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a b s t r a c t

The recently developed theory of extremely correlated Fermi liq-
uids (ECFL), applicable to models involving the physics of
Gutzwiller projected electrons, shows considerable promise in un-
derstanding the phenomena displayed by the t–J model. Its for-
mal equations for the Greens function are reformulated by a new
procedure that is intuitively close to that used in the usual Feyn-
man–Dyson theory. We provide a systematic procedure by which
one can draw diagrams for the �-expansion of the ECFL introduced
in Shastry (2011), where the parameter � 2 (0, 1) counts the or-
der of the terms. In contrast to the Schwinger method originally
used for this problem, we are able to write down the nth order dia-
grams (O(�n)) directly with the appropriate coefficients, without
enumerating all the previous order terms. This is a considerable
advantage since it thereby enables the possible implementation of
Monte Carlomethods to evaluate the� series directly. The newpro-
cedure also provides a useful and intuitive alternative to the earlier
methods.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Motivation

The t–J model is amodel of fundamental importance in condensedmatter physics, and is supposed
to have the necessary ingredients to explain the physics of the high-temperature cuprates [1]. Its

⇤ Corresponding author at: Physics Department, University of California, Santa Cruz, CA 95064, USA.
E-mail address: eperepel@ucsc.edu (E. Perepelitsky).

http://dx.doi.org/10.1016/j.aop.2015.03.010
0003-4916/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.aop.2015.03.010
http://www.elsevier.com/locate/aop
http://www.elsevier.com/locate/aop
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aop.2015.03.010&domain=pdf
mailto:eperepel@ucsc.edu
http://dx.doi.org/10.1016/j.aop.2015.03.010


2 E. Perepelitsky, B. Sriram Shastry / Annals of Physics 357 (2015) 1–39

Hamiltonian can be written in terms of the Hubbard X operators as [2]

H = �
X

ij�

tijX�0i X0�
j � µ

X

i�

X��i + 1
2

X

ij�

JijX��i + 1
4

X

ij�1�2

Jij{X�1�2i X�2�1j � X�1�1i X�2�2j }. (1)

The operator Xab
i = |aihb| takes the electron at site i from the state |bi to the state |ai, where |ai

and |bi are one of the two occupied states |"i, |#i, or the unoccupied state |0i. In terms of electron
operators C, CÑ, and the Gutzwiller projection operator PG that eliminates double occupancy, wemay
explicitly write X�0i = PG CÑ

i� PG, X0�
i = PG Ci� PG and X�� 0

i = CÑ
i�Ci� 0 PG. The key object of study for

this model is the single-particle Green’s function, given by the expression

G�1�2(i, f ) = �hT⌧X0�1
i (⌧i)X

�20
f (⌧f )i, (2)

aswell as higher order dynamical correlation functions. Several novel approaches for computing these
objects have been tried in literature [3–8], but it has been founddifficult to impose the Luttinger–Ward
volume theorem in a consistentway,while providing a realistic description of both quasiparticle peaks
and background terms in the spectral function.

The essential difficulties in computing these objects are (I) the non-canonical nature of the X op-
erators, and hence the absence of the standard Wick’s theorem, and (II) the lack of a convenient ex-
pansion parameter. In the recently developed extremely correlated Fermi liquid theory (ECFL) [9–11],
Shastry proposed a formalism which successfully resolves both difficulties. This formalism is based
on Schwinger’s approach to field theory, which bypasses Wick’s theorem, and is more generally ap-
plicable than the Feynman approach that is fundamentally based uponWick’s theorem. Building atop
this powerful formalism, the ECFL theory consists of the following main ingredients:

• (1) The product ansatz, in which the physical Green’s function G[i, f ] is written as a product of the
auxiliary (Fermi-liquid type) Green’s function g[i, f ], and a caparison functioneµ[i, f ] (Eq. (9)). The
former is a canonical, i.e. unprojected electron typeGreen’s function,while the latter is a dynamical
correction, which arises fundamentally from the removal of double occupancy from the Hilbert
space. This addresses the difficulty (I) above.

• (2) The introduction of an expansion parameter � 2 (0, 1), which continuously connects the
t–J model with the free Fermi gas, and enables the formulation of a systematic expansion. This
parameter is related to the extent towhich double occupancy is removed, and has a close parallel to
the semiclassical expansion parameter 1

2S arising in the expansion of spin S (angular momentum)
operators in terms of canonical Bosons [11].

In addition the detailed calculations require certain crucial steps

• (3) The introduction of a particle–number sum rule for the auxiliary Green’s function (Eq. (62)),
fixing the number of auxiliary fermions to equal the number of physical fermions. This arises
from requiring the charge of the particle to be unaffected by Gutzwiller projection, and is closely
connected to the volume of the Fermi-surface of the physical fermions. In essence it ensures that
the theory satisfies the Luttinger–Ward volume theorem [12,13].

• (4) The introduction of the second chemical potential u0, which ensures that g[i, f ] and eµ[i, f ]
individually satisfy the shift invariance theorem [10], and together with the original chemical
potential µ, facilitates the fulfilling of the two particle–number sum rules.

In earlier work these ingredients are accomplished directly using the Schwinger equation of motion
(EOM) for the t–J model. In particular, the fundamental objects g[i, f ] andeµ[i, f ] are defined through
their respective equations ofmotion, and the expansion parameter� is inserted directly into the equa-
tion of motion. The practical issue of computing objects to various orders in � is also accomplished by
iterating the EOM order by order. The technical details are given in Refs. [9,10], and are summarized
in Section 2, facilitating a self contained presentation.

In recent papers, the O(�2) ECFL has been theoretically benchmarked using Dynamical Mean-Field
Theory (DMFT) [14], Numerical RenormalizationGroup (NRG) calculations [15], andhigh-temperature
series [16]. In all cases, the low order ECFL calculation compares remarkably well with these well
established techniques. On the experimental side, a phenomenological version of ECFL which uses
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simple Fermi-liquid expressions for the self-energies �[i, f ] and  [i, f ] (which are simply related
g[i, f ] and eµ[i, f ] respectively) was successful in explaining the anomalous lines shapes of Angle-
Resolved Photoemission Spectroscopy (ARPES) experiments [17]. Encouraged by this, higher order
terms e.g. O(�3) are of considerable interest in order to probe densities closer to the Mott limit than
possible with the O(�2) theories, and in this context the present work is relevant. In this paper, we
develop a diagrammatic � expansion. This expansion allows one to calculate the Greens function and
related objects to any order in � by drawing diagrams. These diagrams are reminiscent of those in the
Feynman series [18,19], although more complicated than the former. This extra complication stems
from the non-canonical nature of the X-operators and the absence of Wick’s theorem. The diagram-
matic formulation of the � series has the following advantages:

• It allows one to calculate the nth order contribution to any object by drawing diagrams directly for
that order, without having to iterate the expressions from the previous orders. This not only allows
for greater ease of computation of analytical expressions, but is also essential for powerful numer-
ical series summation techniques, such as diagrammatic Monte Carlo [20]. Ultimately, it will allow
the series to be evaluated to high orders in �, whereas presently, only a second order calculation
has been possible [21].

• It allows for the diagrammatic interpretation of the various objects in the theory such as the aux-
iliary Green’s function g[i, f ] and the caparison factor eµ[i, f ]. For example, one can see that the
product ansatz (Eq. (9)) is a natural consequence of the structure of the G[i, f ] diagrams. In par-
ticular, it is necessitated by the extra complexity introduced into the diagrams (over those of the
Feynman series) by the projection of the double occupancy.

• It allows one to visualize the structure of the diagrams to all orders in �, therefore facilitating dia-
grammatic re-summations based on some physical principle.

1.2. Results

Themain result of the paper is the formulation of diagrammatic rules to calculate the Green’s func-
tion to any order in �. More precisely, the rules state how to generate numerical representations (see
Section 4.2), which are then converted into diagrams. A subset of these numerical representations
(determined by a simple criterion) are in one-to-one correspondence with the standard Feynman di-
agrams. Therefore, the diagrams given here are a natural generalization of the Feynman diagrams.
In this broader class of diagrams, we obtain a subset of numerical representations which are not in
one-to-one correspondence with the resulting non-Feynman diagrams. In particular, two different
numerical representations can lead to the same (non-Feynman) diagram. This occurs since in these
non-Feynman diagrams, an interaction vertex can have more than two pairs of Green’s function lines
exiting and entering it (e.g. Fig. 40g). However, the contributions of both numerical representa-
tions must be kept. We also discuss the relationship between ECFL and a formalism using the high-
temperature expansion for the t–J model due to Zaitsev and Izyumov [7,8] in Section 8, and make
some connections in the following.

We find that a certain subset of the G[i, f ] diagrams terminate with a self-energy insertion, rather
than a single point, as in the case of the Feynman diagrams. This expresses the diagrammatic necessity
for the factorization of G into g andeµ. These are in turn expressed in terms of the two self-energies�
and  . It is interesting that within the Zaitsev–Izyumov [7,8] formalism, a two self-energy structure
for the Green’s function is necessary for the exact same reason. The fact that the two self-energy struc-
ture comes from three independent approaches, the � expansion, the high-temperature expansion,
and the factorization of the Schwinger EOM, shows that it is the correct representation of the Green’s
function for this model. In addition, as already reported in Ref. [11], the Dyson–Maleev approach de-
veloped by Harris, Kumar, Halperin and Hohenberg [22] also leads to a similar two self energy scheme
in quantum spin systems, where again the algebra of the basic variables is non-canonical.

We derive diagrammatic rules for the constituent objects g, eµ, � , and  from their definitions,
starting from the Schwinger equations of motion. We avoid the use of dressed propagators (leading
to skeleton terms), but rather expand various objects in powers of � directly. The fact that these di-
agrammatic rules are consistent with those of G and the product ansatz serves as an independent
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proof of the rules given for G. We find that � consists of two independent pieces. The first can be
obtained by adding a single interaction line to the terminal point of a  diagram, while the second
one is completely independent of  . We denote the second piece by the letter � , which leads to the
relation �(Ek, i!k) = ✏Ek (Ek, i!k) + �(Ek, i!k) in momentum space. In a previous work by the same
authors [23], we showed directly from the Schwinger equations of motion, that in the limit of infinite
spatial dimensions, �(Ek, i!k) = ✏Ek (i!k) + �(i!k). Here, using the diagrammatic � expansion, we
show that this relationship continues tomake sense in finite dimensions. In going from finite to infinite
dimensions, we lose momentum dependence so that  (Ek, i!k) !  (i!k) and �(Ek, i!k) ! �(i!k).
We also derive the Schwinger EOM defining the object � in finite dimensions.

We derive diagrammatic rules for the three point vertices ⇤ and U, defined as functional deriva-
tives of g�1 andeµ (Eq. (11)). Diagrammatically, their relationship to� and  is seen to be consistent
with the Schwinger equations of motion (Eq. (10)). We also derive a generalized Nozières relation for
these vertices, which differs from the standard one for the three-point vertices of the Feynman dia-
grams. We introduce the concept of a skeleton diagram into our series. This enables us to make the
rather subtle connection between our diagrammatic approach for the � expansion, and the iterative
one used previously. Finally, we use our diagrammatic approach to derive analytical expressions for
the third order skeleton expansion of the objects g andeµ, whereas previously only the second order
expressions had been derived via iteration of the equations of motion.

1.3. Outline of the paper

In Section 2,we begin by reviewing the ECFL formalism fromRefs. [9] and [10] in the simplified case
of J = 0. In Section 3, we introduce the � expansion diagrams in a heuristic way, drawing an analogy
with the standard Feynman diagrams. In Section 4, we derive the rules for drawing and evaluating
the bare diagrams for G to each order in �. We also draw and evaluate the first and second order bare
diagrams for G. In Section 5, we derive the diagrammatic rules for the constituent objects g, eµ, � ,
 , � , � ,⇤, and U. We also show how to evaluate diagrams in momentum space. We then introduce
skeleton diagrams into the series, and complete the full circle by relating our diagrammatic approach
to the � expansion to the original iterative one reviewed in Section 2. In Section 6, we review the ECFL
formalism [9,10] with J 6= 0, and introduce J into our diagrammatic series. In Section 7, we compute
the skeleton expansion to third order in � for the objects g andeµ. We also discuss the high-frequency
limit of G to each order in the bare and skeleton expansions, as well as the ‘‘deviation’’ of the � series
from the Feynman series. Finally, in Section 8, we discuss the connection between the ECFL and the
Zaitsev–Izyumov formalism for the high-temperature expansion of the t–J model.

2. ECFL equations of motion and the � expansion

The Greens function is the fundamental object in this theory and is defined as usual by

G�i,�f [i, f ] ⌘ �hhX0�i
i X�f 0f ii = � 1

Z[V] tr e
��HT⌧

⇣

e�AX0�i
i (⌧i)X

�f 0
f (⌧f )

⌘

, (3)

where A = P

j

R �

0 X�� 0
j (⌧ 0)V�� 0

j (⌧ 0)d⌧ 0, is the additional term in the action due to the Bosonic source
Vi ⌘ Vi(⌧i), included in the partition functional Z[V] = tr e��HT⌧ e�A. The angular brackets represent
averages over the distribution in Eq. (3). The function G satisfies the Schwinger equation of motion for
the t–J model as derived in Refs. [9], [10], and [2].

n

⇥

(@⌧i � µ)�[i, j] � t[i, j]
⇤

��1,�j + V
�1,�j
i �[i, j]

o

G�j,�2 [j, f ]
= ��[i, f ]��1,�2 + ��[i, f ]��1,�2 [i] � �t[i, j]��1,�a [i]G�a,�2 [j, f ]

+ �t[i, j]�1�a
�

�V
�̄1,�̄a
i

G�a,�2 [j, f ] + �

2
J[i, j]

 

��1,�a [j]G�a,�2 [i, f ] � �1�a
�

�V
�̄1,�̄a
j

G�a,�2 [i, f ]
!

, (4)
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where the bold repeated indices are summed over. The functional derivative takes place at time (⌧+
i ),

and we have used the notation �[i,m] = �i,m�(⌧i � ⌧m), t[i,m] = ti,m�(⌧i � ⌧m), and ��1,�2 [i] =
�1�2G�̄2,�̄1 [i, i+].

We next outline how one obtains the above equation ofmotion from the definition Eq. (3).We take
a time derivative @⌧i of Eq. (3), yielding several terms.We start with a simple contribution, namely the
time derivative of the ✓(⌧i � ⌧f ), which involves the anticommutator

{X0�i
i , X�j0j } = �ij

⇣

��i�j � � �i�jX
�̄i�̄j
i

⌘

, (5)

strictly speaking with � = 1. We use the anticommutator, generalized as above by introducing the
parameter � 2 [0, 1], so that the result interpolates smoothly between the canonical value � = 0 and
the fully Gutzwiller projected value � = 1. This process is fundamental to obtaining the � expansion.
From this, we get �if �(⌧i�⌧f )

⇣

��i�f � ��i�f hX �̄i�̄fi (⌧i)i
⌘

. This is expressed back in terms of the Greens

function bywriting hX �̄i�̄fi i ! G�̄f �̄i [i⌧i, i⌧+
i ] = �i�f ��i�f [i], and thus to the first two terms on the right

hand side of Eq. (4).
Another contribution arises from the ⌧i dependence in the lower and upper limits of the time

integrals in the expression

T⌧ e�AS X0�i
i (⌧i) = e

�P
j

R �
⌧i

X��
0

j (⌧ 0)V�� 0
j (⌧ 0)d⌧ 0

X0�i
i (⌧i)e

�P
j

R ⌧i
0 X��

0
j (⌧ 0)V�� 0

j (⌧ 0)d⌧ 0

, (6)

involving the equal time commutator
P

j V
�� 0
j (⌧i)[X�� 0

j (⌧i), X
0�i
i (⌧i)] = V

�i�
0

i (⌧i)X0� 0
i (⌧i). This leads

to the third term in the left hand side of Eq. (4).
The non trivial term is obtained when the @⌧i X

0�
i (⌧i) is evaluated from the Heisenberg equation of

motion [H, X0�
i ] and the fundamental anticommutator Eq. (5) yielding

[X0�
i ,H] = �µX0�

i � tijX
0�i
j + �

X

j�j

tij(�i�j)X
�̄i�̄j
i X0�j

j � 1
2
�
X

j6=i

Jij(�i�j)X
�̄i�̄j
j X0�j

i . (7)

Note that the J term has an almost identical structure to the t term, with i $ j. The term involving J
actually does not come with the external �, we introduce it so that the � = 0 limit is the Fermi gas.
(This is permissible since we are finally interested in the limit � = 1.) A higher order Greens function
hhX �̄i�̄ji (⌧i)X

0�j
j (⌧i), X

�f 0
f (⌧f )ii is generated by the third term and a similar one by the fourth term. These

are re-expressed in terms of the Greens function by using the identity due to Schwinger

hhX �̄i�̄ji (⌧i)X
0�j
j (⌧i), X

�f 0
f (⌧f )ii = hhX �̄i�̄ji (⌧i)iihhX0�j

j (⌧i), X
�f 0
f (⌧f )ii

� �

�V
�̄i�̄j
i (⌧i)

hhX0�j
j (⌧i), X

�f 0
f (⌧f )ii. (8)

Using again hhX �̄i�̄ji (⌧i)ii = G�̄j�̄i [i⌧i, i⌧+
i ] = �i�j��i�j [i], we obtain the last four terms on the right hand

side of equation Eq. (4). For ease of presentation we will initially set J ! 0 and reinstate it at a later
stage.

As demonstrated in Ref. [9], the electron Green’s function G[i, f ] can be factored via the following
product ansatz:

G[i, f ] = g[i, j].eµ[j, f ], (9)

where g[i, f ] is the auxiliary Green’s function, eµ[i, f ] is the caparison factor, all objects have been
represented as 2 ⇥ 2 matrices in spin space, and matrix multiplication has been indicated by a dot.
g[i, f ] andeµ[i, f ] are defined by the their respective Schwinger equations of motion.

g�1[i,m] = (µ � @⌧i � Vi) �[i,m] + t[i,m] (1 � �� [i]) � ��[i,m].
eµ[i,m] = (1 � �� [i])�[i,m] + � [i,m]
�[i,m] = �t[i, j] ⇠ ⇤.g[j,n].⇤⇤[n,m; i];  [i,m] = �t[i, j] ⇠ ⇤.g[j,n].U⇤[n,m; i]. (10)
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These exact relations give the required objects g andeµ in terms of the vertex functions. Here we also
note that the local (in space and time) Green’s function � [i], and the vertices⇤[n,m; i] andU[n,m; i],
are defined as

� [i] = eµ(k)[n, i+].g(k)[i,n]; ⇤[n,m; i] = � �

�Vi
g�1[n,m]; U[n,m; i] = �

�Vi
eµ[n,m], (11)

where we have used the notationM(k)
�1,�2

= �1�2M�̄2,�̄1 to denote the time reversed matrixM(k) of an
arbitrary matrix M . These exact relations give the vertex functions in terms of the objects g and eµ.
The vertices defined above (⇤ and U) have four spin indices, those of the object being differentiated
and those of the source. For example, U�1�2

�a�b [n,m; i] = �

�V
�a�b
i

eµ�1�2 [n,m]. In Eq. (10), ⇠�a�b = �a�b,

and the ⇤ indicates that these spin indices should also be carried over (after being flipped) to the
bottom indices of the vertex, which is also marked with a ⇤. The top indices of the vertex are given by
the usual matrix multiplication. An illustrative example is useful here: (⇠ ⇤.g[j,n].U⇤[n,m; i])�1�2 =
�1�a g�a,�b [j,n] �

�V
�̄1 �̄a
i

eµ�b,�2 [n,m].
The � expansion is obtained by expanding Eqs. (10) and (11) iteratively in the continuity parameter

�. The� = 0 limit of these equations is the free Fermi gas. Therefore, a direct expansion in�will lead to
a series in � in which each term is made up of the hopping tij and the free Fermi gas Green’s function
g(0)[i, f ]. As is the case in the Feynman series, this can be reorganized into a skeleton expansion in
which only the skeleton graphs are kept and g(0)[i, f ] ! g[i, f ]. However, one can also obtain the
skeleton expansion directly by expanding Eqs. (10) and (11) in �, but treating g[i, f ] as a zeroth order
(i.e. unexpanded) object in the expansion. This expansion is carried out to second order in Ref. [9]. In
doing this expansion, onemust evaluate the functional derivative �g

�V
. This is donewith the help of the

following useful formula which stems from the product rule for functional derivatives.

�g[i,m]
�Vr

= g[i, x].⇤[x, y, r].g[y,m]. (12)

Within the � expansion, the LHS is evaluated to a certain order in � by taking the vertex⇤ on the RHS
to be of that order in �.

3. Heuristic discussion of � expansion diagrams

3.1. Numerical representations of Feynman diagrams

Before deriving the precise rules for the � expansion diagrams, it is useful to have a heuristic dis-
cussion in which we compare them to the more familiar Feynman diagrams [18,19]. To this end, we
introduce numerical representations for the standard Feynman diagrams. These numerical represen-
tations will then be generalized to generate the � expansion diagrams.

Consider any Feynman diagram for the Green’s function G[i, f ] such as those displayed in Fig. 1.
There is a unique pathwhich runs between i and f which uses only Green’s function lines, not counting
the interaction lines. We denote this as the zeroth Fermi loop. It is drawn in red in Fig. 1. We number
the interaction lines which connect to the zeroth Fermi loop in the order in which they appear in this
loop. This list of numbers (along with f ) is placed in the top row of our numerical representation. In
the case of both Figs. 1(a) and 1(b), it is

1 2 f .

If the zeroth Fermi loop does not exhaust all of the Green’s function lines in the diagram, such as
in Fig. 1(a), we proceed to the first Fermi loop. To identify the first Fermi loop, we find the interaction
vertex with the highest number which connects to the zeroth Fermi loop with only one of its two
sides. In this case, this is the interaction vertex labeled 2. The other side has one incoming line and
one outgoing line. There is a unique path in the diagram which connects these two lines using only
Green’s function lines, not interaction lines. This defines the first Fermi loop. It is drawn in blue in
Fig. 1(a).
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ba

Fig. 1. Second order Feynmandiagrams forG[i, f ]. The zeroth Fermi loop,which is the chain running from i to f is colored in red.
In panel (a), the first Fermi loop is colored in blue. The numerical representation of the diagram in panel (a) is 1 2⇤ f ; 2⇤ : 0 1 f ,
while that of the diagram in panel (b) is 1 2 1 2 f . (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

Fig. 2. This Feynmandiagram results from reversing the order of the subscripts in the numerical representation of the Feynman
diagram in Fig. 1(b). Therefore, the numerical representation of this diagram is 1 2 2 1 f .

Since the interaction vertex 2 spawned the first Fermi loop, it is starred in the top row of the repre-
sentation.Wealso include a lower row for the first Fermi loop. Therefore, the numerical representation
of Fig. 1(a) now reads.

1 2⇤ f
2⇤ : 0 f .

The second row, which represents the first Fermi loop, is labeled by 2⇤, since it was spawned by the
second interaction vertex in the zeroth Fermi loop. The fact that only 0 and f are present in the sec-
ond row tells us that there were no interaction vertices introduced in the first Fermi loop. That is to
say there are no interaction vertices which connect to the first Fermi loop, but not to the previous
ones (in this case the zeroth Fermi loop). Finally, after all of the Fermi loops have been recorded, all
nonzero integers which are not starred indicate the position of one side of an interaction vertex in a
Fermi loop. We record the position of the other side as a subscript. Therefore, the complete numerical
representation of Fig. 1(a) is

1 2⇤ f
2⇤ : 0 1 f .

We can represent this in short as 1 2⇤ f ; 2⇤ : 0 1 f , where the semi colon indicates the next line. The
complete numerical representation of Fig. 1(b) is

1 2 1 2 f .

Note that the order of appearance of the 1 and 2 as subscripts is important. Reversing them would
yield the diagram in Fig. 2, which has the following numerical representation.

1 2 2 1 f .

We now consider the slightly more complicated diagram in Fig. 3 to illustrate the scope of this
approach. We will now show how the numerical representation of this diagram is derived. We first
identify the zeroth Fermi loop, which is drawn in red in Fig. 3. The top row now reads

1 2 3 4 f .

In this case, the vertex with the highest number which connects to this loop with only one side is 4.
Hence, 4 spawns another Fermi loop, and gets a star in the top row.

1 2 3 4⇤ f .
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Fig. 3. Sixth order Feynman diagram. The zeroth, first, second, and third Fermi loops are drawn in red, blue, green, and
turquoise respectively. Interaction vertices introduced in a particular Fermi loop are numbered in the same color as that loop.
An interaction vertex is starred if it spawns a new Fermi loop. The numerical representation for this diagram is 1 2⇤ 3 4⇤ f ; 4⇤ :
0 3 1 2⇤ f ; (4, 2)⇤ : 0 (4,1) 1 f ; 2⇤ : 0 f . (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

We identify this as the first Fermi loop. It is drawn in blue in Fig. 3. The numerical representation is
modified to read

1 2 3 4⇤ f
4⇤ : 0 1 2 f .

Considering only the interaction vertices introduced in the first Fermi loop, we now search for the one
with the highest number which connects to the first Fermi loop with one side, but whose other side
is free, that is to say that it does not connect to any of the Fermi loops introduced thus far (zeroth and
first). This is the interaction vertex 2. Hence, it gets a star, and spawns the second Fermi loop, which
is drawn in green. The numerical representation now reads

1 2 3 4⇤ f
4⇤ : 0 1 2⇤ f

(4, 2)⇤ : 0 f .

Here, the ordered pair (4, 2) is used to distinguish the 2 in the first Fermi loop from the 2 in the zeroth
Fermi loop, the latter being denoted simply as 2. The first number in the pair is 4 since the fourth
interaction vertex in the zeroth Fermi loop spawned the first Fermi loop. Also note that no interaction
vertices are introduced in the second Fermi loop, hence its row only has a 0 and an f . Therefore, we
have arrived at the end of our first sequence of nested Fermi loops. We now take a step back in this
sequence and return to the first Fermi loop. Considering only the interaction vertices introduced in
the first loop with number less than 2, we search for the one with the highest number which connects
with one side to the first Fermi loop, but whose other side is free (i.e. does not connect to the zeroth,
first, or second Fermi loops). There is no such interaction vertex. Therefore, we take another step back
in the sequence, and return to the zeroth Fermi loop. We find that the interaction vertex 2 connects
to this loop with one side, but that the other side is free. Hence, 2 gets a star and spawns the fourth
Fermi loop, which is drawn in turquoise. The numerical representation now reads

1 2⇤ 3 4⇤ f
4⇤ : 0 1 2⇤ f

(4, 2)⇤ : 0 f
2⇤ : 0 f .

Since there are no interaction vertices introduced in the fourth Fermi loop, we have arrived at the end
of our second sequence of nested Fermi loops. We take a step back to the zeroth Fermi loop and find
that there are nomore interaction vertices introduced in this loopwhich have one side free. Since all of
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the Fermi loops have been identified, as the final step, wemust take the integerswhich are not starred,
andplace them in their final locations as subscripts. The complete numerical representation now reads

1 2⇤ 3 4⇤ f
4⇤ : 0 3 1 2⇤ f

(4, 2)⇤ : 0 (4,1) 1 f
2⇤ : 0 f .

If we nowwanted to formulate a set of rules for generating the numerical representations obtained
from the Feynman diagrams, they would be the following.

• (1) Write a row of integers 1 . . .m f wherem � 1, e.g.

1 2 3 4 f .

• (2) Assign a star to any of the integers in the row (f does not count as an integer), e.g.

1 2⇤ 3 4⇤ f .

• (3) Every starred integer gives rise to a lower row. The ith lower row also consists of integers
0 . . .mi f , where mi � 0, e.g.

1 2⇤ 3 4⇤ f
4⇤ : 0 1 2 f
2⇤ : 0 f .

• (4) In the lower rows, assign a star to any of the integers excluding 0, e.g.

1 2⇤ 3 4⇤ f
4⇤ : 0 1 2⇤ f
2⇤ : 0 f .

• (5) The integers starred in step 4 once again give rise to lower rows, etc. Continue this process until
the last rows which you create have no starred integers, e.g.

1 2⇤ 3 4⇤ f
4⇤ : 0 1 2⇤ f

(4, 2)⇤ : 0 f
2⇤ : 0 f .

• (6) Label each integer with a tuple (an ordered list of numbers) which traces that integer back to
the first row through the starred integers. For example, the 0 in the third row would be labeled
(4, 2, 0).

• (7) Between any 2 consecutive integers of a row (including 0’s and f ’s), one can place as subscripts
an ordered list of tuples from the following set: all those corresponding to non-starred integers
except 0 whose tuple can be obtained from the tuple of the smaller of the 2 consecutive integers
in question, by taking the first k  l entries of this tuple (where l is the length of the tuple),
and subtracting a non-negative integer from the last entry. For example, suppose that the two
consecutive integers in question are the 2 and f of the second row. Then all tuples (corresponding
to non-starred integers) eligible to be used as subscripts between them are: (4, 1), 3, and 1. All
non-starred integers (except 0’s) must be used exactly once in this way, e.g.

1 2⇤ 3 4⇤ f
4⇤ : 0 3 1 2⇤ f

(4, 2)⇤ : 0 (4,1) 1 f
2⇤ : 0 f .

If we think back to the order in which we generated Fermi loops (and hence the numerical repre-
sentation) from a given Feynman diagram, we can see that it complies exactly with rule (7) stated
above. Doing things in this way ensures that the mapping between Feynman diagrams and numerical
representations is one-to-one.
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ba

Fig. 4. The 2 elements used for constructing the � expansion diagrams.

a b

Fig. 5. Two of the simplest non-Feynman diagrams in the � expansion. A non-Feynman diagram occurs when the terminal
point of a Fermi loop spawns another Fermi loop. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

3.2. Topologies of � expansion diagrams

The exact rules for drawing diagrams for the � expansion, as defined in Section 2 will be derived in
Section 4. There, it will be shown that the � expansion diagrams are constructed from the 2 elements
displayed in Fig. 4. The one in panel (a) is a generalization of the Feynman interaction vertex, in which
one of the sides can have any number of pairs of incoming and outgoing lines rather than just one
pair. The one in panel (b) is a generalization of the terminal point f in a Feynman diagram. In the case
of the Feynman diagrams, it is a single point, while in the case of a � expansion diagram, it is a single
point along with any number of pairs of incoming and outgoing lines. These extra lines come from the
second term on the RHS of Eq. (17). This term, which itself comes from the anti-commutator of the
X-operators in Eq. (2), and which is absent in the EOM of canonical theories, allows a diagram to close
in on itself in an iterative expansion of the EOM.

In Fig. 5, we have drawn two of the simplest non-Feynman diagramswhich can bemade from these
elements. The one in panel (a) has the following numerical representation.

f ⇤

f ⇤ : 0 f .

The zeroth Fermi loop runs from the site i to the site f and is drawn in red. The site f , which is the
terminal point of the zeroth Fermi loop spawns the first Fermi loop, drawn in blue. The one in panel
(b) has the following numerical representation.

1⇤⇤ f
1⇤⇤ : 0 f ⇤

(1, f )⇤ : 0 f .

Here, the interaction vertex 1, introduced in the zeroth Fermi loop (drawn in red) spawns the first
Fermi loop (drawn in blue). Additionally, the terminal point of the first Fermi loop spawns the second
Fermi loop (drawn in green).

The diagrams drawn in Fig. 5 are both valid � expansion diagrams. However, as shown below, the
allowed topologies of � expansion diagrams do not include all of the possible ways of combining the
two elements in Fig. 4, but rather only a subset of these. To see which subset, consider the plausible
diagram displayed in Fig. 6(a), which is not an allowed � expansion diagram. This diagram is obtained
from the Fock diagram in Fig. 6(b) by adding a Fermi loop to the latter. The numerical representation
for the diagram in Fig. 6(b) is

1 1 f .

We see that the point from which the first Fermi loop emanates in Fig. 6(a) is represented by a sub-
script in Fig. 6(b). Alternatively, using the terminology introduced in Section 3.1, the first Fermi loop
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a b

Fig. 6. The diagram in panel (a) is not allowed in the � expansion. This is because first Fermi loop emanates from a point which
is represented by a subscript in the Fock diagram displayed in panel (b).

Fig. 7. A more elaborate version of the diagram in Fig. 6(a), which is also not allowed in the � expansion.

a b

Fig. 8. A demonstration that unlike Feynman diagrams, � expansion diagrams are not in one-to-one correspondencewith their
numerical representations. In the diagram in panel (a), the interaction vertex 1 of the zeroth Fermi loop also connects to the
first Fermi loop. In the diagram in panel (b), it connects to the second Fermi loop. The topologies of both diagrams, however,
are identical. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

is spawned by the interaction vertex 1 of the zeroth Fermi loop. However, the other side of this in-
teraction vertex is not free, but rather connects to the zeroth Fermi loop itself. This is not allowed. In
fact, we shall find that when there are more than one pair of lines connected to a single point of an
interaction vertex, each pair must both start and terminate a Fermi loop at that point, as in Fig. 5(b).
Another diagram which is not an allowed � expansion diagram is drawn in Fig. 7.

Another feature of the � expansion diagrams is that they are not in one-to-one correspondence
with their numerical representations. To see this, consider the diagrams drawn in Fig. 8. As usual, the
zeroth, first, and second Fermi loops are drawn in red, blue, and green respectively. The diagram in
(Fig. 8(a)) has the numerical representation

1 2⇤⇤ f
2⇤⇤ : 0 1 f ⇤

(2, f )⇤ : 0 f .

In words, this says that the interaction vertex 2 of the zeroth Fermi loop spawns the first Fermi loop.
The interaction vertex 1 of the zeroth Fermi loop connects to the first Fermi loop. Finally, the terminal
point of the first Fermi loop spawns the second Fermi loop. On the other hand, the diagram in (Fig. 8(b))
has the numerical representation

1 2⇤⇤ f
2⇤⇤ : 0 f ⇤

(2, f )⇤ : 0 1 f .

In this case, the interaction vertex 1 of the zeroth Fermi loop connects to the second Fermi loop rather
than the first. We see that both of the above numerical representations lead to the same diagram,
although they both have a contribution which must be accounted for.
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ba

Fig. 9. t-vertices in panel (a) versus J-vertices in panel (b) for the � expansion diagrams which are also Feynman diagrams.
The corresponding lines are marked with corresponding letters.

ba

Fig. 10. t-vertices in panel (a) versus J-vertices in panel (b) for the more general � expansion diagrams. The corresponding
lines are marked with corresponding letters.

A final point to mention in this discussion of the � expansion diagrams is that when drawing the
diagrams in real space, the vertex appropriate for the t-interaction differs from the one appropriate
for the J-interaction. While this is derived rigorously from the EOM below, one can understand it by
examining the relevant terms in the Hamiltonian (Eq. (1)). First, we examine the t-term. Writing the
X operators in terms of canonical creation and destruction operators, we obtain

�
X

ij�

tijX�0i X0�
j = �

X

ij�

tijc
Ñ
i� (1 � ni�̄ )cj� = �

X

ij�

tijc
Ñ
i� cj� +

X

ij�

tijc
Ñ
i�ni�̄ cj� . (13)

Here, we have used the non-Hermitean mapping described in Ref. [11]

X�0i ! cÑi� (1 � ni�̄ ); X0�
j ! cj� . (14)

As discussed in Ref. [11], it is permissible to drop the projection from the destruction operator, since
if the system starts in the subspace of no double occupancy, the unprojected destruction operator
cannot take it out of this subspace. The second term on the RHS of Eq. (13) can be represented with
the interaction vertex drawn in Fig. 9(a). Next, we examine the J term. Since a spin flip operator or
number operator cannot take the system out of the subspace of no double occupancy, the X operators
in the J term can be replaced by their canonical counterparts. Therefore, written in terms of canonical
operators, the J term looks like

1
2

X

ij�

Jijni� + 1
4

X

ij�1�2

{JijcÑi�1ci�2c
Ñ
j�2cj�1 � ni�1nj�2}. (15)

The first term amounts to a shift in the chemical potential µ, while the second one leads to the
interaction vertex drawn in Fig. 9(b). The corresponding lines between Figs. 9(a) and 9(b) have been
marked with corresponding letters. Throughout the text, we shall sometimes use the term ‘‘Feynman
diagrams’’ to refer to the � expansion diagrams formed solely from the interaction vertices in Fig. 9,
and sometimes to refer to the usual Feynman diagrams [19,18]. It should be clear what wemean from
the context. To obtain the more general � expansion diagrams, one must use the vertices drawn in
Fig. 10. Once again, the corresponding lines have been marked with corresponding letters between
the t-vertices in panel (a) and the J-vertices in panel (b). A � expansion diagram drawn in real
space will of course have a mix of t-vertices and J-vertices. Luckily, when drawing the diagrams
in momentum space, we can use only one type of vertex (t or J). The details of this procedure are
discussed in Section 6. To convert between ‘‘t-diagrams’’ and ‘‘J-diagrams’’, we must rearrange every
interaction vertex as indicated in Fig. 10. For example, the Hartree and Fock diagrams, when drawn
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Fig. 11. The zeroth order contribution to the Green’s function: g(0)[i, f ].

using t-vertices, appear as in Fig. 12(b) and Fig. 12(c) respectively. In this introductory section,wehave
used the more familiar J-vertices to construct our diagrams, while in the rest of the paper, we shall
take the point of view of using the t-vertices. The counterparts of the diagrams drawn in Figs. 1(a),
1(b), 2, 5(b), and 8, are drawn in Figs. 17(g), 17(b), 17(c), 17(n), and 40(g) respectively.

To conclude this preliminary discussion, we point out that while it may be possible to define the �
diagrams as all inequivalentways of combining the elements displayed in Fig. 4with some topological
constraints, this definition would not have much practical value. It also would not tell us how to
evaluate the diagram once we had drawn it. On the other hand, the numerical representations of the
� expansion diagrams defined below are both easy to generate in a systematic manner, and easy to
evaluate. In fact, one may argue that even for the standard Feynman diagrams, the definition in terms
of the numerical representations presented in Section 3.1 is more useful than the usual one, since it
gives a systematic way of generating, and a compact way of representing the diagrams.

4. Bare diagrammatic � expansion for G[i, f ].

4.1. Integral equation of motion and the first order � expansion.

As can be seen from Eq. (4), the parameter � adiabatically connects the free Fermi gas at � = 0
with the fully projected model at � = 1. Therefore, in the bare � series for G, to each order in �, G[i, f ]
is expressed as a functional of the free Fermi gas, g(0)[i, f ] and the hopping tij. In this section, we aim
to derive a set of rules for drawing diagrams to compute the nth order contribution to the bare series
for G[i, f ]. We do this by rewriting Eq. (4) as an integral equation, and then iterating this equation in
�. An analogous expansion is done for the first couple of orders of the Feynman series in Kadanoff and
Baym in Ref. [24]. To this end, we rewrite Eq. (4) as

� g�1(0)
�1,�j

[i, j]G�j,�2 [j, f ] = ��[i, f ]��1,�2 + �⇥ �[i, f ]��1,�2 [i] � �⇥ t[i, j]��1,�a [i]G�a,�2 [j, f ]

+ �⇥ t[i, j]�1�a
�

�V
�̄1,�̄a
i

G�a,�2 [j, f ], (16)

where g�1(0)[i, f ], the inverse of the free Fermi gas Green’s function is obtained by setting � = 0 in
Eq. (10). Rewriting Eq. (16), we obtain the following integral equation for G[i, f ].

G�1,�2 [i, f ] = g(0)
�1,�2

[i, f ] � � g(0)
�1,�b

[i, f ]�b�2G�̄2,�̄b [f , f +]

� �⇥ g(0)
�1,�b

[i, k]
 

�t[k, j]�b�aG�̄a,�̄b [k, k+]G�a,�2 [j, f ] + t[k, j]�b�a
�

�V
�̄b,�̄a
k

G�a,�2 [j, f ]
!

, (17)

This expression has considerable parallels to a similar expression for the (canonical) Hubbard model,
with one exception, the second term on the RHS, (arising from the non-canonical nature of the X ’s)
has no counterpart in the canonical theory. If we drop this term, the series so generated is exactly the
Feynman series.

We now proceed to draw the diagrams for the zeroth and first order contributions to G. The zeroth
order contribution to theGreen’s function,which is given by the free Fermi gas g(0)[i, f ], is represented
by the diagram in Fig. 11.

To obtain the first order contribution to G[i, f ], we plug g(0)[i, f ] in for G[i, f ] in the
RHS of Eq. (17). This leads to the three diagrams displayed in Fig. 12. The diagrams (a), (b),
and (c) in Fig. 12 correspond to the three terms in the parenthesis on the RHS of Eq. (17) re-
spectively. They correspond to the analytical expressions (a): ���b�2g(0)

if
�1�b

[⌧i, ⌧f ]g(0)
ff

�̄2 �̄b

[⌧f , ⌧+
f ];
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b ca

Fig. 12. The first order contribution to the Green’s function: G(1)[i, f ]. The diagrams in panels (a), (b), and (c) come from the
first, second, and third terms on the RHS of Eq. (17), respectively.

(b): ��a�bg
(0)

ia
�1�a

[⌧i, ⌧a]g(0)
aa
�̄b �̄a

[⌧a, ⌧+
a ]tabg(0)

bf
�b�2

[⌧a, ⌧f ]; and (c): ���a�bg(0)
ia

�1�a
[⌧i, ⌧a]tabg(0)

ba
�b �̄a

[⌧a, ⌧+
a ]g(0)

af
�̄b�2[⌧a, ⌧f ]. In drawing the diagram in Fig. 12(c), we have used the Schwinger identity

�g(0)
�a,�b

[i, f ]
�V

�c�d
r

= �g(0)
�a,�x

[i, x]
�g�1(0)

�x,�y
[x, y]

�V
�c�d
r

g(0)
�y,�b

[y, f ] = g(0)
�a,�c

[i, r]g(0)
�d,�b

[r, f ]. (18)

In other words, the role of the functional derivative in the Eq. (17) is to pick a line in the diagram for
G�a�2 [j, f ], and to split it into two lines, one entering the point k, and the other one exiting it.

The reader would recognize that we bypassed the Wicks theorem, by utilizing instead the
Schwinger identity Eq. (18).

4.2. Rules for calculating the nth order contribution

By plugging in the first and zeroth order diagrams into the RHS of Eq. (17), we can obtain the
second order diagrams. Using this iterative process, we can obtain diagrams for G to any order in �.
Moreover, by noticing the pattern in the iterative process, we can derive the rules for obtaining the
nth order contribution to G directly without calculating the lower order contributions. In the case
of the Feynman diagrams, this is merely an alternate way of deriving the rules obtained from using
Wick’s theorem. However, in the present case, in which the standardWick’s theorem is not available,
this derivation is essential in going from the EOM definition of the � expansion introduced in Ref. [9]
and the equivalent diagrammatic one developed here. We now present the diagrammatic rules for
calculating the nth order contribution to G.

• (1) Write a row of consecutive integers followed by the letter f , i.e. 1 . . .m f , where m � 0 (if
m = 0, we simply write f ), e.g.

1 2 3 f .

• (2) Give any number of stars (including no stars) to each these integers (including f ), e.g.

1⇤⇤ 2 3 f ⇤.

• (3) Each integer (including f ) with p stars (p � 1) gives rise to another row of integers which now
starts with 0 (as opposed to 1), and which ends with an f with p� 1 stars. Each new row can have
any number of integers between the 0 and the f , each ofwhich can have any number of stars, giving
rise to further rows. 0 is not allowed to have any stars, e.g.

1⇤⇤ 2 3 f ⇤

1⇤⇤ : 0 1 2⇤⇤⇤ f ⇤

(1, 2)⇤⇤⇤ : 0 1 f ⇤⇤

(1, 2, f )⇤⇤ : 0 f ⇤

(1, 2, f , f )⇤ : 0 1 f
(1, f )⇤ : 0 1 f

f ⇤ : 0 1 2 f .
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Note that each integer in the above diagram is uniquely specified by a tuple which traces it back to
the first row through the starred integers. For example, the number 1 in the fifth row corresponds
to the tuple (1, 2, f , f , 1).

• (4) Let ⌫ be the total number of integers without stars excluding 0’s and f ’s. Let sf be the total
number of stars on the f in the top row, and let s be the total number of stars excluding those on
f ’s. Then the order nmust satisfy the relation n = ⌫ + sf + s. In the above example, ⌫ = 8, sf = 1,
and s = 5. Therefore this a 14th order diagram.

• (5) Between any 2 consecutive integers of a row (including 0’s and f ’s), one can place as subscripts
an ordered list of tuples from the following set: All those corresponding to non-starred integers
(except 0’s and f ’s) whose tuple can be obtained from the tuple of the smaller of the 2 consecutive
integers in question, by taking the first k  l entries of this tuple (where l is the length of the tuple),
and subtracting a non-negative integer from the last entry.We have taken f ’s to be integers greater
than all other integers in their respective rows. For example, suppose that the two consecutive
integers in question are 1 and f in the fifth row of the above diagram. Then all integers eligible to
be used as subscripts between them are: (1, 2, f , f , 1), (1, 2, 1), and (1, 1). All non-starred integers
(except 0’s and f ’s) must be used exactly once in this way. e.g.

1⇤⇤ 2 3 3 2 f ⇤

1⇤⇤ : 0 1 2⇤⇤⇤ f ⇤

(1, 2)⇤⇤⇤ : 0 1 f ⇤⇤

(1, 2, f )⇤⇤ : 0 (1,2,1) f ⇤

(1, 2, f , f )⇤ : 0 1 (1,2,f ,f ,1) f
(1, f )⇤ : 0 1 (1,f ,1) (1,1) f

f ⇤ : 0 1 2 (f ,1) (f ,2) f .

• (6) We use the numerical representation to draw the diagram in the following way. Each integer
excluding 0’s and f ’s corresponds to an interaction vertex shown in Fig. 13. The interaction vertices
displayed in panels (a), (b), (c), and (d) correspond to 0, 1, 2, and 3 stars respectively on the integer
in question. On the top right of each panel, we indicate how the spins contribute to the sign of the
diagram. Note that when two outgoing or two incoming lines share the same spin label, this spin
contributes to the sign of the diagram, while when an outgoing and an incoming line share the
same spin label, this spin does not contribute to the sign of the diagram. For example, in panel (d)
�a and �d contribute to the sign while �b and �c do not.

The f in the top row corresponds to a terminal point shown in Fig. 14. The terminal points
displayed in panels (a), (b), (c), and (d) correspond to 0, 1, 2, and 3 stars respectively on the f in
the top row. On the top right of each panel, we indicate how the spins contribute to the sign of the
diagram. Note that the same general rule holds as in the case of the interaction vertices, except
that now for the case of 1 or more stars, the spin �2 also contributes to the sign of the diagram.
For the case of one or more stars, one can obtain the terminal points in Fig. 14 from the interaction
vertices in Fig. 13 by removing the interaction line and the Green’s function line to the right of it,
andmaking the substitution �a ! �2. The interaction vertices displayed in Fig. 13 and the terminal
points displayed in Fig. 14 continue to follow the same pattern for greater than three stars.

To actually draw the diagram, let us momentarily ignore the subscripts in our numerical
representation, and correspondingly the Green’s function lines labeled by �̄a and �̄b in panel (a)
of Fig. 13, (the case of 0 stars). Then the top row of the numerical representation corresponds to a
chain of interaction lines connected to each other by Green’s function lines running from the point
i to the point f . The lower rows also correspond to a similar chain running from a single point
back to itself. This is the point k (displayed in panels (b), (c), and (d) in Fig. 13) on the interaction
vertex corresponding to the starred integer which gives rise to this lower row. Thus, the number
of such chains beginning and ending at a point of a particular interaction vertex is equal to the
number of stars on the starred integer which corresponds to this vertex. For the example given
above, following this procedure yields the intermediate diagram displayed in Fig. 15.

Finally, to put the subscripts back into the diagram, we break each chain at any place where
there are subscripts between two consecutive vertices of the chain, and pass the chain through
the (non-starred) vertices indicated by the subscripts in the order in which they are written, after
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a b

dc

Fig. 13. Interaction vertices appearing in the diagrams. Panels (a), (b), (c), and (d) correspond to 0, 1, 2, and 3 stars on the
number representing the interaction vertex, respectively. Note that the lines are broken into pairs based on spin. A pair of two
incoming or two outgoing lines share opposite spins, while a pair of one incoming and one outgoing line share the same spin.
Moreover, in the case of the former, the spin contributes to the sign of the diagram, while in the case of the latter, it does not.
The contribution to the sign is written in the top right of each panel.

a b

dc

Fig. 14. Terminal point in the diagram corresponding to the f in the top row. Panels (a), (b), (c), and (d) correspond to 0, 1, 2,
and 3 stars on the f in the top row, respectively. Same comments regarding spin apply as in Fig. 13. Note that in the case of one
or more stars on the f in the top row, the line labeled by �̄2 is outgoing. This is compensated by the fact there are two more
lines entering the point f than exiting it.

which it resumes its original course. This is accomplishedwith the help of the two Green’s function
lines labeled by �̄a and �̄b on the non-starred vertices, (displayed in panel (a) of Fig. 13), whichwere
ignored in drawing the intermediate diagram in Fig. 15. The final diagram is displayed in Fig. 16.

Note that when drawing a vertex (or terminal point) with multiple stars, such as that displayed
in Fig. 13(d), the lines �̄a and �c (incoming) correspond to the row with 2 stars on its f , the lines
�b (outgoing) and �d correspond to the row with 1 star on its f , and the lines �c (outgoing) and �̄d
correspond to the row with 0 stars on its f . Therefore, in Fig. 16, on the point k corresponding to
the vertex (1, 2)⇤⇤⇤, the lines �̄m and �n (incoming) are part of the row (1, 2)⇤⇤⇤ (3rd row) in the
numerical representation, the lines �l (outgoing) and �o are part of the row (1, 2, f )⇤⇤ (4th row)
in the numerical representation, and the lines �n (outgoing) and �̄o are part of the row (1, 2, f , f )⇤
(5th row) in the numerical representation.

• (7) Each solid line in the diagram contributes a non-interacting Green’s function, each wavy line
contributes a hopping matrix element. An equal-time Green’s function is always taken to be
g(0)(⌧ , ⌧+), i.e. the incoming (creation) line is given the greater time.

• (8) The total sign of the diagram is given by (�1)n(�1)s(�1)sf �1 ⇥ (sign from the spins), where in
the case of sf = 0, (�1)sf �1 ⌘ 1, and theway inwhich the spins contribute to the sign is indicated
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Fig. 15. Intermediate step in the process of drawing the diagram corresponding to the numerical representation in step 5 of
the rules. All of the interaction vertices are drawn in. To complete the diagram, wemust split some of the Green’s function lines
through the unused points in the interaction vertices in a manner indicated by the numerical representation.

Fig. 16. Diagram corresponding to the numerical representation in step 5 of the rules.

Figs. 13 and 14. Therefore, the diagram in Fig. 16 has sign (�1)14(�1)5(�1)0(sign from the spins)
= ��b�h�c�d�e�g�v�2�w�x�y�z�t�u�j�k�m�o�p�q�r�s.

• (9) Sum over internal sites and spins, and integrate over internal times.

According to the above rules, the contribution of the diagram drawn in Fig. 16 is

��b�h�c�d�e�g�v�2�w�x�y�z�t�u�j�k�m�o�p�q�r�s

g(0)
ia
�1�a

[⌧i, ⌧a]tabg(0)
bc
�b�c

[⌧a, ⌧b]tcdg(0)
de
�d�e

[⌧b, ⌧c]tegg(0)
ge
�g �̄e

[⌧c, ⌧+
c ]g(0)

ec
�̄g �̄c

[⌧c, ⌧b]

g(0)
cf
�̄d�v

[⌧b, ⌧f ]g(0)
ah
�̄b�̄j

[⌧a, ⌧d]thjg(0)
jk
�k�l

[⌧d, ⌧l]tklg(0)
la

�m�n

[⌧l, ⌧a]g(0)
ko
�e�̄p

[⌧e, ⌧g ]top
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g(0)
pk
�q�n

[⌧g , ⌧e]g(0)
ko
�̄m�p

[⌧e, ⌧g ]g(0)
ok
�̄q�o

[⌧g , ⌧e]g(0)
kq
�n�r

[⌧e, ⌧r ]tqr

g(0)
rq
�s�̄r

[⌧r , ⌧+
r ]g(0)

qk
�̄s�̄o

[⌧r , ⌧e]g(0)
am
�a�t

[⌧a, ⌧s]tmng
(0)
nm
�u�̄t

[⌧s, ⌧+
s ]g(0)

mh
�̄u�̄j

[⌧s, ⌧d]g(0)
ha
�̄k�̄h

[⌧d, ⌧a]

g(0)
fs

�̄2�w

[⌧f , ⌧u]tstg(0)
tu
�x�y

[⌧u, ⌧v]tuvg(0)
vs

�z �̄w

[⌧v, ⌧u]g(0)
su
�̄x�̄y

[⌧u, ⌧v]g(0)
uf
�̄z �̄v

[⌧v, ⌧f ].

Upon turning off the sources, the Green’s functions become spin diagonal, i.e. g(0)
�1�2

[i, f ] =
��1�2g

(0)
""[i, f ] = ��1�2g

(0)
##[i, f ] ⌘ ��1�2g

(0)[i, f ]. This allows one to evaluate the spin sum and the
sign of the above expression. A good way to evaluate the spin sum is to break the diagram into spin
loops in the following manner. Recall that at each interaction vertex and at the terminal point, lines
are paired according to spin. They share the same spin if one is incoming and the other is outgoing, and
they have opposite spins if both lines of the pair are incoming or both are outgoing. Starting with the
line exiting i, follow the path of Green’s function lines created by the spin pairings until you reach the
line labeled by �2 (or �̄2 if f has one or more stars). These spins are all set by the value of �1 = �2, and
therefore this is the zeroth spin loop. If not all of the lines have been used up by the zeroth loop, find
a random line and follow the path created by the spin pairings to reach the line to which it is paired.
This is the first spin loop, etc. Continue to do this until you have used up all of the lines in the diagram.
Let Fs denote the number of spin loops in the diagram. Then, the spin sum is 2Fs . We emphasize that
unlike the case of the standard Feynman diagrams, the spin loops of the � expansion diagrams do not
coincide with the Fermi loops (where each row of the numerical representation can be thought of as
a Fermi loop).

To determine the sign of the diagram, assign values to the spins in a manner consistent with the
spin loops (i.e. the value of any one spin in the spin loop determines the values of all of them). Then,
plug these values into the analytical expression for the diagram. It is important to note that the reason
we can compute the spin sum and the sign independently, is that the choice we make for the values
of the spins does not affect the sign of the diagram. To see this note that every spin loop consists of an
even number of pairs that have either two incoming lines or two outgoing lines (since it has an equal
number of each kind), and an arbitrary number which have one incoming line and one outgoing line.
However, only the former contributes to the sign, while the latter does not (see Figs. 13 and 14.)More-
over, each pair contributes a distinct spin and appears in exactly one spin loop. Therefore, by flipping
all of the spins in a spin loop, we flip an even number of spins, and therefore do not change the sign of
the diagram. The only exception to this line of reasoning is the zeroth spin loop, in the case when the
terminal point f has 1 ormore stars (see Fig. 14). In this case, the zeroth spin loopmust have onemore
pair where both lines are incoming than it has pairs where both lines are outgoing. This is due to the
fact that in this case both the spins �1 and �̄2 exit the sites i and f respectively. It is also consistentwith
the fact that the terminal point f now has one more pair with two incoming lines than two outgoing
lines. Therefore, the spin pairs in the zeroth spin loop now contribute an odd number of spins. How-
ever, the spin �2 from the zeroth spin loop now also appears explicitly in the sign. Therefore, flipping
all of the spins in the zeroth loop once again does not change the sign of the diagram. In Fig. 16, we find

(�1) = (�a) = �t = �̄u = �̄j = �b = �c = �g = �̄e = �̄d = �v = �z = �̄w = �2; �x = �y;
�h = �k = (�l) = �̄p = �m; �q = �̄o = �̄s = �r = (�n),

where the parenthesis indicates that the spin does not contribute to the sign of the diagram. Therefore,
Fs = 3. The loops contribute (�1)5+0+1+2 = (�1)8 = 1 to the sign. Therefore, the final contribution
of the diagram in Fig. 16 is

�8 ⇥ g(0)
ia [⌧i, ⌧a]tabg(0)

bc [⌧a, ⌧b]tcdg(0)
de [⌧b, ⌧c]tegg(0)

ge [⌧c, ⌧+
c ]g(0)

ec [⌧c, ⌧b]
g(0)
cf [⌧b, ⌧f ]g(0)

ah [⌧a, ⌧d]thjg(0)
jk [⌧d, ⌧l]tklg(0)

la [⌧l, ⌧a]g(0)
ko [⌧e, ⌧g ]topg(0)

pk [⌧g , ⌧e]g(0)
ko [⌧e, ⌧g ]

g(0)
ok [⌧g , ⌧e]g(0)

kq [⌧e, ⌧r ]tqrg(0)
rq [⌧r , ⌧+

r ]g(0)
qk [⌧r , ⌧e]g(0)

am[⌧a, ⌧s]
tmng(0)

nm[⌧s, ⌧+
s ]g(0)

mh[⌧s, ⌧d]g(0)
ha [⌧d, ⌧a]g(0)

fs [⌧f , ⌧u]tstg(0)
tu [⌧u, ⌧v]tuvg(0)

vs [⌧v, ⌧u]g(0)
su [⌧u, ⌧v]g(0)

uf [⌧v, ⌧f ],
where all sites and times other than i and f , and ⌧i and ⌧f are summed/integrated over.
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Fig. 17. The second order diagrams contributing to the Green’s function: G(2)[i, f ], and their corresponding numerical
representations. Note that the diagrams (a) through (j) are the standard second order Feynman diagrams. The other diagrams
are not.

4.3. Second order contribution

Using the rules from Section 4.2, we draw the diagrams that contribute to G[i, f ] in second order
in Fig. 17, and calculate their contributions below.

The contributions of these diagrams are

(a) g(0)
ia [⌧i, ⌧a]tabg(0)

ba [⌧a, ⌧+
a ]g(0)

ac [⌧a, ⌧b]tcdg(0)
dc [⌧b, ⌧+

b ]g(0)
cf [⌧b, ⌧f ]

(b) � 2g(0)
ia [⌧i, ⌧a]tabg(0)

bc [⌧a, ⌧c]tcdg(0)
da [⌧c, ⌧a]g(0)

ac [⌧a, ⌧c]g(0)
cf [⌧c, ⌧f ]

(c) g(0)
ia [⌧i, ⌧a]tabg(0)

bc [⌧a, ⌧b]tcdg(0)
dc [⌧b, ⌧+

b ]g(0)
ca [⌧b, ⌧a]g(0)

af [⌧a, ⌧f ]
(d) g(0)

ia [⌧i, ⌧a]g(0)
aa [⌧a, ⌧+

a ]tabg(0)
bc [⌧a, ⌧b]tcdg(0)

dc [⌧b, ⌧+
b ]g(0)

cf [⌧b, ⌧f ]
(e) g(0)

ia [⌧i, ⌧a]tabg(0)
ba [⌧a, ⌧+

a ]g(0)
ac [⌧a, ⌧b]g(0)

cc [⌧b, ⌧+
b ]tcdg(0)

df [⌧b, ⌧f ]
(f ) g(0)

ia [⌧i, ⌧a]tabg(0)
bc [⌧b, ⌧+

b ]tcdg(0)
da [⌧b, ⌧a]g(0)

af [⌧a, ⌧f ]
(g) � 2g(0)

ia [⌧i, ⌧a]tabg(0)
bc [⌧a, ⌧b]g(0)

ca [⌧b, ⌧a]g(0)
ac [⌧a, ⌧b]tcdg(0)

ia [⌧b, ⌧f ]
(h) g(0)

ia [⌧i, ⌧a]g(0)
aa [⌧a, ⌧+

a ]tabg(0)
bc [⌧a, ⌧b]g(0)

cc [⌧b, ⌧+
b ]tcdg(0)

df [⌧b, ⌧f ]
(i) g(0)

ia [⌧i, ⌧a]tabg(0)
bf [⌧a, ⌧f ]g(0)

ac [⌧a, ⌧b]tcdg(0)
dc [⌧b, ⌧+

b ]g(0)
ca [⌧b, ⌧a]

(j) g(0)
ia [⌧i, ⌧a]tabg(0)

bf [⌧a, ⌧f ]g(0)
ac [⌧a, ⌧b]g(0)

cc [⌧b, ⌧+
b ]tcdg(0)

da [⌧b, ⌧a]
(k) � g(0)

ia [⌧i, ⌧a]tabg(0)
ba [⌧a, ⌧+

a ]g(0)
af [⌧a, ⌧f ]g(0)

ff [⌧f , ⌧+
f ]

(l) 2g(0)
ia [⌧i, ⌧a]tabg(0)

bf [⌧a, ⌧f ]g(0)
fa [⌧f , ⌧a]g(0)

af [⌧a, ⌧f ]
(m) � g(0)

ia [⌧i, ⌧a]g(0)
aa [⌧a, ⌧+

a ]tabg(0)
bf [⌧a, ⌧f ]g(0)

ff [⌧f , ⌧+
f ]

(n) � g(0)
ia [⌧i, ⌧a]g(0)

aa [⌧a, ⌧+
a ]g(0)

aa [⌧a, ⌧+
a ]tabg(0)

bf [⌧a, ⌧f ]
(o) � g(0)

if [⌧i, ⌧f ]g(0)
fa [⌧f , ⌧a]tabg(0)

ba [⌧a, ⌧+
a ]g(0)

af [⌧a, ⌧f ]
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(p) � g(0)
if [⌧i, ⌧f ]g(0)

fa [⌧f , ⌧a]g(0)
aa [⌧a, ⌧+

a ]tabg(0)
bf [⌧a, ⌧f ]

(q) g(0)
if [⌧i, ⌧f ]g(0)

ff [⌧f , ⌧+
f ]g(0)

ff [⌧f , ⌧+
f ].

5. Diagrammatic � expansion for constituent objects

5.1. Introduction of the two self-energies

We next consider the auxiliary Green’s function g[i, f ]. Using Eq. (10) for g�1[i, f ], we can write
the analog of Eq. (17) for g[i, f ].

g�1,�2 [i, f ] = g(0)
�1,�2

[i, f ]

� � g(0)
�1,�b

[i, k]
 

�t[k, j]�b�aG�̄a,�̄b [k, k+]g�a,�2 [j, f ] + t[k, j]�b�a
�

�V
�̄b,�̄a
k

g�a,�2 [j, f ]
!

, (19)

Comparing the iterative expansion of G[i, f ] through Eq. (17) with that of g[i, f ] through Eq. (19), we
see that the terms in the parenthesis are identical in both expansions. However, the second termon the
RHS of Eq. (17), missing in Eq. (19), allows a Green’s function diagram to close on itself in the iterative
expansion, merging the initial point i and the terminal point f . Such a diagrammust necessarily have
more than one line connected to its terminal point, and therefore at least one star on the f in the top
row. Therefore, the diagrams for g[i, f ] are the subset of the diagrams for G[i, f ] which have no stars
on the f in the top row. In Fig. 17, these are diagrams (a) through (j), and diagram (n).

We see that in the diagrams for g[i, f ], the terminal point labeled by f is connected to the rest of
the diagram only by a single line. Therefore, it will be possible to describe these diagrams in terms
of a Dyson equation, with a Dyson self-energy. This is not the case for the other diagrams in Fig. 17
(those which do have a star on the f in the top row), and these diagrams require the introduction of a
second-self energy. We now proceed to define these two types of self-energies.

We shall denote the Dyson self-energy for g[i, f ] by ⌃a. As is the case in the Feynman diagrams,
it is obtained from the diagrams for g[i, f ] by removing the external line coming in from the point i,
and the one going out to the point f . If a diagram for⌃a can be split into two pieces by cutting a single
line, then it is reducible. Otherwise, it is irreducible. Denote the irreducible part of⌃a by⌃⇤

a .
Now consider those diagramswhich do have a star on the f in the top row. The second self-energy,

⌃b, is obtained from these diagrams by removing the external line coming from the point i. Once again,
if a diagram for⌃b can be split into two pieces by cutting a single line, then it is reducible. Otherwise,
it is irreducible. Denote the irreducible part of⌃b by⌃⇤

b .
From the diagrammatic structure of the series, it is clear that G[i, f ] = g[i, f ] + g[i, j].⌃⇤

b [j, f ].
Comparing with Eq. (9), we see thateµ[i, f ] = �[i, f ]+⌃⇤

b [i, f ]. Also, from Dyson’s equation, we know
that g�1[i, f ] = g�1(0)[i, f ] �⌃⇤

a [i, f ]. We shall give an independent proof of these formulae starting
from the equations of motion for g�1 andeµ (Eq. (10)) in Section 5.2.

5.2. g�1 andeµ

We shall now prove, starting with the equations of motion in Eq. (10), the observations already
made in Section 5.1, that

eµ[i, f ] = �[i, f ] +⌃⇤
b [i, f ]; g�1[i, f ] = g�1(0)[i, f ] �⌃⇤

a [i, f ]. (20)

This is equivalent to showing that
⌃⇤

b [i, f ] = ��� [i]�[i, f ] + � [i, f ]; ⌃⇤
a [i, f ] = �� [i]t[i, f ] + ��[i, f ]. (21)

We rewrite the EOM foreµ[i, f ] (Eq. (10)) in expanded form.

eµ�1�2 [i, f ] = (��1�2 � ��1�2G�̄2�̄1 [i, i+])�[i, f ] + � �1�2 [i, f ]

 �1�2 [i, f ] = �t[i, j] �1�ag�a,�b [j,n] �

�V
�̄1�̄a
i

eµ�b�2 [n, f ]. (22)
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Fig. 18. Schematic representation for a Green’s function diagram with only the number f ⇤...⇤ in the top row. Upon removing
the incoming external line, it contributes to⌃⇤

b1[i, f ].

We now proceed to prove the first of Eq. (20) using induction in �. The lowest order contribution
to ⌃⇤

b [i, f ] comes from diagram (a) in Fig. 12. Removing the incoming external line, we obtain
⌃

⇤(1)
b

�1�2

[i, f ] = ���1�2�[i, f ]g(0)
ff

�̄2�̄1

[⌧f , ⌧+
f ]. Using Eq. (22) to obtain the first order contribution to

eµ[i, f ], we geteµ(1)
�1�2

[i, f ] = ���1�2g(0)
�̄2,�̄1

[i, i+]�[i, f ]. Clearly, these two are equal, and we have that
⌃

⇤(1)
b

�1�2

[i, f ] = eµ(1)
�1�2

[i, f ].

Now consider themth order contribution⌃⇤(m)
b

�1�2

[i, f ]. This will be obtained from the corresponding

mth orderG[i, f ]diagramupondropping the incoming external line. If in the numerical representation
for this G[i, f ] diagram, there are no numbers other than f ⇤...⇤ in the top row (e.g. panels
(o), (p), and (q) in Fig. 17), then the contribution of this diagram to G[i, f ] is G(m)

�1�2
[i, f ] =

�� g(0)
�1�b

[i, f ]�b�2G(m�1)
�̄2�̄b

[f , f +] (see Fig. 18). The resulting contribution to⌃⇤
b , which we shall denote

by⌃⇤
b1, is

⌃
⇤(m)
b1
�1�2

[i, f ] = �� �1�2G(m�1)
�̄2�̄1

[f , f +]�[i, f ]. (23)

Alternatively, there are numbers other than f ⇤...⇤ in the top row of the numerical representation
of the corresponding mth order G[i, f ] diagram. Then, the top row reads 1 . . . f ⇤...⇤ (e.g. panels (k)
through (m) of Fig. 17). In this case, we know that for the resulting⌃b[i, f ] diagram to be irreducible,
i.e. for it to contribute to ⌃⇤

b [i, f ], the number 1 in the top row should not be starred. Therefore, we
can represent the diagram schematically as in Fig. 19. This representation is obtained as follows. If
we consider just the part of the diagram between the points j and f , we know that a line in this part
of the diagram (denoted in Fig. 19 by the letter s) is split by the point k. If we restore s by removing
the lines labeled by �̄a and �̄b from the point k, then the part of the diagram running from j to f is a
Green’s function diagramwhich contributes to g[j,n].⌃⇤

b [n, f ] (since the f has at least one star on it).
However, the line s cannot be contained in the g[j,n] part of the diagram (represented in Fig. 19 by
a double line), since then the resulting ⌃b (of the overall diagram) would be reducible. Therefore it
must be contained in the ⌃⇤

b [n, f ] part of the diagram. The analytical expression for the diagram in
Fig. 19 is

� �g(0)
�1�b

[i, k]t[k, j]�b�ag�a�c [j,n] �

�V
�̄b�̄a
k

⌃⇤
b

�c�2

[n, f ]. (24)

Removing the incoming external line, and using the inductive hypothesis, we obtain the contribution
of these types of diagrams to⌃⇤

b [i, f ], which we shall denote as⌃⇤
b2[i, f ].

⌃
⇤(m)
b2
�1�2

[i, f ] = ��t[i, j]�1�ag(m1)
�a�b

[j,n] �

�V
�̄1�̄a
i

eµ(m2)
�b�2

[n, f ], (25)

where m = m1 + m2 + 1. Comparing Eq. (25) with Eq. (22), we see that

⌃⇤
b2
�1�2

[i, f ] = � �1�2 [i, f ]. (26)
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Fig. 19. Schematic representation for a Green’s function diagram whose top row is 1 . . . f ⇤...⇤ . Upon removing the incoming
external line, it contributes to⌃⇤

b2[i, f ].

Combining Eqs. (23) and (26), we find that
⌃⇤

b
�1�2

[i, f ] = ⌃⇤
b1
�1�2

[i, f ] +⌃⇤
b2
�1�2

[i, f ] = �� �1�2G�̄2�̄1 [f , f +]�[i, f ] + � �1�2 [i, f ]. (27)

Therefore, comparing Eq. (27) with Eq. (22), we have shown the first of Eq. (20) to be true.
Now consider the EOM for g�1[i, f ] (Eq. (10)) in expanded form.

g�1
�1�2

[i, f ] = g�1(0)
�1�2

[i, f ] � � t[i, f ]�1�2G�̄2�̄1 [i, i+] � ���1�2 [i, f ]

��1�2 [i, f ] = t[i, j] �1�ag�a,�b [j,n] �

�V
�̄1�̄a
i

g�1
�b�2

[n, f ]. (28)

Our goal is to prove the second of Eq. (20) using Eq. (28). To this end, we note that diagrams for
⌃⇤

a [i, f ] can be split into four groups. Recall that a diagram for ⌃a[i, f ] is obtained from a g[i, f ]
diagram (or equivalently from a G[i, f ] diagram with no stars on the f in the top row) by removing
the incoming and outgoing external lines. Consider a g[i, f ] diagramswhose numerical representation
has the following property. There are no subscripts between the number immediately to the left of f
in the top row (which we shall denote by c) and f (e.g. panels (e), (g) through (j), and (n) of Fig. 17).
This implies that c has at least one star, as otherwise c must be a subscript between c and f . Therefore,
the top row looks like 1 . . . c⇤...⇤ f . In the case that c = 1 (e.g. panels (i), (j), and (n) of Fig. 17), these
diagrams can be represented schematically as in Fig. 20. We denote the corresponding contribution
to ⌃⇤

a by ⌃⇤
a1. If c > 1 (e.g. panels (e), (g), and (h) of Fig. 17), then the diagrams can be represented

schematically as in Fig. 21.We denote the corresponding contribution to⌃⇤
a by⌃⇤

a2. Comparing Fig. 18
with Fig. 20 and Fig. 19 with Fig. 21, and removing the external lines, we find that

⌃⇤
a1
�1�2

[i, f ] = �⌃⇤
b1
�1�2

[i, j]t[j, f ]; ⌃⇤
a2
�1�2

[i, f ] = �⌃⇤
b2
�1�2

[i, j]t[j, f ]. (29)

Here, the minus comes from rule (8) of Section 4.2, where there is a minus sign discrepancy between
the factors (�1)sf �1 (applicable to f ⇤...⇤ in ⌃⇤

b ) and (�1)s (applicable to c⇤...⇤ in ⌃⇤
a ). Using Eqs. (23)

and (26), we find that
�⌃⇤

a1
�1�2

[i, f ] = �� �1�2G�̄2�̄1 [i, i+]t[i, f ]; �⌃⇤
a2
�1�2

[i, f ] = � �1�2 [i, j]t[j, f ]. (30)

Motivated by this observation, we define a new object ��1�2 [i, f ] defined by the formula
��1�2 [i, f ] = � �1�2 [i, j]t[j, f ] + ��1�2 [i, f ]. (31)

Plugging this formula into Eq. (28), we obtain

g�1
�1�2

[i, f ] = g�1(0)
�1�2

[i, f ] � � t[i, f ]�1�2G�̄2�̄1 [i, i+] + � �1�2 [i, j]t[j, f ] � ���1�2 [i, f ] (32)

Plugging Eq. (32) into the equation for� (Eq. (28)), we obtain
��1�2 [i, f ] = �t[i, j]�1�̄2g�̄2�̄1 [j, i]�[i, f ] �  �1�2 [i, j]t[j, f ]

� �t[i, j]�1�ag�a�b [j,n] �

�V
�̄1�̄a
i

��b�2 [n, f ], (33)
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Fig. 20. Schematic representation for Green’s function diagram whose top row is 1⇤...⇤ f . Upon removing the incoming and
outgoing external lines, it contributes to⌃⇤

a1[i, f ]. One can obtain⌃⇤
b1[i, f ] displayed in Fig. 18 by also removing the interaction

line exiting the point k.

Fig. 21. Schematic representation for Green’s function diagramwhose top row is 1 . . . c⇤...⇤ f . Upon removing the outgoing and
incoming external lines, it contributes to⌃⇤

a2[i, f ]. One can obtain⌃⇤
b2[i, f ] displayed in Fig. 19 by also removing the interaction

line exiting the point l.

where we have used Eq. (22) to handle the second and third terms on the RHS of Eq. (32). Comparing
Eq. (33) with Eq. (31), we obtain the following EOM for ��1�2 [i, f ].

��1�2 [i, f ] = �t[i, j]�1�̄2g�̄2�̄1 [j, i]�[i, f ]

� �t[i, j]�1�ag�a�b [j,n] �

�V
�̄1�̄a
i

��b�2 [n, f ]. (34)

Comparing Eqs. (32) and (30), we see that �⌃⇤
a1
�1�2

[i, f ] and �⌃⇤
a2
�1�2

[i, f ] account for the second

and third terms on the RHS of Eq. (32) respectively. Therefore, we now show that the remainder of
the�⌃⇤

a [i, f ] diagrams account for the fourth term. To this end, we consider all g[i, f ] diagramswhich
do have a subscript between the number c (the number immediately to the left of f in the top row)
and f in the top row. The top row now looks like 1 . . . c...f (e.g. panels (a) through (d) and (f) of Fig. 17).
Note that for the resulting⌃a[i, f ] diagram to be irreducible, the number 1 cannot have any stars. We
further subdivide this group of g[i, f ] diagrams into 2 groups. In the first group, whose contribution to
⌃⇤

a [i, f ] shall be denoted by ⌃⇤
a3[i, f ], the subscript immediately preceding f in the top row is 1. The

top row for these diagrams looks like 1 . . . c...1f (e.g. panels (c) and (f) of Fig. 17). In the second group,
whose contribution to ⌃⇤

a [i, f ] shall be denoted by ⌃⇤
a4[i, f ], the subscript immediately preceding f

in the top row is not 1. The top row for these diagrams looks like 1 . . . c...df , where d 6= 1 (e.g. panels
(a), (b), and (d) of Fig. 17). Our goal is to show that ���1�2 [i, f ] = ⌃⇤

a3
�1�2

[i, f ] +⌃⇤
a4
�1�2

[i, f ].
We do this by induction. The g[i, f ] diagrams contributing to ⌃⇤

a3[i, f ] are shown in Fig. 22. The
contribution of this diagram becomes

� ��a�bg
(0)
ia
�1�a

[⌧i, ⌧a]tabg ba
�b�̄a

[⌧a, ⌧+
a ]g(0)

af
�̄b�2

[⌧a, ⌧f ]. (35)

After removing the two external lines, we find that

⌃⇤
a3
�1�2

[i, f ] = ���1�̄2tibg bi
�̄2�̄1

[⌧i, ⌧+
i ]�[i, f ]. (36)
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Fig. 22. Schematic representation for Green’s function diagramwhose top row is 1 . . . c...1f . Upon removing the incoming and
outgoing external lines, it contributes to ⌃⇤

a3[i, f ]. This is the analog of the Fock diagram in the standard Feynman skeleton
expansion.

Fig. 23. Schematic representation for Green’s function diagram whose top row is 1 . . . c...df , where d 6= 1. Upon removing the
incoming and outgoing external lines, it contributes to⌃⇤

a4[i, f ].

Thus,⌃⇤
a3
�1�2

[i, f ] is equal to the first term on the RHS of Eq. (34). Note that since this term contains

the lowest order contribution to � [i, f ], this covers the base case of the induction. We now want to
show that⌃⇤

a4
�1�2

[i, f ] equals the second term on the RHS of Eq. (34). The g[i, f ] diagrams contributing

to ⌃⇤
a4
�1�2

[i, f ] can be represented schematically as in Fig. 23. Here, the reasoning is similar to that

which led to Fig. 19. If the line s were contained in g jn
�a�c

[⌧k, ⌧n], then the resulting ⌃a (of the overall

diagram) would be reducible, while if s was the bare line g(0)
df
�̄d�2

[⌧d, ⌧f ], the diagram would contribute

to ⌃⇤
a3 (see Fig. 22). The box can be either a ⌃⇤

a3 insertion or a ⌃⇤
a4 insertion, but cannot be a ⌃⇤

a1
insertion or a ⌃⇤

a2 insertion, since in this case the diagram would contribute to ⌃⇤
a2 (see Fig. 21). The

analytical contribution of Fig. 23 is

� �g(0)
�1�b

[i, k]t[k, j]�b�ag�a�c [j,n] �

�V
�̄b�̄a
k

✓

⌃⇤
a3
�c �̄d

[n, d] +⌃⇤
a4
�c �̄d

[n, d]
◆

g(0)
�̄d�2

[d, f ]. (37)

Dropping the external lines, and using the inductive hypothesis, we obtain

⌃⇤
a4
�1�2

[i, f ] = ��2t[i, j]�1�ag�a�b [j,n] �

�V
�̄1�̄a
i

��b�2 [n, f ]. (38)

Combining this with Eq. (36) and comparing with Eq. (34), we find that

⌃⇤
a3
�1�2

[i, f ] +⌃⇤
a4
�1�2

[i, f ] = ���1�2 [i, f ]. (39)

Using Eqs. (39), (30), and (32), we have proven the second of Eqs. (20).

5.3. Diagrams in momentum space

Upon turning off the sources, all objects become translationally-invariant in both space and time.
We define the Fourier transform of all objects with two external points (e.g. G[i, f ]), denoted below
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Fig. 24. Momentum space representation of diagram for g(k) from Fig. 17(b). Upon removing the incoming and outgoing
external lines, it contributes to �(k).

Fig. 25. Momentum space representation of diagram for G(k) from Fig. 17(l). Upon removing the incoming external line, it
contributes to  (k).

by the generic symbol Q [i, f ], as

Q [i, f ] = 1
Ns�

X

k

eik(i�f )Q (k), (40)

where Ns is the number of sites on the lattice, � is the inverse temperature, k ⌘ (Ek, i!k), and
k(i� f ) ⌘ Ek · (ERi �ERf )�!k(⌧i � ⌧f ). For the rest of the paper, we shall not write the explicit factor 1

Ns�
that goes along with each momentum sum. To obtain the momentum space contribution of a given
g(k) diagram, we assign momentum k to the outgoing and incoming external lines, and sum over the
momenta of the internal lines, in such away thatmomentum is conserved at eachpoint in the diagram.
We also associate with each Green’s function line the factor g(0)(q), where q is the momentum label
of that line, and with each interaction line the factor �✏q, where q is the momentum label of that
interaction line, and t[i, f ] ⌘ �Pq e

iq(i�f )✏q. The other rules are the same as in the coordinate space
evaluation. For example, consider the diagram in panel (b) of Fig. 17, whose momentum space labels
are displayed in Fig. 24. The momentum space contribution of this diagram is

� 2 g(0)(k)✏pg(0)(p)✏qg(0)(q)g(0)(k + q � p)g(0)(k) (41)
where a sum over the internal momenta p and q is implied. Upon removing the external lines, we
obtain the following contribution to⌃⇤

a (k), or equivalently to �(k):

� 2 ✏pg(0)(p)✏qg(0)(q)g(0)(k + q � p). (42)

Additionally, consider the diagram for G(k) displayed in panel (l) of Fig. 17, whose momentum
space labels are displayed in Fig. 25. The incoming external line carriesmomentum k into the diagram,
while the terminal point absorbs this momentumwithout transferring it to an outgoing external line.
The momentum space contribution of this diagram is

� 2 g(0)(k)✏pg(0)(p)g(0)(q)g(0)(k + q � p) (43)
Upon removing the incoming external line, we obtain the following contribution to ⌃⇤

b (k), or
equivalently to  (k):

� 2 ✏pg(0)(p)g(0)(q)g(0)(k + q � p). (44)

5.4. The vertices⇤ and U

In Section 5.2, we showed that our diagrammatic series is consistent with the ECFL EOM, Eqs. (10)
and (11). We rewrite them here for convenience.
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a b

Fig. 26. Schematic diagram for the vertices. ⇤�a�b
�c�d [n,m; i] is displayed in panel (a) while U

�a�b
�c�d [n,m; i] is displayed in panel

(b).

ba

Fig. 27. Schematic diagram for the vertices.⇤�a�b
�c�d [n,m; i] is displayed in panel (a)whileU

�a�b
�c�d [n,m; i] is displayed in panel (b).

g�1[i,m] = (µ � @⌧i � Vi) �[i,m] + t[i,m] (1 � �� [i]) � ��[i,m].
eµ[i,m] = (1 � �� [i])�[i,m] + � [i,m]
�[i,m] = �t[i, j] ⇠ ⇤.g[j,n].⇤⇤[n,m; i];  [i,m] = �t[i, j] ⇠ ⇤.g[j,n].U⇤[n,m; i]. (45)

� [i] = eµ(k)[n, i+].g(k)[i,n]; ⇤[n,m; i] = � �

�Vi
g�1[n,m]; U[n,m; i] = �

�Vi
eµ[n,m]. (46)

We now examine the vertices ⇤�a�b
�c�d [n,m; i] ⌘ � �

�V
�c�d
i

g�1
�a�b

[n,m] and U
�a�b
�c�d [n,m; i] ⌘

�

�V
�c�d
i

eµ�a�b [n,m] in more detail. The zeroth order vertices, also called the bare vertices, are given

by

⇤(0)�a�b
�c�d

[n,m; i] = �[n,m]�[n, i]��a�c ��b�d; U(0)�a�b
�c�d

[n,m; i] = 0. (47)

The higher order terms contributing to⇤�a�b
�c�d [n,m; i] arise from splitting a line in⌃⇤

a
�a�b

[n,m] through
the point i. The higher order terms contributing to U

�a�b
�c�d [n,m; i] arise from splitting a line in

⌃⇤
b

�a�b

[n,m] through the point i. These terms can be represented schematically as in Fig. 26.

From Fig. 26(a), we see that in ⇤�a�b
�c�d [n,m; i], the external points n and m accommodate an

incoming and outgoing external Green’s function line, respectively, while the external point i
accommodates an incoming external Green’s function line and an external interaction line (Compare
with Fig. 13(a)). In Fig. 26(b), we see that in U

�a�b
�c�d [n,m; i], the external point n accommodates

an incoming external Green’s function line, while the external point i accommodates an incoming
external Green’s function line and an external interaction line. However, the external point m is the
terminal point and does not accommodate any external lines. Therefore, the vertices are represented
schematically as in Fig. 27. In the case of the bare vertex ⇤(0)[n,m, i], the diagram in Fig. 27(a)
collapses onto a single point, which corresponds to the point k in Fig. 13(a).

In Eq. (45), the self-energies� and  are expressed in terms of the vertices⇤ and U respectively.
These relationships can be expressed diagrammatically as in Fig. 28.

We now turn the sources off, so that we can represent the vertices in momentum space, as in
Fig. 29. In the case of ⇤(p, k), the external lines carry a total of zero momentum out of the vertex.
In the case of U(p, k), the terminal point (the one with no external lines coming in or out) absorbs
momentum k, and therefore the remainder of the external lines have to bring momentum k into the
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ba

Fig. 28. Schematic diagram for the self-energies in terms of the vertices. In panel (a) ��1�2 [i,m] is expressed in terms of
⇤
�a�b
�c�d [n,m; i] and in panel (b)  �1�2 [i,m] is expressed in terms of U

�a�b
�c�d [n,m; i].

a b

Fig. 29. Schematic diagram for the vertices in momentum space. ⇤�a�b
�c�d (p, k) is displayed in panel (a) while U

�a�b
�c�d (p, k) is

displayed in panel (b).

vertex. Therefore, comparing Fig. 29 with Fig. 27, the Fourier transform of the three point vertices,
denoted below by the generic symbol Q [n,m, i], is:

Q [n,m, i] =
X

kp

eipne�ikmei(k�p)iQ (p, k) =
X

kp

eip(n�i)eik(i�m)Q (p, k). (48)

Furthermore, there are only four non-zero spin configurations contributing to the vertex. These
are Q (1) ⌘ Q ��

�� , Q
(2) ⌘ Q ��

�̄ �̄ , Q
(3) ⌘ Q � �̄

� �̄ , and Q (4) ⌘ Q � �̄
�̄� . These four spin configurations are related

by the equation

Q (1) � Q (2) = Q (3) + Q (4). (49)
We shall now state the rules for computing the Q (i) and derive Eq. (49). Recall that to obtain a diagram
for⇤ (U), we must split a line in the self-energy⌃⇤

a (⌃⇤
b ). This will give us an extra Green’s function

line in the diagram, and we must assign momenta to the external lines as indicated in Fig. 29, at the
same time summing over themomenta of the internal lines in such away as to conservemomentumat
each point of the diagram. Also recall from Section 4.2 that the Green’s function lines in the diagrams
for⌃⇤

a (⌃⇤
b ) are partitioned into anywhere between 0 and Fs spin loops,where the zeroth loop contains

the lines with the labels �1 and �2. The spins carried by the Green’s function lines in a single loop are
allowed to alternate. However, the spin carried by each Green’s function line in the loop is determined
by that of any one of them (in the case of the zeroth loop it is the fixed spin �1).

Now, in the case that the line split in going from ⌃⇤ ! Q is from a loop which is not the zeroth
loop, the resulting vertex diagram contributes only to Q (1) and Q (2) with a factor of 1

2 relative to the
contribution of the original diagram to⌃⇤. In the case that the line split in going from⌃⇤ ! Q is from
the zeroth loop, the line split could either carry spin�1 in the original⌃⇤ diagramor spin �̄1. In the case
of the former, the resulting vertex diagram contributes to both Q (1) and Q (3) with a factor of 1 relative
to the contribution of the original diagram to⌃⇤. In the case of the latter, the resulting vertex diagram
contributes to Q (2) with a factor of 1, and to Q (4) with a factor of (�1), relative to the contribution of
the original diagram to⌃⇤. Eq. (49) immediately follows. Note that in the Feynman diagrams, we have
the simpler situation in which all of the Green’s function lines in a single spin loop (also referred to as
Fermi loop), carry the same spin [18]. Then, the very last case described above becomes impossible,
Q (4) ! 0, and Eq. (49) reduces to the standard Nozières relation Q (1) � Q (2) = Q (3) [19].

Following Ref. [9], we define Q (a) ⌘ Q (2) � Q (3). Fourier transforming Eq. (45), we obtain:

�(k) =
X

p
✏pg(p)⇤(a)(p, k);  (k) =

X

p
✏pg(p)U(a)(p, k). (50)

These relations are represented diagrammatically in Fig. 30.
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ba

Fig. 30. Schematic diagram for the self-energies in terms of the vertices. In panel (a) �(k) is expressed in terms of ⇤(a)(p, k)
and in panel (b)  (k) is expressed in terms of U(a)(p, k).

b ca

Fig. 31. Examples of skeleton and non-skeleton diagrams for the irreducible self-energy ⌃⇤
a . The diagram in panel (a) is a

skeleton diagram. The diagram in panel (b) is not, since we can isolate a self-energy insertion by cutting the two lines labeled
by c. The non-skeleton diagram in panel (b) can be obtained from the skeleton diagram in panel (c) by inserting the self-energy
insertion enclosed by the box into the Green’s function line. However, by splitting the line labeled by s in the diagram in panel
(b), through another external point, we obtain a skeleton diagram for the vertex⇤.

5.5. Skeleton diagrams

Consider the diagrammatic expansion for the irreducible self-energies that we have been using
thus far, in which each diagram is composed of bare Green’s function lines g(0)[i, f ], and hopping
matrix elements tif . We aim to reorganize this expansion in such a way that we only keep a subset
of these diagrams, in which we replace each bare Green’s function line g(0)[i, f ], by the full auxiliary
Green’s function g[i, f ], thereby accounting for the diagramswhichwe discarded.We shall nowdefine
this subset of diagrams, which is referred to as the skeleton diagrams.

The skeleton diagrams are those diagrams in which one cannot separate a self-energy insertion
⌃a from the rest of the diagram by cutting two Green’s function lines. For example, consider the ⌃⇤

a
diagrams in Fig. 31 (the same considerations will apply to⌃⇤

b diagrams). From left to right, these are
the irreducible self-energies corresponding to the g diagrams in Fig. 17(b), Fig. 17(c), and Fig. 12(c).
We see that the⌃⇤

a diagram in panel (b) of Fig. 31 is a non-skeleton diagram, since by cutting the two
Green’s function lines labeled by the letter c , we isolate the ⌃a self-energy insertion enclosed in the
box. In contrast, the⌃⇤

a diagram in panel (a) of Fig. 31 is a skeleton diagram, since it is impossible to
isolate a⌃a insertion by cutting twoGreen’s function lines. Finally, the diagram in panel (c) of Fig. 31 is
also a skeleton diagram. Furthermore, we see that by placing the self-energy insertion enclosed in the
box into the Green’s function line of the diagram in Fig. 31(c), we reproduce the diagram in Fig. 31(b).
Since a full auxiliary Green’s function line consists of an arbitrary self-energy insertion⌃a surrounded
by two bare Green’s function lines g(0), we see that the whole series is reproduced by keeping only
the skeleton diagrams and making the substitution g(0)[i, f ] ! g[i, f ].

Now, consider the vertices⇤[n,m; i] and U[n,m; i]. Recall from Fig. 26, that these correspond to
splitting a Green’s function line through the point i in ⌃⇤

a [n,m] and ⌃⇤
b [n,m], respectively. How do

we obtain the skeleton diagrams for the vertices? A naive guess would be that we do so by splitting a
Green’s function line in the skeleton diagrams for the irreducible self-energies. However, this is only
partially correct. To see this, consider again the non-skeleton⌃⇤

a diagram in panel (b) of Fig. 31. If we
choose to split either of the two lines labeled by c , thenwe leave the self-energy insertion surrounded
by the box intact, and the resulting diagram for⇤ is a non-skeleton diagram. However, if we split the
Green’s function line labeled by s, this breaks up this self-energy insertion, and leads to a skeleton
diagram for⇤.

Taking this reasoning a step further, consider the diagram for⌃⇤
a in panel (a) of Fig. 32. This diagram

can be obtained from the diagram in Fig. 31(b) by inserting the self-energy insertion enclosed by the
box into the line labeled by s in Fig. 31(b). Once again, if we split any line other than the one labeled
by s in Fig. 32(a), the resulting diagram for⇤will be a non-skeleton diagram, while if we split the line
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ba

Fig. 32. In this case both ⌃⇤
a diagrams displayed in panels (a) and (b) are non-skeleton diagrams. However, the diagram in

panel (a) contains only irreducible self-energy insertions, while the one in panel (b) contains a reducible self-energy insertion.
One can obtain a skeleton diagram for the vertex ⇤ only by splitting the line labeled by s in the diagram in panel (a). It is
impossible to obtain a skeleton diagram for the vertex⇤ from the diagram in panel (b) regardless of which line we split.

ba

Fig. 33. Panel (a) demonstrates the general procedure for obtaining a skeleton diagram for the vertex ⇤ from a ⌃⇤
a diagram

consisting of a sequence of⌃⇤
a skeleton diagrams. The original⌃⇤

a diagram is itself a skeleton diagram only if there is only one
skeleton diagram in the sequence, i.e. the ⌃⇤

a diagram in question. If we remove the outermost box in panel (a), we are still
left with a general skeleton diagram for the vertex ⇤. Therefore, to obtain a skeleton diagram for ⇤, one must insert the full
vertex⇤ into a green’s function line of a skeleton diagram for⌃⇤

a . This is displayed in panel (b). In the case that the original⌃⇤
a

diagram in panel (a) is itself a skeleton diagram (i.e. there is only one skeleton diagram in the sequence), the⇤ vertex in panel
(b) is a bare vertex.

labeled by s, the resulting diagram for ⇤ will be a skeleton diagram. Meanwhile, for the ⌃⇤
a diagram

in Fig. 32(b), obtained from the diagram in Fig. 31(b) by putting a reducible self-energy insertion into
the line labeled by s in Fig. 31(b), it is not possible to split any line in such a way that the resulting
diagram for⇤will be a skeleton diagram.

Therefore,we see that to construct the skeleton diagrams for⇤[n,m; i] (U[n,m; i]), we have to use
the following procedure. Take a skeleton diagram for⌃⇤

a [n,m] (⌃⇤
b [n,m]), and insert into atmost one

line of this diagram, a skeleton diagram for⌃⇤
a . Then, insert into atmost line of that diagram, a skeleton

diagram for ⌃⇤
a , and so on. This produces a sequence of skeleton diagrams for the irreducible self-

energies. Then, in the last skeleton diagramof the sequence, split a singleGreen’s function line through
the point i. This procedure is represented schematically (for the case of⇤[n,m; i]) in Fig. 33(a).

Now consider the part of Fig. 33(a) enclosed by the second box (counting from the very outer
box). This is itself a skeleton diagram for the vertex⇤[w, v; i], where w and v are internal variables.
Therefore, we see that one can obtain the skeleton expansion for ⇤[n,m; i] (U[n,m; i]) from the
skeleton expansion for ⌃⇤

a [n,m] (⌃⇤
b [n,m]) by replacing in each skeleton diagram for ⌃⇤

a [n,m]
(⌃⇤

b [n,m]), a single Green’s function line g[x, y], with g[x,w].⇤[w, v; i].g[v, y], where ⇤[w, v; i] is
the full vertex. This is represented schematically in Fig. 33(b). The case in which there is only one box
in Fig. 33(a) corresponds to plugging in the bare vertex into Fig. 33(b).

We now have three skeleton expansions. The first is the original skeleton expansion of the self-
energies in terms of the auxiliary Green’s function.

g�1 ⌘ g�1[g]; eµ ⌘ eµ[g], (51)

The second is the skeleton expansion for the vertices in terms of the auxiliary Green’s function. This
is the skeleton expansion represented in Fig. 33(a).

⇤ ⌘ ⇤[g]; U ⌘ U[g]. (52)

The third is the skeleton expansion for the vertices in terms of the auxiliary Green’s function and the
full vertex⇤. This is the skeleton expansion represented in Fig. 33(b).

⇤ ⌘ ⇤[g,⇤]; U ⌘ U[g,⇤]. (53)



30 E. Perepelitsky, B. Sriram Shastry / Annals of Physics 357 (2015) 1–39

ba

c d

Fig. 34. The J-vertices in the diagrams of the � expansion. They are more reminiscent of the Feynman diagram vertices than
the t-vertices displayed in Fig. 13. The two types of vertices can be obtained from each other by interchanging lines between
the two points of the vertex.

Using the diagrammatic rules developed here, we have access to all three of these skeleton
expansions at any order. However, in the absence of these rules, we could derive the terms in these
skeleton expansions by using Eqs. (51)–(53), and (45) in the following manner. Suppose that we have
the skeleton expansions in Eq. (51)-(53) through mth order in �. Then, plugging the mth order term
of the skeleton expansion from Eq. (52) into Eq. (45) yields the m + 1st order term of the skeleton
expansion in Eq. (51). Then, applying the rule g ! g⇤g to the m + 1st order term of the skeleton
expansion in Eq. (51), yields the m + 1st order contribution to the skeleton expansion in Eq. (53).
Finally, plugging the kth order term of the skeleton expansion from Eq. (52) (0  k  m) into the
m+1�kth term of the skeleton expansion from Eq. (53) yields them+1st order term of the skeleton
expansion from Eq. (52), after which we can iterate the process again. This process starts at zeroth
order by plugging the bare vertex into Eq. (45) and calculating the first order contribution to the
skeleton expansion in Eq. (51), and so on. This is the approach used in the original ECFL papers [9,
10], and reviewed in Section 2. It reveals the power of the Schwinger approach in that it enables
one to bypass the bare series and work directly with the skeleton expansion. However, the utility
of the diagrams developed here is that they enable one to obtain the contribution of a given order
directly, without iteration, and also to visualize all the higher order terms diagrammatically, therefore
facilitating diagrammatic re-summations.

6. Putting J back into the equations

Let us rewrite Eq. (4) in the form of an integral equation as in Eq. (17), but this time keeping J .

G�1,�2 [i, f ] = g(0)
�1,�2

[i, f ] � � g(0)
�1,�b

[i, f ]�b�2G�̄2,�̄b [f , f +]

� � g(0)
�1,�b

[i, k]
 

�t[k, j]�b�aG�̄a,�̄b [k, k+]G�a,�2 [j, f ] + t[k, j]�b�a
�

�V
�̄b,�̄a
k

G�a,�2 [j, f ]
!

,

� � g(0)
�1,�b

[i, k]
 

1
2
J[k, j]�b�aG�̄a,�̄b [j, j+]G�a,�2 [k, f ] � 1

2
J[k, j]�b�a

�

�V
�̄b,�̄a
j

G�a,�2 [k, f ]
!

. (54)

The �-expansion of Eq. (54) is given by the same set of rules as in Section 4.2, with the only
difference being that now each vertex can be either a t-vertex or a J-vertex. Comparing the second
and third lines on the RHS of Eq. (54), we see that the J-vertices can be obtained from the t-vertices
in Fig. 13 by moving the line labeled by �a from the point j to the point k, and moving all lines but the
one labeled by �b from the point k to the point j. The J-vertices are displayed in Fig. 34. They are more
reminiscent of the standard Feynman diagram vertices.
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ba

Fig. 35. The t and J vertices are displayed in momentum space in panels (a) and (b) respectively. For each interaction vertex
of a diagram, we can choose to use either one as long as we associate with it the factor ✏pb + 1

2 Jpa�pb .

ba

Fig. 36. The G(k) diagrams drawn in panel (a) and panel (b) correspond to the same diagram. The one in panel (a) is drawn
using a t-vertex, while the one in panel (b) is drawn using a J-vertex. In both cases, we associate the factor ✏p + 1

2 Jk�p with the
interaction vertex.

Now, let us compare an arbitrary t-vertex and an arbitrary J-vertex in momentum space. The t-
vertex is shown in panel (a) of Fig. 35, while the J-vertex is shown in panel (b). Conservingmomentum
at each point of the t and J vertices yields the relation

pa +
n
X

m=1

p2m = pb +
n
X

m=1

p2m�1. (55)

In Fig. 35(a), the interaction line contributes a factor of ✏pb , while in Fig. 35(b), the interaction line
contributes a factor of 1

2 Jpa�pb . At first, it seems as though for each diagramwith i interaction vertices,
we must now draw 2i separate diagrams, since for each vertex we must decide whether it will be a t-
vertex or a J-vertex. For example, consider the diagram in Fig. 25, also displayed in Fig. 36(a), in which
the interaction vertex is a t-vertex. In Fig. 36(b), it is drawn with a J-vertex. However, we see that
the Green’s function lines in both diagrams have the same momentum labels, and the only difference
is the momentum label of the interaction line. This is because the two things which determine the
momentum labels of the Green’s function lines are
• (1) the interconnections (via Green’s function lines) between the interaction vertices (irrespective

of where on these vertices these lines appear),
• (2) Eq. (55).
Since the J-vertex simply reshuffles the lines on the t-vertex, and Eq. (55) applies equally well to both
types of vertices, both (1) and (2) are unaffected by the choice of t vertex vs. J vertex. Therefore, we
can choose to use either the diagram in Fig. 36(a) or the diagram in Fig. 36(b) if we associate with the
interaction line in each diagram the factor ✏p + 1

2 Jk�p. In general, we can construct diagrams either
from the vertices in Fig. 35(a) (aswe have already been doing), or from the vertices in Fig. 35(b) (which
would be more reminiscent of the Feynman diagrams), as long as we associate with each interaction
vertex the factor ✏pb + 1

2 Jpa�pb .
The ECFL equations with J included are given as follows [9].

g�1[i,m] = (µ � @⌧i � Vi) �[i,m] + t[i,m] (1 � �� [i]) + �

2
J[i, j]� [j]�[i,m] � ��[i,m],

eµ[i,m] = (1 � �� [i])�[i,m] + � [i,m],
�[i,m] = L[i,n].g�1[n,m];  [i,m] = �L[i,n].eµ[n,m], (56)

where the operator L is given by:

L�1�2 [i,m] = t[i, j]�1�ag�a�2 [j,m] �

�V
�̄1�̄a
i

� 1
2
J[i, j]�1�ag�a�2 [i,m] �

�V
�̄1�̄a
j

. (57)



32 E. Perepelitsky, B. Sriram Shastry / Annals of Physics 357 (2015) 1–39

Using the same decomposition as in Eq. (31), i.e.

�[i,m] = � [i, j]t[j,m] + � [i,m], (58)

we find that

� [i,m] = L[i,n].g�1(0)[n,m] + �

2
J[m, k]L[i,m]� [k] � �L[i,n]� [n,m], (59)

where

(L[i,n].g�1(0)[n,m])�1�2 = t[i, j]�1�2g�̄2�̄1 [j, i]�[i,m] � 1
2
J[i,m]�1�2g�̄2�̄1 [i,m]. (60)

Finally, we note that the equations associated with Fig. 30 now become

�(k) =
X

p

✓

✏p + 1
2
Jk�p

◆

g(p)⇤(a)(p, k);  (k) =
X

p

✓

✏p + 1
2
Jk�p

◆

g(p)U(a)(p, k). (61)

7. Finite order calculations

7.1. Zeroth through third order calculation

In this section, we compute the skeleton expansion for the objects � ,  , and � through second
order in � in momentum space. As can be seen from Eq. (63), this yields the skeleton expansion for
g�1 andeµ through third order in �. Before proceeding with this computation, we follow Ref. [10] in
introducing a second chemical potential u0 into the theory. As explained in Ref. [10], there is a so-
called shift identity of the t–J model, which states that adding an onsite term to the hopping affects
G only through a shift of the chemical potential µ. However, the same is not true of the constituent
factors g andeµ, whichwill be affected by such a shift. To remedy this, in Ref. [10], the second chemical
potential u0 is introduced directly into the definitions of g�1 and eµ (Eq. (56)) through the formula
t[i, j] ! t[i, j] + u0

2 �[i, j] in every term but the t[i, f ] term in the equation for g�1[i, f ]. Now, an
onsite shift in the hopping affects g and eµ only through a shift in the second chemical potential u0.
Moreover, the fact that G will not be affected for any value of u0 (other than through a shift of the
original chemical potential µ) is a consequence of the shift identity. Furthermore, the two chemical
potentials µ and u0 can now be used to satisfy the two sum rules

X

k

G(k) = n
2
;

X

k

g(k) = n
2
. (62)

The first of these ensures the correct particle sum-rule for the physical electrons. The second one
states that the auxiliary fermions must satisfy the same particle sum-rule as the physical ones. We
can think of the Hubbard operator X0�

i = ci� (1 � ni�̄ ) as representing the physical fermions, and the
canonical operator ci� as representing the auxiliary fermions. Since, the number operator is a charge
neutral object, charge conservation implies that the physical and auxiliary fermions must satisfy the
same particle sum-rule. As a consequence of this, the physical electrons have a Fermi-surface which
complieswith the Luttinger–Ward volume theorem (seeRef. [9]where these sumruleswere originally
introduced and their implications discussed).

We now proceed to present the diagrams and analytical expressions for g�1 andeµ through third
order in �. Taking the Fourier transform of Eqs. (9) and (56), and using Eq. (58), we obtain

g�1(k) = i!k + µ0 � (✏k � u0

2
)eµ(k) � ��(k),

µ0 = µ � u0

2
+ �

2
� J0

eµ(k) = (1 � �� ) + � (k),
G(k) = g(k)eµ(k), (63)
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Fig. 37. Second order skeleton expansion for � . Only the diagram in panel (a) is a standard Feynman diagram. � (0) is given
by the diagram in panel (a), � (1) is given by the diagram in panel (b), and � (2) is given by diagrams in panels (c) and (d). We
conserve momentum at each interaction vertex as indicated in Figs. 35 and 36.

where J0 is the zero-momentum component of the Fourier transform of Jij. Our strategy is to compute
the skeleton expansion for � ,  , and � through second order in � (i.e. � = � (0) + � (1) + � (2), etc.)
After plugging in the expressions from this skeleton expansion into Eq. (63), we must set � = 1, and
solve the resulting integral equations. The two Lagrange multipliers µ and u0 are then determined by
the sum rules in Eq. (62).

In Fig. 37, we have drawn the skeleton diagrams for � (which is just a constant when the sources
are off) through second order in �. Therefore, � is the sum of the following terms

(a)
n
2

(b) � �
⇣n
2

⌘2

(c) �2
⇣n
2

⌘3

(d) � 2�2
X

plq

g(p)g(l)g(q)g(p + l � q)
✓

✏q � u0

2
+ 1

2
Jp�q

◆

. (64)

In Fig. 38, we have done the same for  (k). Therefore,  (k) is the sum of the following terms

(a) � 2�
X

pq
g(p)g(q)g(k + q � p)

✓

✏p � u0

2
+ 1

2
Jk�p

◆

(b) � 4�2
X

pql

g(p)g(l)g(q)g(k + q � p)g(k + q � l)
✓

✏p � u0

2
+ 1

2
Jk�p

◆✓

✏l �
u0

2
+ 1

2
Jp�l

◆

(c) � �2
X

pql

g(p)g(l)g(q)g(k + q � p)g(q + l � p)
✓

✏p � u0

2
+ 1

2
Jk�p

◆✓

✏l �
u0

2
+ 1

2
Jp�l

◆

(d) � �2
X

pql

g(p)g(l)g(q)g(k + q � p)g(p + l � q)
✓

✏p � u0

2
+ 1

2
Jk�p

◆✓

✏q � u0

2
+ 1

2
Jp�q

◆

(e) � �2
X

pql

g(p)g(l)g(q)g(k + q � p)g(k + l � p)
✓

✏p � u0

2
+ 1

2
Jk�p

◆✓

✏q � u0

2
+ 1

2
Jl�q

◆

(f ) � �2
X

pql

g(p)g(l)g(q)g(k + q � p)g(l + p � k)
✓

✏p � u0

2
+ 1

2
Jk�p

◆✓

✏l �
u0

2
+ 1

2
Jp�k

◆

(g) �2
n
2

X

pq
g(p)g(q)g(k + q � p)

✓

✏p � u0

2
+ 1

2
Jk�p

◆

(65)

The skeleton diagrams for �(k) have been split into two groups. Those drawn in Fig. 40, whose
contribution will be denoted by �B(k), can be obtained from the (k) diagrams in Fig. 38 by attaching
an interaction line to the terminal point of those diagrams. Due to the decomposition Eq. (58), this
interaction line will contribute only a J term, but no ✏ term, to the expression for �B(k). The rest
of the �(k) diagrams, whose contribution will be denoted by �A(k), are drawn in Fig. 39. Then,
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a b c

Fig. 38. Second order skeleton expansion for (k). All diagrams but the one in panel (g) are standard Feynman diagrams (with
one interaction line set to unity).  (1) is given by the diagram in panel (a), and  (2) is given by the diagrams in panels (b)
through (g). We conserve momentum at each interaction vertex as indicated in Figs. 35 and 36.

d

a

e

f g

b c

Fig. 39. Second order skeleton expansion for �A(k). These diagrams are independent of those for  (k). All diagrams are
standard Feynman diagrams. The diagram in panel (a) contributes to � (0) , the diagram in panel (b) contributes to � (1) , and
the diagrams in panels (c) through (g) contribute to � (2) . We conserve momentum at each interaction vertex as indicated in
Figs. 35 and 36.

�(k) = �A(k) + �B(k), where �A(k) is the sum of the terms in Eq. (66) and �B(k) is the sum of the
terms in Eq. (67).

(a) �
X

p
g(p)

✓

✏p � u0

2
+ 1

2
Jk�p

◆

(b) � 2�
X

pq
g(p)g(q)g(k + q � p)

✓

✏p � u0

2
+ 1

2
Jk�p

◆✓

✏q � u0

2
+ 1

2
Jp�q

◆

(c) � �2
X

pql

g(p)g(l)g(q)g(k + q � p)g(l + q � p)

⇥
✓

✏p � u0

2
+ 1

2
Jk�p

◆✓

✏l �
u0

2
+ 1

2
Jp�l

◆✓

✏l+q�p � u0

2
+ 1

2
Jp�q

◆

(d) � 4�2
X

pql

g(p)g(l)g(q)g(k + q � p)g(k + q � l)
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⇥
✓

✏p � u0

2
+ 1

2
Jk�p

◆✓

✏l �
u0

2
+ 1

2
Jp�l

◆✓

✏q � u0

2
+ 1

2
Jl�q

◆

(e) � �2
X

pql

g(p)g(l)g(q)g(k + q � p)g(k + l � p)

⇥
✓

✏p � u0

2
+ 1

2
Jk�p

◆✓

✏l �
u0

2
+ 1

2
Jp�l

◆✓

✏q � u0

2
+ 1

2
Jl�q

◆

(f ) � �2
X

pql

g(p)g(l)g(q)g(k + q � p)g(p + l � q)

⇥
✓

✏p � u0

2
+ 1

2
Jk�p

◆✓

✏q � u0

2
+ 1

2
Jp�q

◆✓

✏l �
u0

2
+ 1

2
Jk+q�p�l

◆

(g) � �2
X

pql

g(p)g(l)g(q)g(k + q � p)g(k + l � p)

⇥
✓

✏p � u0

2
+ 1

2
Jk�p

◆✓

✏l �
u0

2
+ 1

2
Jp�l

◆✓

✏k+l�p � u0

2
+ 1

2
Jp�k

◆

(66)

(a) � �
X

pq
g(p)g(q)g(k + q � p)

✓

✏p � u0

2
+ 1

2
Jk�p

◆

Jp�k

(b) � 2�2
X

pql

g(p)g(l)g(q)g(k + q � p)g(k + q � l)
✓

✏p � u0

2
+ 1

2
Jk�p

◆

(✏l �
u0

2
+ 1

2
Jp�l)Jl�k

(c) � �2

2

X

pql

g(p)g(l)g(q)g(k + q � p)g(q + l � p)
✓

✏p � u0

2
+ 1

2
Jk�p

◆

(✏l �
u0

2
+ 1

2
Jp�l)Jl�k

(d) � �2

2

X

pql

g(p)g(l)g(q)g(k + q � p)g(p + l � q)
✓

✏p � u0

2
+ 1

2
Jk�p

◆✓

✏q � u0

2
+ 1

2
Jp�q

◆

Jq�p

(e) � �2

2

X

pql

g(p)g(l)g(q)g(k + q � p)g(k + l � p)
✓

✏p � u0

2
+ 1

2
Jk�p

◆✓

✏q � u0

2
+ 1

2
Jl�q

◆

Jp�k

(f ) � �2

2

X

pql

g(p)g(l)g(q)g(k + q � p)g(l + p � k)
✓

✏p � u0

2
+ 1

2
Jk�p

◆✓

✏l �
u0

2
+ 1

2
Jp�k

◆

Jp�k

(g) �2
n
4

X

pq
g(p)g(q)g(k + q � p)

✓

✏p � u0

2
+ 1

2
Jk�p

◆

Jp�k (67)

7.2. High frequency limit

We know from the anti-commutation relations for the Hubbard X operators, that the high
frequency limit of the Green’s function is limi!k!1 G(k) = 1� n

2
i!k

. From Eq. (63), we see that the
high frequency limit of the Green’s function can also be expressed as limi!k!1 G(k) = 1���

i!k
. Since

� = P

k G(k) = n
2 in the exact theory, after setting � = 1 the two expressions for the high frequency

limit are equivalent.
From Eq. (63), we see that to obtain g�1(k) andeµ(k) tomth order in �, we must calculate � ,  (k),

and �(k) to orderm�1. If we are doing this using the bare expansion, then in order to satisfy the sum
rules in Eq. (62) order by order, we must also expand the two chemical potentials µ and u0 in � [25].

µ = µ(0) + µ(1) + · · · u0 = u(0)
0 + u(1)

0 + · · · , (68)

where µ(0) is zeroth order in �, µ(1) is first order in �, etc. Denoting g,eµ, � ,  , and � by the generic
symbol Q , and plugging the expansions from Eq. (68) into the bare expansion for Q (m) = Q (m)(µ, u0),



36 E. Perepelitsky, B. Sriram Shastry / Annals of Physics 357 (2015) 1–39

d

f

e

g

a b c

Fig. 40. Second order skeleton expansion for�B(k), which vanisheswhen J = 0. These diagrams can be obtained from those for
 (k) in Fig. 38 by adding an interaction line to the terminal point of those diagrams. However, this interaction line contributes
only a factor of J , and not a factor of ✏. All diagrams but the one in panel (g) are standard Feynman diagrams. The diagram in
panel (a) contributes to � (1) , and the diagrams in panels (b) through (g) contribute to � (2) . We conserve momentum at each
interaction vertex as indicated in Figs. 35 and 36.

the latter is rearranged with the various orders being mixed due to the expansion of the chemical
potentials. Then, we can solve for the various quantities µ(0), µ(1), etc. such that in the rearranged
series for � (m) = � (m)(n) and g(m) = g(m)(n),

� (m) = �m,0
n
2
;

X

k

g(m)(k) = �m,0
n
2
. (69)

Then, substituting the expression for � (m) back into Eq. (63), we see that only G(0)(k) and G(1)(k)
contribute to the high-frequency limit of the Green’s function, and that limi!k!1 G(k) = 1���

i!k
=

1�� n
2

i!k
.

In the skeleton expansion, the situation is different. In this case, after we set � = 1, the diagrams
from all orders in the skeleton expansion aremixed together on equal footing to generate one integral
equation which together with the sum rules in Eq. (62) determines g, µ, and u0. The other objects are
then obtained from these. In this case, if the skeleton expansions for � ,  (k), and �(k) have been
carried out to m � 1st order before being plugged into Eq. (63), then the sum rule Eq. (62) implies
that (after setting � = 1)

Pm
l=0 �

(l) = n
2 . However, from Eq. (63), the high frequency limit is given by

limi!k!1 G(k) = 1�Pm�1
l=0 � (l)

i!k
. Therefore, the error in the high frequency limit is equal to � (m), and

we have that

lim
i!k!1

G(k) = 1 � n
2 + � (m)

i!k
. (70)

This error vanishes asm ! 1.

7.3. Analysis of the � expansion: Feynman type diagrams and non-Feynman diagrams.

The � series for G differs from the Feynman series for G in two fundamental ways. The first is the
presence of the term���+� (k) in the numerator ofG(k). In the Feynman series, this term is absent.
To discuss the second one, let us identify �� with the Hartree term in the Feynman diagrams, and ��
with all self-energy diagrams other than the Hartree term. forms a subset of� (except for amissing
interaction linewhich is not important for the present discussion), and hence all considerationswhich
apply to � will apply equally well to  . Hence, the second important difference is that there are
diagramswhich contribute to�� which do not contribute theHartree term of the Feynman series, and
there are diagrams that contribute to �� which do not contribute to the other self-energy diagrams
of the Feynman series.
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From Fig. 37, we can see that the first order �� diagram is exactly the Hartree term of the Feynman
series, while the others are all diagrams which do not contribute to the Hartree term of the Feynman
series. However, from Figs. 39 and 40, we can see that the only diagram in the 3rd order skeleton
expansion for �� which is not a Feynman diagram, is diagram (g) in Fig. 40 (Feynman diagrams are
the sameorder in� as they are in the interaction,while non-Feynmandiagrams are not). Therefore, the
deviation of �� and � from the Feynman series grows rather slowly as compared with the growth
of the series itself. Moreover, if we consider the fact that the infinite series for � must sum to n

2 ,
we see that to ‘‘leading order’’, the only difference between the � series and the Feynman series is
the presence of the term ��� + � (k) in the numerator of G(k). This leads us to the point of view
taken in the phenomenological ECFL [9,26,17,14], in which � ! n

2 , and the self-energies  (k) and
�(k) are given simple Fermi-liquid forms. Then, the main correction to Fermi-liquid behavior is not
seen as coming from the self-energies themselves, but from the interplay between the numerator and
denominator of the single-particle Green’s function.

8. Connection with Zaitsev–Izyumov formalism

The Zaitsev–Izyumov formalism [8,7] is a technique for doing an expansion in t and J around the
atomic limit of the t–J model (given by t ! 0 and J ! 0 in Eq. (1)). This can also be viewed as a high-
temperature expansion since each factor of t and J must necessarily appear with a factor of � . The
diagrams of this series give rise to the same two self-energy structure for the single-particle Green’s
function as found in ECFL. In particular, Eq. (3.6) of Ref. [8] reads

G� = hF�0i +��

(G0
� )

�1 �⌃�

. (71)

We can make the identifications

hF�0i ! 1 � � ; �� !  (k); (G0
� )

�1 ! g�1(0); ⌃� ! �✏k� + �(k). (72)

As is the case in the � series, the fundamental object in the Zaitsev–Izyumov high-temperature series
is the auxiliary Green’s function g.

The main difference between the two series is the dimensionless expansion parameter. In the case
of ECFL, it is the continuity parameter �. In the case of the high-temperature series, it is �t and �J .
To see this more explicitly, consider the simplest diagram in both series, which is the zeroth order
diagram for � . In ECFL, this is the diagram in Fig. 37(a). In Ref. [8], it is represented by a dot. The
relationship between the two is shown in Fig. 41. In this figure, the dashed line indicates an atomic
limit auxiliary Green’s function gt!0,J!0(i!k) = 1

i!k+µ
. The big dot indicates the atomic limit value of

� , i.e. �t!0,J!0 = ⇢
2 , where ⇢ = 2e�µ

1+2e�µ is the atomic limit density. The wiggly line indicates a hoping
✏k. Finally, the solid line indicates the bare auxiliary Green’s function g(0)(k) = 1

i!k+µ�✏k . In panel (a),
the zeroth order � from the high-temperature series is expanded as an infinite series in �. Here, each
loop corresponds to

P

i!k
gt!0,J!0(i!k) =

⇢
2

1� ⇢
2
, and there is a minus sign between the successive

terms of the series. Summing the geometric series, we find that
⇢
2

1� ⇢
2

· 1

1+
⇢
2

1� ⇢
2

= ⇢
2 . In panel (b), the

zeroth order � from the � series is expanded as an infinite series in the hopping ✏k. This gives the
geometric series

P

k g
(0)(k) = P

k
P1

n=0
✏nk

(i!k+µ)n+1 . We see that to get from the high-temperature
series to the � series, one would have to break up all atomic limit objects into an infinite series in
terms of �, and replace every atomic limit auxiliary Green’s function with a bare propagating one.

We can summarize the fundamental difference between the two approaches as follows. In the case
of zero magnetic field, the high-temperature series is an expansion around the atomic limit, i.e. an
exponentially degenerate manifold of states, without giving preference to any one of them. In doing
so, it is difficult to recover the adiabatic continuity aspect of physics relating to the Fermi-surface
and the Luttinger–Ward volume theorem [19]. In contrast, ECFL builds the Fermi-surface into the �
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a b

Fig. 41. In panel (a), the zeroth order � diagram from the high-temperature series (the big dot) is expanded as an infinite series
in �. The dashed lines indicate auxiliary Green’s functions in the atomic limit gt!0,J!0(i!k). In panel (b), the zeroth order �
diagram from the � series is expanded as an infinite series in the hopping. The solid line indicates a bare propagating auxiliary
Green’s function g(0)(k), while the wavy line indicates the hopping ✏k .

expansion at zeroth order, by expanding around the free Fermi gas and by maintaining continuity
in �. Finally, by enforcing that the number of auxiliary fermions equals the number of physical ones
through the second chemical potential u0, ECFL is able to satisfy the Luttinger–Ward volume theorem.

9. Conclusion

In conclusion, starting with the � expansion as defined through iteration of the Schwinger EOM
around the free Fermi gas [9,10], we derived a set of diagrammatic rules to calculate the nth order
contribution to the physical Green’s function G in the t–J model. The resulting diagrams suggested
the need for two self-energies, which we denoted by ⌃a and ⌃b. Using the Schwinger equations of
motion defining the ECFL objects, g, eµ, � , � , and  , we derived diagrammatic rules for calculating
these objects and found that they could be related simply to ⌃⇤

a and ⌃⇤
b , the irreducible parts of ⌃a

and⌃b. We also discovered diagrammatically that diagrams are simply a subset of the� diagrams,
with an interaction line missing. Denoting the remainder of the � diagrams by the symbol � , this
implied the expression �(k) = ✏k (k) + �(k). We had already found this to be the case in the limit
of infinite spatial dimensions with �(k) ! �(i!k) and  (k) !  (i!k) in Ref. [23], and here we
generalized it to finite dimensions. We also derived the Schwinger EOM for the object � . We derived
diagrammatic rules for the three point vertices⇤ and U, defined as the functional derivatives of g�1

andeµ respectively, with respect to the source. We derived a generalized Nozières relation for these
vertices, which differs from the standard one for the Feynman diagrams.We then introduced skeleton
diagrams into our series, thereby allowing us to make the connection with the iterative expansion
of the Schwinger equations of motion (as done in Refs. [9] and [10]), which deals exclusively with
skeleton diagrams.

We thenderived the third order skeleton expansion for g andeµ. Previously, this had beendone only
up to second order. We then discussed the error in the high-frequency limit incurred in the skeleton
expansion carried out to any order in �. We also discussed the ‘‘deviation’’ of the � series from the
Feynman series, thereby justifying on a qualitative level, the phenomenological ECFL [9,26], which has
already been successful in explaining lines shapes found both from ARPES experiments [17], and from
DMFT calculations [14]. Finally, we discussed the connection between ECFL and the Zaitsev–Izyumov
high-temperature series. We found that while both formalisms dealt with the projection of double
occupancy by introducing two self-energies, they had fundamentally different approaches to dealing
with the problem of the Fermi-surface. While the high-temperature series is an expansion around a
completely degeneratemanifold of states, ECFLmakes an adiabatic connectionwith the Fermi-surface
and preserves the Luttinger–Ward volume theorem.

Our main motivation in deriving these diagrammatic rules is that they will allow the � expansion
to be evaluated to high orders using powerful numerical techniques such as diagrammatic Monte
Carlo, and also that the intuition gained from the diagrams themselves could facilitate infinite re-
summations guided by some physical principles.
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