule

for g is necessary to satisfy the Luttinger-Ward theorem.
If we use the representation f̂ †

σ (λ) = (1 − λf
†
σ̄ fσ̄ )f †

σ for the
correlated electrons, this constraint is understandable as the
constraint on the number of “uncorrelated” fermions 〈f †

σ fσ 〉,
which must agree with the number of physical (correlated)
electrons 〈f̂ †

σ f̂σ 〉. Similarly, in the present case, this constraint
is needed to fulfill the Friedel sum rule. We also remark that
the self-energy �, unlike its counterpart �, is dimensionless,
and thus interpreted as an adaptive spectral weight.2

B. Zero source limit

Upon turning off the sources, all objects become functions
of only τi − τf and may therefore be Fourier transformed
to Matsubara frequency space. By Fourier transforming
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Eqs. (12), (15), and (17) and using γ → nd

2 we obtain the
following expressions in frequency space:

G(iωn) = g(iωn) · μ(iωn),

μ(iωn) = 1 − nd

2
+ �(iωn), (20)

g−1(iωn) = iωn − εd − �(iωn)μ(iωn) − χ (iωn).

Alternately, this result can be rewritten in terms of the Dyson-
Mori self-energy representation as

G(iωn) = 1 − nd

2

iωn − εd − (
1 − nd

2

)
�(iωn) − �DM(iωn)

(21)

and

�DM(iωn) + εd − iωn

= 1 − nd

2

1 − nd

2 + �(iωn)
[χ (iωn) + εd − iωn] . (22)

The sum rules (19) are∑
iωn

G(iωn)eiωnη = nd

2
;

∑
iωn

g(iωn)eiωnη = nd

2
. (23)

These are satisfied at a fixed nd using two Lagrange multipli-
ers: the localized state energy εd and the second chemical
potential u0 introduced in Eq. (25). We observe that the
usual Dysonian self-energy �AM(iωn) defined through the
usual Dyson equation (valid for finite U ) G−1 = iωn − εd −
�(iωn) − �AM(iωn) in the infinite-U limit can be obtained
from

�AM(iωn) = 2

2 − nd

�DM(iωn) + nd

2 − nd

(εd − iωn). (24)

The unlimited growth with ωn makes this self-energy some-
what inconvenient to deal with, and therefore motivated the
introduction of the Dyson-Mori object, which is better behaved
in this regard. After analytic continuation iωn → ω + i0+,
the imaginary part of �AM is well behaved and finite as
ω → ∞. It is obtained from the NRG method and compared
with the relevant ECFL functions after scaling by 1 − nd

2 as in
Eq. (24). We notice that the density nd appears explicitly in the
expressions for the Green’s functions, and must therefore be
calculated self-consistently from Eq. (23). This feature is quite
natural in the present approach since Eq. (3) for the Green’s
function contains γ and therefore nd explicitly.

C. Introducing λ and u0 into the equations

Summarizing the work so far: Eqs. (15)–(17) follow from
Eq. (11) upon using the product ansatz (12), and are exact
equations. In order to get concrete results, we proceed by in-
troducing two parameters into the equations. (i) The parameter
λ ∈ [0,1] multiplies certain terms shown in Eq. (25), allowing
a density-type expansion, and continuously connects the
uncorrelated Fermi system λ = 0 to the extremely correlated
case λ = 1. (ii) The second parameter u0 is introduced as
shown in Eq. (25). It is the second chemical potential used
to enforce the shift identities of the exact equation (11).

Equation (11) now becomes{
g−1

0 + λ(γ − D)

(
� − u0

2
δ

)}
· G = (1 − λγ )δ. (25)

As a consequence, in Eq. (14) to Eq. (18) we set γ → λγ ,
� → λ�, and � → λ�, or χ → λχ . Second, in Eq. (14) to
Eq. (18) we set �(τi,τf ) → �(τi,τf ) − u0

2 δ(τi − τf ). Note
that there is no shift of Eq. (10) implied in Eq. (25).

We write Eq. (15) with λ inserted explicitly and the
understanding that �(τi,τf ) has been shifted as25

g−1(τi,τf ) = g−1
0 (τi,τf ) + λγ (τi)�(τi,τf ) − λ �(τi,τf ),

μ(τi,τf ) = δ(τi − τf )[1 − λγ (τi)] + λ �(τi,τf ), (26)

where the two self-energies are given in terms of the vertex
functions as

�(τi,τf ) = ξ ∗�(τi,τj) · g(τj,τk) · �∗(τk,τf ; τi),
(27)

�(τi,τf ) = ξ ∗�(τi,τj) · g(τj,τk) · U∗(τk,τf ; τi).

On switching off the sources, these expressions can be spin
resolved and expressed as � = �g�(a) and � = �g U (a),
with the same time labels as above, and with the usual spin
decomposition �(a) = �σσ

σ̄ σ̄ − �σσ̄
σ σ̄ .

D. λ expansion

We note that we can obtain the equations of motion for
the Anderson model from the equations of motion for the t-J
model by making the following substitutions and replacing all
space-time variables with just time26:

t[i,f ] → −�(τi,τf ); εk → �(iωk),
(28)

J → 0, μ → −εd .

The λ expansion for the Anderson model is therefore analogous
to the one for the t-J model in Ref. 2 and the large-d
t-J model in Ref. 26, and can be obtained from them by
making the substitutions in Eq. (28) and changing all frequency
momentum four-vectors to just frequency. For completeness,
Appendix A provides a brief derivation (in time domain) of
the following equations. Denoting

aG = 1 − λ
nd

2
+ λ2 n2

d

4
, (29)

and the frequently occurring object

R = g(iωp)g(iωq)g(iωp + iωq − iωn),

we obtain to O(λ2) the expressions

G(iωn) = g(iωn)μ(iωn), μ(iωn) = aG + λ�(iωn), (30)

g−1(iωn) = iωn − ε′
d −

(
�(iωn) − u0

2

)
μ(iωn) − λχ (iωn),

(31)

χ (iωn) = −λ
∑
p,q

[2�(iωp) − u0]

×
[
�(iωp + iωq − iωn) − u0

2

]
R, (32)

�(iωn) = −λ
∑
p,q

[2�(iωp) − u0]R. (33)
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The energy ε′
d is given by collecting the static terms in � as

ε′
d = εd + u0

(
λ

nd

2
− λ2 n2

d

8

)
+ u0

2
aG

− λ
∑
iωp

�(iωp)g(iωp). (34)

The shift theorem is satisfied by all the terms separately since
we have taken care to form expressions of the type � − u0

2 . As
discussed in Ref. 2, the shift theorems mandate the introduction
of u0, and its availability, in addition to εd , enables us to fix
the pair of sum rules (19). As explained, we must set λ → 1
before using these expressions.

Within the O(λ2) theory, the total spectral weight of the
Green’s function is aG rather than the exact value 1 − nd

2 . This
is understood as the incomplete projection to single occupancy
leading to an excess in the total number of states available to
the system. In order to ensure that �DM(ω) retain the feature of
being finite as ω → ∞, it must be slightly redefined (to �̂DM)
in the O(λ2) theory:

G(ω) = aG

ω − ε′′
d − aG�(ω) − �̂DM(ω)

, (35)

where

ε′′
d ≡ ε′

d − u0

2
aG . (36)

Using Eqs. (30) and (31), we can relate �̂DM(ω) to χ (ω) and
�(ω):

�̂DM(ω) + ε′
d − ω = aG

aG + �(ω)
[χ (ω) + ε′

d − ω]. (37)

Since �(ω),χ (ω) → 0 as ω → ∞, we see explicitly that
�̂DM(ω) remains finite in this limit. Just as in the case
of Im �DM(ω), Im �̂DM(ω) is related to Im �AM(ω) by
a multiplicative constant (1 − nd

2 and aG , respectively), and
therefore their spectra are identical apart from this multiplica-
tive constant. Comparing Eqs. (21) and (35), we see that the
latter is obtained from the former with the substitutions

�DM(ω) → �̂DM(ω); εd → ε′′
d ; 1 − nd

2
→ aG . (38)

Keeping these substitutions in mind, we will now only use
�DM(ω) from the exact theory, with the understanding that the
same expressions hold for �̂DM(ω) in the O(λ2) theory as long
as the substitutions in Eq. (38) are made.

E. Friedel sum rule at T = 0

At T = 0, the Friedel sum rule27–29 plays an important role
in the AIM, parallel to that of the Luttinger-Ward volume
theorem in Fermi liquids. In Ref. 29, the original form of the
Friedel sum rule is written in terms of ησ (ω), the phase shift
of the conduction electron with spin σ at energy ω:

ησ (ω) = 1

2i
ln

[
Gσ (ω + i0+)G−1

σ (ω − i0+)
]
, (39)

where the logarithm is chosen with a branch cut along the
positive real axis, so that 0 � η � π . The Friedel sum rule is
then written as

ησ (ω = 0) = πnd

2
. (40)

This theorem is proven for the AIM at finite U (Ref. 29) by
adapting the argument of Luttinger and Ward30 with an implicit
assumption of a nonsingular evolution in U from 0. We assume
that the Friedel sum rule also holds in the extreme correlation
limit U → ∞. Using the Dyson-Mori representation (21) to
compute the phase shift in Eq. (39), we may rewrite this as

nd = 1 − 2

π
tan−1

[
εd + Re �DM(0)

�0
(
1 − nd

2

)
]

, (41)

with εd + Re �DM(0) > 0, in the physical case of 0 � nd � 1.
It is easily seen32 that this form is equivalent to the standard
statement of the Friedel sum rule15

ρG(0) = 1

π�0
sin2

(
πnd

2

)
. (42)

Within the approximation of the λ expansion, the Friedel sum
rule implies a relationship between the values of the two self-
energies at zero frequency:

nd = 1 − 2

π
tan−1

[
ε′
d − u0

2 μ(0) + χ (0)

�0μ(0)

]
. (43)

This can be obtained by using the substitutions from Eq. (38)
in Eq. (41), and using Eqs. (37), (36), and (30).

We can also record a result for the auxiliary density of
states ρg(ω = 0), analogous to Eq. (42) here. It follows from
Eq. (47), with the Fermi liquid type assumption of vanishing
of ρ�(0) at T = 0, and reads as

ρg(0) = 1

π�0μ(0)
sin2

(
πnd

2

)
. (44)

We check the validity of the Friedel sum rule within the λ

expansion in both the forms (42) and (43). In doing so, we
are thus testing if the strategy of the two ECFL sum rules
[Eq. (23)] enforces the Friedel sum rule, in a situation that is
essentially different from that in finite-U theories so that the
central result of Luttinger and Ward30 is not applicable in any
obvious way.

F. Computation of spectral function

In computing the spectral function, we follow the approach
taken in Ref. 2, in which the spectral function is calculated
for the O(λ2) ECFL theory of the t-J model. Our calculation
is made simpler due to the absence of any spatial degrees
of freedom, but more complicated by the presence of the
frequency-dependent factor �(iωn). We define the various
spectral functions and the relationships between them. These
expressions are analogous to those in Sec. III A of Ref. 2:

Q(iωn) =
∫ ∞

−∞
dν

ρQ(ν)

iωn − ν
, (45)

where Q can stand for any object such as G, g, χ , �DM, or �.
Therefore, after analytic continuation iωn → ω + i0+,

ρQ(ω) ≡ − Im

π
Q(ω + i0+) and Re Q(ω) = H[ρQ](ω),

(46)

where for any real density ρQ(ω) the Hilbert transform is
denoted as H[ρQ](ω) = P

∫ ∞
−∞ dν

ρQ(ν)
ω−ν

. From Eq. (33), we
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TABLE I. The bare impurity level εd as well as the quasiparticle
weight z are displayed for the ECFL and the NRG calculations for
all values of the density. Additionally, the theoretical value for the
Friedel sum rule as well as the ECFL deviation from it are displayed.

nd ρG,ECFL(0) εd,ECFL εd,NRG zECFL zNRG

0.35 8.69 + 1.8% −0.003 −0.003 0.753 0.697
0.441 13.0 + 1.1% −0.010 −0.009 0.661 0.567
0.536 17.7 + 0.73% −0.015 −0.015 0.559 0.416
0.6 20.8 + 0.41% −0.019 −0.018 0.489 0.312
0.7 25.3 + 0.62% −0.024 −0.024 0.388 0.169
0.777 28.1 + 0.26% −0.031 −0.029 0.314 0.081
0.834 29.7 + 0.20 % −0.037 −0.035 0.265 0.035

find that

ρG(ω) = ρg(ω)[aG + Re �(ω)] + ρ�(ω)Re g(ω). (47)

With f (ω) = 1
1+eβω and f̄ (ω) = 1 − f (ω), the two sum

rules (23) read as∫ ∞

−∞
f (ω)ρg(ω)dω = nd

2
,

∫ ∞

−∞
f (ω)ρG(ω)dω = nd

2
. (48)

We also note ρ�(ω) = �(ω)
π

. It is useful to define a mixed
(composite) density

ρM (x) = ρg(x)

(
�R(x) − u0

2

)
+ ρ�(x)Re g(x), (49)

so that we can integrate (or sum) the internal frequencies
in Eq. (33) efficiently (see Appendix B), and write the two
relevant complex self-energies (with ω ≡ ω + i0+) as

�(ω) = −2λ

∫
u,v,w

ρM (u)ρg(v)ρg(w)

ω − u − v + w

× [f (u)f (v)f̄ (w) + f̄ (u)f̄ (v)f (w)],

4 2 0 2 4

5

10

15

20

25

30
ρG

ω
z 0

nd .536

4 2 0 2 4

5

10

15

20

25

30
ρG

ω

0

nd .536

FIG. 2. (Color online) The spectral density for the physical
Green’s function for the density of nd = 0.536. For the plot on the
left, both the ECFL and NRG curves are plotted versus ω

�0z
. Since

ECFL has a larger z value, the absolute scale of the ω axis differs for
the two curves. For the plot on the right, both ECFL and NRG are
plotted versus ω

�0
and hence the ECFL peak is too wide.

χ (ω) = −2λ

∫
u,v,w

ρM (u)ρg(v)ρM (w)

ω − u − v + w

× [f (u)f (v)f̄ (w) + f̄ (u)f̄ (v)f (w)]. (50)

In these expressions, u,v,w are understood to be real variables,
and using Eq. (46) we can extract the real and imaginary parts
of � and χ in terms of the spectral functions.

III. RESULTS

The following explicit results were obtained after setting
λ = 1 in the equations noted above. We calculated the spectral
functions ρG, ρ� , ρχ , and ρ� using the values D = 1,
�0 = 0.01, and T = 0. The zero-temperature limit is easily
achieved in the ECFL theory by setting all of the Fermi
functions to step functions. We expect that the spectral function
calculated within the ECFL O(λ2) theory will be accurate
through a density of approximately nd = 0.6, or perhaps at
best nd ∼ 0.7. As discussed in Refs. 1 and 2, this is the main
limitation of the low-order λ results: the theory begins to have
substantial corrections as we increase nd towards unity. The
source of this error estimate is the high-frequency behavior

4 2 0 2 4
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15

20

25

30
ρG

ω
z 0

nd .35

4 2 0 2 4

5

10

15

20

25

30
ρG

ω
z 0

nd .441

4 2 0 2 4

5

10

15

20

25

30
ρG

ω
z 0

nd .6

4 2 0 2 4

5
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15
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25

30
ρG

ω
z 0

nd .7

4 2 0 2 4

5
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30
ρG

ω
z 0

nd .777

4 2 0 2 4

5

10

15

20

25

30
ρG

ω
z 0

nd .834

FIG. 1. (Color online) The spectral density for the physical Green’s function versus ω

�0z
for densities of nd = 0.35,0.441,

0.6,0.7,0.777,0.834. The red curve is the ECFL calculation, while the blue curve is the NRG calculation.
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2 1 0 1 2
0.0000

0.0005

0.0010

0.0015

ω

0

ρ
χ

Decreasing n

FIG. 3. (Color online) The spectral function for χ for densities
of nd = 0.834,0.777,0.7,0.6,0.536,0.441,0.35.

within the λ expansion of the Green’s function (33) G ∼ aG
iω

;

this deviates from the known exact behavior G ∼ 1−nd/2
iω

. The
error grows with increasing density, but we expect to have
reasonable results even at nd = 0.7.

In Table I, we show the results for the spectral function
at zero energy in terms of the percentage deviation from the
Friedel sum rule (42), demonstrating that the ECFL satisfies
the Friedel sum rule to a high degree of accuracy. We specify
the occupation number nd and show the values of the energy
level εd and quasiparticle weight z calculated within the ECFL
and NRG calculations. The values of εd are in good agreement
between the two calculations, while there is a discrepancy in
z which becomes more pronounced at higher densities. While
the error in the scale of z as nd → 1 is expected from the low
order in λ aspect of the theory, we should keep in mind that the
shape of the spectral function, and also the imaginary part of
the self-energy, is another matter altogether. We display below
these objects after scaling the frequency with z: this captures
the shape of the spectra and isolates the discrepancy to a single
number, namely, the magnitude of z. The admittedly nontrivial
problem of the magnitude of z must await a more satisfactory
resolution involving the treatment of higher-order terms in λ.

2 1 0 1 2

0.06

0.05

0.04

0.03

0.02

0.01

0.00

Decreasing n

ω

0

ρ

FIG. 4. (Color online) The spectral function for � for densities
of nd = 0.834,0.777,0.7,0.6,0.536,0.441,0.35.

4 2 0 2 4
0.000

0.001

0.002

0.003

0.004

z 0

Decreasing n

ω

ρ

FIG. 5. (Color online) The spectral function for the
Dyson-Mori self-energy for densities of nd = 0.834,0.777,0.7,

0.6,0.536,0.441,0.35. The curvature of the quadratic minimum
becomes larger with increasing density.

In Fig. 1 we display the spectral functions at the indicated
densities, indicating a smooth evolution with density. The
Kondo or Abrikosov-Suhl resonance at positive frequencies
becomes sharper as we increase density and moves closer
to ω = 0. If the raw ECFL and NRG spectral functions are
compared (as in right panel of Fig. 2 for nd = 0.536), one finds
that the peak in the ECFL spectral function is too broad. This
overbroadening becomes worse at larger densities and better
at lower densities. However, it can be understood well in terms
of the elevated value of z for ECFL at higher densities. Hence,
before doing the comparison, as in Fig. 1, we first rescale the
ω axis for both the ECFL and NRG spectral functions by the
appropriate z (as in the left panel of Fig. 2 for nd = 0.536
and in Fig. 1 for the other densities). They are then found to
be in good agreement up to surprisingly high values of nd ,
suggesting that the ECFL theory captures the shape (but not
the scale) of the spectral functions and their asymmetry in a
very natural fashion. We also found good agreement with the
NRG spectral functions in Ref. 24. The ECFL spectral function
ρG is constructed out of the two spectral functions ρχ and ρ�

that are shown at various densities in Figs. 3 and 4, exhibiting
Fermi liquid type quadratic frequency dependence at low ω.

In Fig. 5 we present the density evolution of the spectral
function for the Dyson-Mori self-energy [see Eq. (22)]. This
exhibits a remarkable similarity to the analogous spectral
density for the t-J model in the limit of high dimensions33

and the Hubbard model at large U .34

IV. CONCLUSION

In this work, we have applied the ECFL formalism at the
simplest level, using the O(λ2) equations, to the Anderson
impurity model with U → ∞. In this formalism, the two
self-energies of the ECFL theory � and χ are calculated using
a skeleton expansion in the auxiliary Green’s function g. This is
analogous to the skeleton expansion for the Dyson self-energy
�, in standard Feynman-Dyson perturbation theory applicable
to the case of finite U . These two self-energies determine g as
well as the physical G, leading to a self-consistent solution. We
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obtained the equations to second order and solved them nu-
merically at T = 0. We found that at low enough ω, the ECFL
self-energies have symmetric spectra of the type predicted
by Fermi liquid theory (see Figs. 3 and 4). Combining them
through the ECFL functional form (22) generates a nontrivial
self-energy with an asymmetric spectrum displayed in Fig. 5.
It therefore appears that functional form (22) has the potential
to generate realistic and nontrivial spectral densities, starting
with rather simple components. The availability of convenient
and natural analytical expressions is seen to provide a distinct
advantage of the ECFL formalism. Formally exact techniques
such as the NRG involve steps that are not automatically
endowed with these, but rather rely on analytic continuation
or other equivalent techniques.

The physical spectral function for the impurity site is ob-
tained from the above pair of ECFL self-energies, and displays
a Kondo or Abrikosov-Suhl resonance. This feature becomes
more narrow and the spectrum becomes more skewed towards
the occupied side of the peak with increasing density. However,
the computed quasiparticle z in the present calculation is
considerably larger than the exact value z ∝ e−1/2(1−nd ), as
nd → 1,31 i.e. into the Kondo regime. This large z makes it
impossible for the O(λ2) version of ECFL presented here to
address the Kondo regime nd → 1. It results in the the masking
of a small (and broad) peak at ω ∼ εd , found in our NRG
spectral functions, as we approach the Kondo limit. Both real
and imaginary parts of the computed �DM(ω) are larger than
their NRG counterparts in that regime, thereby precluding a
peak.

To place this result in context, we observe that the same level
of approximation of ECFL, applied to the lattice problem of
the d → ∞, U → ∞ Hubbard model in Ref. 33 (see Fig. 12),
does show a lower Hubbard band peak in the spectral function.
This difference presumably arises from the robust value of
z ∼ (1 − n) in the lattice model, arising from Gutzwiller
physics; it is much larger than the exponentially small value
z ∝ e−1/2(1−nd ) in the AIM. Therefore, the fractional error
made by the O(λ2) ECFL calculation is smaller in the lattice
model compared to the AIM.

The location of the peak is set by εd + �DM(0) [Eq. (21)].
Using Eq. (41), we can see that this quantity must decrease with
increasing density. This is consistent with the expectation that
the location of the peak will approach ω = 0 as nd → 1. This
can also be understood from the need to have more spectral
weight when ω � 0, to yield a higher value of nd . We found
that the ECFL spectrum satisfies the Friedel sum rule [Eq. (42)]
to a high degree of accuracy, and that ECFL yields values of
εd in good agreement with the NRG values at all densities (see
Table I).

As mentioned above, the ECFL calculation to O(λ2) over-
estimates the value of the quasiparticle weight z as compared
with the NRG and the exact asymptotic result z ∝ e−1/2(1−nd )

as nd → 1,31 the difference becoming more significant with
increasing density. This also leads to an overbroadening of
the peak in the ECFL spectrum at higher densities. This is
consistent with the fact that the λ expansion of the ECFL is
a low-density expansion and the current calculation has only
been carried out to O(λ2). Nevertheless, after rescaling the ω

axis for both the ECFL and NRG spectra by their respective
values of z, we find good quantitative agreement between the

two as in Fig. 1. In Fig. 2, we illustrate the comparison between
scaled and unscaled spectral functions at a typical density. We
find similarly good agreement with the NRG calculation from
Ref. 24. This implies that the ECFL theory has the correct
shape of the spectra built into it quite naturally.

Finally, we note that the computed spectral functions exhibit
a remarkable similarity to the analogous spectral density for the
t-J model in the limit of high dimensions33 and the Hubbard
model at large U .34
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APPENDIX A: CALCULATING THE SELF-ENERGIES
IN THE O(λ2) THEORY

The calculation follows the procedure given in Ref. 2. A
few comments are provided to make the connections explicit:
the zeroth-order vertices are common to Ref. 2 [Eqs. (B3) and
(B14)] and the first-order U is common to Eq. (B15). The first-
order vertex [�]1 can be found parallel to Eqs. (B23)–(B28)
in Ref. 2 from differentiating

[g−1(i,f )]1 = �(i,f )g(k)(i,i) + δ(i,f )�(i,a)g(k)(a,f ),

(A1)

as

[�(a)(i,m; j )]1 = −2�(i,m)g(i,j ) · g(j,i)

− 2δ(i,m)�(i,k)g(k,j ) · g(j,i). (A2)

Here, the bold labels are integrated over. From this we
construct, the time-domain self-energies

�(i,f ) = −2λ�(i,k)g(k,f ) · g(i,f ) · g(f,i) (A3)

and

�(i,f ) = −δ(i,f )�(ik)g(ki)

− 2λ�(ij)g(jk) · �(kf )g(ki) · g(ik)

− 2λ�(ij)g(jf ) · �(f k)g(ki) · g(if ). (A4)

After shifting �(i,f ) → �(i,f ) − u0
2 δ(i,f ) and Fourier trans-

forming these, we obtain Eqs. (33) and (34). These expressions
for the self-energies are correct to O(λ) and lead to expression
for g−1 and μ which are correct to O(λ2). χ can be extracted
from � as indicated in the text.

APPENDIX B: FREQUENCY SUMMATIONS

An efficient method to perform the frequency sums is to
work with the time-domain formulas (A3) and (A4) until the
final step where Fourier transforms are taken. We note the
representation for the Green’s function

g(τ ) =
∫

x

ρg(x)e−τx[θ (−τ )f (x) − θ (τ )f̄ (x)], (B1)

so that we can easily compound any pair that arises by dropping
the cross products θ (τ )θ (−τ ) and using θ (τ )2 = θ (τ ). An
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example illustrates this procedure:

g(τ )g(−τ ) = −
∫

x,y

ρg(x)ρg(y)e−τ (x−y)

× [θ (−τ )f (x)f̄ (y) + θ (τ )f̄ (x)f (y)]. (B2)

We also need to deal with the convolution of pairs of functions

X(τ ) =
∫ β

−β

dτ̄ g(τ̄ )

[
�(τ − τ̄ ) − u0

2
δ(τ − τ̄ )

]

=
∫

x

ρM (x)e−τx[θ (−τ )f (x) − θ (τ )f̄ (x)], (B3)

where the density ρM (x) is defined in Eq. (49). This
equation in turn is easiest to prove by transforming into
a product in the Matsubara frequency space, simplify-
ing using partial fractions, and then transforming back
to time domain. We next note that Eqs. (A3) and (A4)
imply

�(τ ) = −2λX(τ )g(τ )g(−τ ),
(B4)

χ (τ ) = −2λX(τ )X(−τ )g(τ ),

so that taking Fourier transforms is simplest if we first multiply
out as in Eq. (B2), leading to Eq. (50).
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