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a b s t r a c t

We present a calculation of the low energy Greens function of in-
teracting fermions in 1 + ✏ dimensions using the method of ex-
tended poor man’s scaling, developed here. We compute the wave
function renormalization Z(!) and also the decay rate near the
Fermi energy. Despite the lack of !2 damping characteristic of
3-dimensional Fermi liquids, we show that quasiparticles do ex-
ist in 1 + ✏ dimensions, in the sense that the quasiparticle weight
Z is finite and that the damping rate is smaller than the en-
ergy. We explicitly compute the crossover from this behavior to a
1-dimensional type Tomonaga–Luttinger liquid behavior at higher
energies.
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1. Introduction

Recent experimental work [1–6] on the angle resolved photoemission (ARPES) has investigated
weakly two dimensional systems. These are equivalently viewed as weakly coupled 1-dimensional
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chains, and exhibit the characteristics of 1-dimensional Tomonaga–Luttinger type systems with
anomalous dimensions, exhibiting a crossover at lowest energies to a Fermi liquid type behavior,
with a finite but very small value of the quasiparticle weight Z . The small scale of Z here is related
to the almost 1-d nature of the systems. Fermi liquids with a small but nonzero Z also arise in other
important condensed matter systems in 0, 2, 3 and 1 dimensions. A small Z in the latter arise due to
strong correlations, rather than reduced dimensionality. Historically the Gutzwiller wave function [7]
provided a first example of such a behavior, suggesting a strong correlation induced vanishing Z near
the Mott insulating state. This was made especially explicit in the work of Brinkman and Rice [8]. In 0
dimensions, the asymmetric single Anderson impurity model [9–13] (AIM) provides a well studied
and classic example. Here one finds an exponentially small Z ⇠ e� 1

2(1�nd) from the Bethe Ansatz
solution [14], in the limit where the occupancy of the impurity level nd ! 1. In the d = 1 Hubbard
model, which is solvable numerically by the dynamical mean field theory [15] (DMFT), one finds a
vanishing Z ⇠ (1 � n) as the electron density tends to the Mott insulating value n ! 1, with
possibly small corrections [16] to the exponent for very small (1 � n). In other dimensions various
approximations – such as the slave particle field theories – suggest a similar small value of Z in the
metallic state found near the Mott insulating limit. We may provisionally call this group of metallic
systems with a small Z , whatever the origin of its small scale, as ‘‘Fragile Fermi Liquids’’ (FFL).

We next consider the important issue of the damping rate in order to refine this notion. Recent
work on the large U Hubbard or the t–J model using extremely correlated Fermi liquid (ECFL)
theory [16–20] gives an interesting insight into the nature of the quasiparticle damping near the
insulating limit, which agrees in remarkable detail with the results of DMFT [16]. In the large dmodel
at low energies, one finds that the quasiparticle Greens function at the Fermi momentum, including
the damping, can be expressed as
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where ⌦c and ⌦d are energies on the scale of the bandwidth. Since the imaginary part gives us the
damping of the quasiparticles here, this expression goes beyond the domain of the Landau Fermi liquid
theory. The Landau theory merely says that the damping is of O(!)2 without giving the scale of the
damping, nor does it specify the terms beyond the leading order. Thus the Greens function including
damping exhibits an!/Z scaling, with an unexpected and prominent odd in! corrections to damping
as in Eq. (1). This cubic term helps in understanding the ARPES line shapes in very strongly correlated
metals as shown in Refs. [17,18], and also in the thermopower of correlated matter [21]. It may be
viewed as one of the signatures of extreme correlations, in addition to their role in diminishing Z .
For the AIM, a similar expression for the low energy Greens function to quadratic order results in
the extension of the Fermi liquid theory in the interesting work of Hewson [9]. In the following we
focus on effects of small Z brought about by dimensionality rather than strong correlations. Therefore
we shall be content to ignore the cubic term and discuss the leading quadratic term alone. Taking
the above examples as benchmarks, we refine the notion of the Fragile Fermi Liquids. These may be
characterized as having quasiparticles endowed with a small Z , with a damping (smaller than the
energy) on an energy scale that itself shrinks with Z .

In order to explore further this notion of Fragile Fermi liquids, it would be of value to have solvable
models that give detailed results for the damping, along with the required small Z. In this work we
study weakly coupled 1 + ✏ dimensional systems resulting in a Fermi liquid where Z is very small,
as described in the first paragraph. In view of the physics described by Eq. (1), our goal is to com-
pute not only Z , but also the damping of the quasiparticles, through a controlled calculation within a
1 + ✏ dimensional model system, with ✏ > 0. We expect that the quadratic behavior of the damp-
ing in Eq. (1) would be lost in the case of 1 + ✏ dimensions, but nevertheless the damping would
be small relative to the energy of the quasiparticle. It is of interest then to check if the !/Z scaling
survives, to the extent possible with the proximity of the Tomonaga–Luttinger behavior at exactly
1-d. For this purpose we study a sufficiently simple model that allows an asymptotically exact calcu-
lation, using the renormalization group, of the low energy Greens function, including the damping.
This would also enable us to study the crossover from a Fragile Fermi liquid at the lowest energies,
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to a Tomonaga–Luttinger type behavior at higher energies, and thereby make contact with the ex-
periments [1–6]. The model considered is the simplest one in 1 + ✏ dimensions, and is essentially
the same as the one studied in the early work of Ueda and Rice (UR) in Ref. [22]. For our pur-
poses, it turns out to be necessary to compute the scale (or frequency) dependent Z(!), and not
just the static limit of this object. We will denote the static limit as Z(0) ! Z . Furthermore, we
are able to calculate the crossover from high to low energy behavior on a crossover scale that de-
pends on ✏. At low energies we obtain asymptotically a Fragile Fermi Liquid behavior: the leading
damping term of Eq. (1) becomes i 1

⌦c (!)

�
!
Z

�2 with an ! dependent energy scale ⌦c(!). The result is
summarized as:
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where ⌘ is the anomalous dimension in 1-d and d0 is a constant around 1.09, with a singular low
energy behavior of
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In view of the singularity of Z 0(!) the final behavior of the damping term at small ! is
⇠|!|1+✏/ log(|!|/2)2, which is smaller than the energy of the particle |!|. Putting these together we
find
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exhibiting an !/Z scaling, apart from the weak logarithmic correction and setting Z✏ ! 1.
It is amusing to note that althoughour calculation Eq. (4) is designed for ✏ ⌧ 1, if pushed somewhat

bravely to ✏ ⇠ 1, suggests that the singularity of Z 0(!) in 2 dimensions would be weak, and give
rise to a quadratic damping with possibly log! corrections. This is indeed correct as we know from
other works. Using the full solution of the crossover problem, we compute the spectral function of an
electron at the Fermi point from high to lowest energies, for a few typical values of the initial coupling
constants.

We next summarize the literature and discuss what is the new result in this paper. UR performed
a renormalization group (RG) analysis for small ✏ and showed that for ✏ > 0 a Fermi liquid (FL)
fixed point emerges, while ✏ = 0 has a line of fixed points which maps to the Tomonaga–Luttinger
model [23] with anomalous dimension ⌘ (defined below in greater detail). This line of fixed points
arises from the competition between the Peierls and Cooper channels. Further interesting theoreti-
cal work on this model has been undertaken in Refs. [24–29]. For instance at small ✏, Castellani, Di
Castro and Metzner Ref. [26] computed the value of the quasiparticle weight Z , their result is again
a non analytic dependence on ✏, with a slightly different set of exponents Z ⇠ exp{� ⌘

✏
}, and should

be compared with our result for Z reported in Eq. (2). For a fixed ⌘ our expression Eq. (2) would give
a somewhat bigger magnitude of Z , but it is qualitatively similar. As far as we are aware Eqs. (3)–(5)
are new.

Also new in our work is the method we use for our calculations. Our results stated above require
the calculation of the full! dependent self energy=m⌃(k ⇠ kf , !) for themodel of Ueda andRice. For
this purpose we have developed a renormalization group (RG) procedure that is a modification of the
Wilsonian RG approach for fermions, presented pedagogically in the excellent review by Shankar [30].
The modification becomes necessary because the approach outlined in Ref. [30] leads to difficulties
when one tries to use it for calculating the frequency dependent self energy. The difficulties as well
as the main features of the new method, which we refer to as the Extended Poor Man’s Scaling
(EPMS) prescription because it is verymuch in the spirit of Anderson’s celebrated ‘‘poorman’s scaling’’
approach to the Kondo problem [10], are discussed briefly in the next section, and in greater detail
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Fig. 1. We use solid line for fermions at the left branch and dashed line for fermions at the right branch. (a) g1 represents
backward inter branch scattering; (b) g2 represents forward inter branch scattering; (c) g4 represents intra branch scattering.

in Section 3. Our calculations also employ a different simplification of the momentum integrations
that arise in 1 + ✏ dimensions as compared to the discussion in Ref. [22]. The new simplification is
also summarized in the next section, and presented in detail in Section 3. We emphasize that this
simplification is merely for ease of calculation, and we expect that the physics of significance that we
discuss will be valid beyond the simplification.

2. The model

The partition function [31,32] for themodel of interacting fermions in one dimension (1-d)without
umklapp processes (and assuming zero temperature) that we study in this paper can bewritten as the
Fermionic functional integral

Z =
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where � and �⇤ are Grassmann numbers; ↵ = R and "R(k) = k for the right branch;
↵ = L and "L(k) = �k for the left branch; !, ⇤0 and k are dimensionless quantities defined
respectively as ! = !ph/(⇤0phvF ), ⇤0 = ⇤0ph/⇤0ph = 1, k = (kph + kF )/⇤0ph in the
left branch and k = (kph � kF )/⇤0ph in the right branch with !ph, kph, ⇤0ph being the physical
Matsubara frequency,momentumandmomentumcutoff respectively. Furthermore,wehave used the
abbreviated notations:
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j /vF , where
g 0
j have their usual meanings as the coupling constants used in the literature, some times referred to

as ‘‘g-ology’’ [32], with g 0
1 or g1 corresponding to the backward (Fig. 1(a), i.e., (kF , �kF ) ! (�kF , kF )),

and g 0
2 or g2 to the forward (Fig. 1(b), i.e., (kF , �kF ) ! (kF , �kF )) inter-branch scattering terms, and

g 0
4 or g4 corresponding to the intra-branch forward scattering term (Fig. 1(c)).
As is well known [32], standard diagrammatic perturbation theory in powers of the coupling

constants g1, g2 and g4 for the self energy and other properties of the model in Eq. (7) in 1-d lead to
(logarithmic) divergences. Such divergences are best handled by scaling or RG approaches [22,30,32]
either of which leads to the same scaling equations for the effective coupling constants as a function
of a ‘‘running’’ momentum cutoff as high momentum fermion degrees of freedom are recursively
eliminated and the cutoff is continuously reduced. As mentioned in the introduction, in this work
we are interested in performing a detailed RG calculation of the frequency dependent self energy
and Greens function of the model in Eq. (7), which is clearly more demanding than finding the scaling
equations for the coupling constants. Furthermore, wewould like to extend such a calculation to 1 + ✏
dimensions where we should be able to see the Fermi liquid emerging from a non Fermi liquid state.
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In extending the existing Wilsonian RG prescription, which is well explained in Shankar’s review
article, to the calculation of self energy in 1 + ✏ dimensions, we encounter two difficulties. The first
difficulty is that the Wilsonian RG, becomes cumbersome for performing calculations of self ener-
gies and in particular the quasiparticle weights [30,33]. The reason is that the rules of Wilsonian RG
require that all the momentum labels in the internal propagators in diagrammatic perturbation the-
ory, equivalent to intermediate excited states in traditional perturbation theory, must correspond to
the fast or high momentum degrees of freedom that are being eliminated. As discussed in detail in
Section 3, momentum and energy conservation then leave the self energy unchanged until the run-
ning momentum cutoff is half of the original momentum cutoff, and this renders the method difficult
to implement. To solve this problem, we propose a modification of Wilson’s scheme, whose mode
elimination process is in the spirit of Anderson’s poor man’s scaling approach [10] to the Kondo prob-
lem. We will refer to as the Extended Poor Man’s Scaling (EPMS). It differs from the Wilson scheme
in that it only requires the intermediate states that are eliminated to involve at least one high energy
or fast mode, while in the Wilson scheme all the eliminated states are required to involve only fast
modes. This procedure leads to contributions to the self energy arising continuously from the very
beginning of the reduction of the momentum cutoff, and makes it easier to track its evolution from
high to low frequency scales. The procedure is argued to be self-consistent for the current problem,
and as a check we verify that the various exponents and other properties calculated using the new
procedure agree with available results from the literature.

The second difficulty has to dowith the angular integrals that arise in extending the calculations to
non-integer dimensions. To deal with this, we propose a simpler prescription for dealing with 1 + ✏
dimensions than used earlier [22], which we argue is valid when ✏ and ! are small (see Section 3.D
for the details). Using such a prescription and the second order EPMS method, we obtain the flow
equations for the coupling constants and for the Z factor, and numerical as well as exact limiting
results for the Z factor and =m⌃ . They all show crossover behaviors, with the emergent crossover
scale being given by l⇤ = 1/✏ or !⇤ = 2e�1/✏ , where l = ln(⇤0/⇤) (⇤ is the running cutoff). When
l ⌧ l⇤ or ! � !⇤, the system shows 1-d-Tomonaga–Luttinger type behavior, while it approaches the
higher dimensional limit and shows Fermi liquid behavior if l � l⇤ or ! ⌧ !⇤. Also, we show that
when ✏ < ⌘, where ⌘ is the anomalous dimension from the 1-d limit, one obtains a ‘‘Fragile Fermi
Liquid’’ low energy behavior, with extremely small Z .

The rest of this paper is organized as follows. In Section 3, we discuss the difficulties in calculating
the self energy and the Z factor usingWilsonian RG in slightly greater detail, and then outline the EPMS
method and our prescription for calculations in 1+ ✏ dimensions. In Section 4, we discuss the second
order flow equations for the coupling constants and their solutions obtained using our prescriptions
and show that they are in agreement with those in the literature. Sections 5 and 6 contain our central,
new results for the Z and for the leading behavior of the self energy in 1 + ✏ dimensions. Section 7
has a brief discussion about the breaking down in 1 + ✏ dimensions of the ‘Lorentz-invariance’ that
is a characteristic feature of the asymptotic (low !, k) behavior of correlation functions of interacting
fermions in 1-d. In Section 8 we summarize the main points of the paper. Since we make repeated
comparisons of the EPMS method to the Wilsonian RG, for convenience we have summarized the
salient aspects of the latter in Appendix A. The full details of the EPMS prescription are presented in
Appendix B. Readers who are unfamiliar with RG calculations in the context of 1-d fermionic systems
are likely to find the rest of the paper more accessible if they go through the Appendix A first.

3. The extended poor man’s scaling method and the 1 + ✏ expansion prescription

3.1. Difficulties in calculating the self energy and the Z factor using Wilsonian RG

In this subsection, we discuss the difficulties in calculating the self energy and the Z factor using
Wilsonian RG in slightly greater detail. In particular, the quasiparticle weight Z comes from the
frequency derivative of the self energy, with (the external) k = 0. In Wilsonian RG, the first !
dependent contribution to the self-energy comes from the two-loop ‘‘sunrise’’ diagrams like the one
shown in Fig. 2(a). In a one-dimensional system, the contribution from this diagram to the self-energy
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Fig. 2. (a) In Wilsonian RG, we calculate diagrams with all internal modes as fast modes. (b) In EPMS, we calculate diagrams
with at least one internal mode as fast mode.

at a certain step of the RG is proportional to the integral (using rescaled internal momenta and
frequencies as in Eq. (77) of the Appendix A)
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where the delta functions arising from frequency and momentum conservation have been used to
carry out the integral over !0

3 and k0
3. The subscripts d⇤0 on the (momentum) integral signs are used
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2 > 0). Either of these is incompatible with the momentum shell constraints on k0
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0
2 and

k0
1 + k0

2, unless [34] s > 2. So the above contribution to the self energy vanishes for 1 < s < 2,
and there would certainly be no contribution from infinitesimal mode elimination, with s = 1 + dl.
Thus, nonvanishing frequency dependent contributions to the self energy can arise only from the one
loop (or Hartree) diagrams involving the frequency dependent two body and three body vertexes like
the ones in Fig. 14, which are ‘‘irrelevant’’ in the RG sense. But even this contribution will not appear
in the first few steps of the RG, i.e., not until the running cutoff is reduced to ⇤0/2. Thus it becomes
cumbersome to calculate self-energy contributions beyond one-loop using the Wilsonian RG [33].
Therefore we propose the EPMS scheme, which makes the calculation of two loop contributions to
the self energy relatively easier.

3.2. The EPMS method

Now we introduce the procedure of EPMS by elucidating the similarities and the differences
between EPMS and Wilsonian RG. EPMS is different from Wilsonian RG [30] in its way of mode
elimination. In Wilsonian RG, we calculate diagrams with the constraint that all the internal modes
are only fast modes. In EPMS, we calculate the diagrams with the modified constraint that at least one
of the internal modes is a fast mode. In this sense, EPMS can be regarded as a field theory version
of Anderson’s poor man’s scaling method [10]. The sunrise diagrams in Fig. 2 attempt to depict the
difference by way of an example. We note that EPMS still retains the spirit of RG in that we integrate
out high energy degrees of freedom and study the low energy effective theory [11,30]. As discussed
above, Wilsonian RG is not very convenient for calculating the two loop contributions to the self
energy because the non-vanishing contributions come from formally irrelevant two or three body
vertexes produced in previous steps, and furthermore do not appear until the running cutoff reduces
to ⇤0/2. EPMS proposes to overcome this difficulty by taking into account all the contributions (that
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would have arisen in the subsequent steps of Wilsonian RG) from some of the formally irrelevant
two and three body vertexes at the same time when those vertexes are produced. With this idea,
non-vanishing contributions to the frequency dependent self energy, for example, appear at the
very first step of EPMS, and are accumulated continually from the EPMS mode elimination process.
The same form of effective action is obtained after mode elimination in EPMS as in Eq. (77) (see
Appendix A) from Wilsonian RG, but with different multiplicative renormalization factors a, b and
c . Apart from this, the steps involving the rescaling of frequencies, momenta, and fields in EPMS are
the same as in Wilsonian RG.

In the following, we use second order renormalization of the one body vertex (or self energy) as
an example. In Wilsonian RG, when we calculate the sunrise diagram in Fig. 2(a) in the (n+ 1)th step
(i.e., when the running cutoff is reduced from ⇤n ⌘ ⇤0/sn to ⇤n+1 ⌘ ⇤0/sn+1), all the (rescaled)
internal momenta being integrated out are restricted to the shell d⇤0 as in Eq. (8). However, in EPMS,
while one of the internal momenta being integrated out is still restricted to the shell, all the others
could be either fast modes or slowmodes, as depicted in Fig. 2(b). The simplest way of doing this is as
follows: First, prior to the (n + 1)th step of EPMS, we calculate the net self energy to second order in
the current values of the leading coupling constants:
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Here, !jn ⌘ sn!j, kjn ⌘ snkj denote the rescaled internal frequencies and momenta, and !n ⌘ sn!,
kn ⌘ snk the rescaled external frequency and momentum; like in Eq. (8), the momentum and
frequency conserving delta functions have been used to calculate the integrals over !3n and k3n, with
the remaining rescaled internal momenta being fully integrated, from �⇤0 to ⇤0; and [g(⇤n)]2 is the
square sum of the running coupling constants discussed and defined in Section 5. Then we take the
difference

�I(k, i!; ⇤n, ⇤n+1) = I(k, i!; ⇤n) � I(k, i!; ⇤n+1)[g(⇤n)]2
s[g(⇤n+1)]2

, (10)

as the incremental contribution to the self energy from the (n + 1)th mode elimination step of the
EPMSprogram. The factor [g(⇤n)]2/(s[g(⇤n+1)]2) is used in order to retain the same running coupling
constants and relevance as in I(k, i!; ⇤n). From this we calculate the multiplicatively cumulative
contributions to the renormalization coefficients a and b introduced in Appendix A as,

ãe(⇤m ! ⇤m+1) = 1 + @�I(k, i!; ⇤m, ⇤m+1)

@(i!m)

���
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@km

���
!!0,k!0

, (12)

where the subscript ‘‘e’’ is used to denote that the contributions are from EPMS.

3.3. Additional rules of EPMS

Although EPMS overcomes the difficulties of Wilsonian RG in calculating the self-energy
contributions, it has some disadvantages. InWilsonian RG, there is no divergence in any intermediate
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Fig. 3. First order diagram contributing to one body vertex.

Fig. 4. (a) Peierls channels; (b) Cooper channels.

step because the upper and lower limits of integration are always finite numbers with the same sign.
But there is no guarantee of this in EPMS; it is certain to work only when divergences that could in
principle be present in I(k, !; ⇤n) get canceled in calculating �I(k, !; ⇤n, ⇤n+1). The logarithmic
divergence in one-dimension is an example.

Also, as discussed in the last subsection, the true difference between EPMS andWilsonian RG is in
the order in which diagrams are being summed. What is produced at a certain step in EPMS includes
not only the contributions from that very step ofWilsonian RG, but also a set of terms from later steps
and of higher order. This poses the problem of avoiding double counting in EPMS. In order to resolve
the double counting issue, we have to add some additional rules into the EPMS procedure. First of all,
given a specific order of calculations, only the highest order diagrams and tree diagrams are calculated
with running coupling constants. For example, Fig. 2 and Fig. 14(a) are the highest order loop diagrams
in a second order calculation. On the contrary, the lower order diagram like Fig. 3 should be calculated
with bare(original) coupling constant. Second, the contribution to lower order vertexes from formally
irrelevant higher order vertexes is calculated using the original coupling constants. For example, in the
Fermi gasmodel the original couplings of irrelevant vertexes are zero. So therewill be no contribution
from irrelevant vertexes to lower order vertexes in EPMS.

A more detailed discussion of the comparison between the EPMS calculations and the Wilsonian
RG calculations is presented in Appendix B.

3.4. The 1 + ✏ expansion prescription

The angular integrals that arise when one implements RG calculations in dimensions larger than
1-d are in general rather difficult to evaluate. In this paper, we are particularly interested in 1 + ✏
dimensions with ✏ ⌧ 1. Drawing inspiration from Ref. [22], we use the following prescription which
should be valid for small values of ✏ and the external frequency !. It relies on the fact [22] that the
Cooper (particle–particle) channels (see Fig. 4(b)) do not depend sensitively on dimensionality while
the Peierls (particle–hole) channels (see Fig. 4(a)) do. This asymmetry can be understood as follows.
For themarginal one-dimensional Cooper channels, themomentum transfer is zero, whichmeans the
two incoming (or outgoing) momenta are equal and opposite. In dimensions higher than 1, the out-
going momenta can be at an arbitrary angle relative to the incoming momenta. This property leads to
the Cooper (BCS) instability in one, two and three dimensions [30]. On the other hand, in themarginal
case for the one-dimensional Peierls channel, the momentum transfer is 2kF . In higher dimensions,
the angle between incoming and outgoing momenta is strongly restricted if the momentum transfer
is fixed and nonzero. Therefore the Peierls instability is suppressed by the angular integral in higher
dimensions.

We propose the following simple prescription for 1 + ✏ expansion by considering this asymmetry
as the leading effect arising from the extra ✏ dimensions that needs to be taken into account. Hence,
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when the Cooper channels are calculated in 1 + ✏ dimensions, we use the same formula as in 1-d.
However, when calculating the Peierls channels in 1+✏ dimensions, we introduce an additional factor
|k|✏ in an appropriate momentum integral. For example, in the case of sunrise diagram like the ones
in Fig. 2, the momentum integral over k3 (the one in the opposite direction relative to the other two)
should include the factor |k3|✏ . This introduction of |k|✏ is to be regarded as a purely mathematical
device to approximately take into account the crucial effects of the extra ✏ dimensions. We note also
that in the RG calculation, the k in |k|✏ should always be in terms of the original scale. Otherwise, the
rescaling of k in |k|✏ would lead to the changes in the relevance of different terms and get in conflict
with the fact that the relevancy of each term is the same in one, two and three dimensions [30].
We show in the next section that this prescription gives the same flow equations for the coupling
constants as in Ref. [22].

In principle, there could be other slightly different schemes [33] for 1 + ✏ dimensions. The reason
for choosing our scheme is that it introduces the higher dimension effects without changing the
interaction effects in 1-d qualitatively. In a 2-d system, there are three classes of interactions [30,33],
i.e., back, forward and exchange scattering interactions. If we apply this 2-d classification of
interactions directly in 1 + ✏ dimensions, both g1 and g2 in the 1-d model get regarded as back
scattering terms. Then it would be hard to connect to 1-d case as well as look at the crossover
behaviors. Instead, our prescription in 1 + ✏ dimensions could be imagined as saying that for both
the g1 and g2 terms, the incoming as well as outgoing momenta are equal and opposite, but the
outgoingmomenta could be a bit off the incoming line. Andwe still take g1 and g2 as back and forward
scattering interactions respectively. Such a generalization of the 1-dmodel does not change the nature
of g1 and g2 in 1-d qualitatively and hence helps to understand the crossover behaviors between
Tomonaga–Luttinger liquid in 1-d and Fermi liquid in higher dimensions.

4. Second order flow equations for the coupling constants

In this section, we derive the second order flow equations for the coupling constants in 1 + ✏
dimensions. Ifwe only look at the contribution to themarginal couplings, corresponding to all external
momenta being at the Fermi surface (external k = 0), the only non-vanishing diagrams are shown in
Fig. 5 (the Peierls and Cooper channels involving the same branches are easily shown to give vanishing
contributions) and the internal momenta would both have to be high momenta. Therefore, EPMS will
give the same results as Wilsonian RG [30]. Since the two body vertexes are marginal, in calculating
the diagrams we can use momenta and frequencies as per the original scale and change the limits on
the momentum integrals to take into account the running cutoff ⇤ without changing the result.

The Peierls channel contribution with k1, !1 and k1, !1 on different branches is:

⇡0 =
Z ⇤

⇤/s

|k1|✏dk1
2⇡

Z
d!1

2⇡
1

i!1 + k1

1
i!1 � k1

+
Z �⇤/s

�⇤

|k1|✏dk1
2⇡

Z
d!1

2⇡
1

i!1 + k1

1
i!1 � k1

= �e�✏ldl
2⇡

, (13)

where the last result is obtained for infinitesimal change in the running cutoff, as obtained by setting
s = edl, and ⇤ = ⇤0/sn = e�n dl = e�l. The Cooper channel with k1, !1 and k1, �!1 on different
branches gives

�0 =
Z ⇤

⇤/s

dk1
2⇡

Z
d!1

2⇡
1

i!1 � k1

1
�i!1 � k1

+
Z �⇤/s

�⇤

dk1
2⇡

Z
d!1

2⇡
1

i!1 � k1

1
�i!1 � k1

= dl
2⇡

. (14)

Again, the last result above is for infinitesimal RG.
Then, for the EPMS step reducing the running cutoff from ⇤ to ⇤/s, the incremental change in the

coupling constants is given by �g1 = 2g2
1⇡

0 � 2g1g2�0 � 2g1g2⇡0, �g2 = �g2
1�0 � g2

2�0 � g2
2⇡0 and
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Fig. 5. All non-vanishing one loop diagrams contributing to marginal two body vertex.

g4 = 0. Hence we get the flow equations:

dg1
dl

= �g1g2
⇡

� (g2
1 � g1g2)e�✏l

⇡
, (15)

dg2
dl

= �g2
1 + g2

2

2⇡
+ g2

2 e
�✏l

2⇡
, (16)

dg4
dl

= 0. (17)

These equations are essentially the same as in Ref. [22], except that ✏ appears here instead of ✏/2
in the reference. The equations show an emergent crossover scale l⇤ = 1/✏. For l ⌧ l⇤, the 1 + ✏
dimensional equations behave like their 1-d versions [32]: dg1/dl = �g2

1/⇡ , dg2/dl = �g2
1/(2⇡) and

dg4/dl = 0. The solutions are

g1(l) = g10
1 + g10l/⇡

, (18)

g1(l) � 2g2(l) = g10 � 2g20, (19)
where g10 and g20 are the initial values of g1 and g2 respectively. For l � l⇤, we can neglect the
exponential terms in Eqs. (15) and (16); we then have the equations [22]: dg±/dl = �g2

±/(2⇡), where
g± = g2 ± g1. The solutions are

g1(l) = g1c
(1 + g+c(l � lc)/(2⇡))(1 + g�c(l � lc)/(2⇡))

, (20)

g2(l) = g2c + g+cg�c(l � lc)/(2⇡)

(1 + g+c(l � lc)/(2⇡))(1 + g�c(l � lc)/(2⇡))
, (21)

where g1c and g2c are the values of g1 and g2 respectively when entering the l � l⇤ region, and g±c =
g2c ± g1c . We can therefore write down the following approximate solutions setting lc = l⇤ = 1/✏,
and choosing g1c = g1(lc), g2c = g2(lc) using the small l solutions:

g1app(l) = ✓(l⇤ � l)
g10

1 + g10l/⇡
+ ✓(l � l⇤)

g1c
(1 + g+c(l � l⇤)/(2⇡))(1 + g�c(l � l⇤)/(2⇡))

, (22)

g2app(l) = ✓(l⇤ � l)
✓
g20 � g10

2
+ g10

2(1 + g10l/⇡)

◆

+ ✓(l � l⇤)
g2c + g+cg�c(l � l⇤)/(2⇡)

(1 + g+c(l � l⇤)/(2⇡))(1 + g�c(l � l⇤)/(2⇡))
, (23)

where g1c = g10/(1 + g10/(✏⇡)) and g2c = g20 � g10/2 + g10/[2(1 + g10/(✏⇡))]. Fig. 6(a) and (b)
show a comparison of these approximate solutions for g1 and g2 with the exact (numerical) solutions
of Eqs. (15) and (16).

We can see from these figures that g1app and g2app are fairly good approximations for the exact g1
and g2 in the two asymptotic regions l ⌧ l⇤ and l � l⇤. In 1-d, if g10 = 0, then g2(l) = g20—this is
referred to as the 1-d fixed point model; even when g10 6= 0, g1(l) ! 0 and g2(l) ! g20 � g10/2 as
l ! 1. However these results no longer hold in the case of 1 + ✏ dimensions—for g10 = 0 as well as
for almost all other initial conditions, g2(l) goes to zero asymptotically as 1/(l � lc) for l � l⇤.
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Fig. 6. (color line) The solid lines in (a) and (b) are plotted by solving numerically Eqs. (15) and (16) in 1 + ✏ dimensions with
✏ = 0.01, g10 = 0.1 and g20 = 0.1. The dashed line in (a) and (b) are plotted using the approximation model Eqs. (22) and (23)
respectively. The approximation model captures the crossover behavior for g1 and g2 with a crossover scale l⇤ = 1/✏.

5. Calculation of Z , the quasiparticle weight

To calculate Z , it is convenient to rewrite the interaction terms in action in Eq. (7) as

Vint [{�}] = g1�⇤
s,L(1)�

⇤
s̄,R(2)�s̄,L(3)�s,R(4)� + g2�⇤

s,L(1)�
⇤
s̄,R(2)�s̄,R(3)�s,L(4)�

+ (g1 � g2)�⇤
s,L(1)�

⇤
s,R(2)�s,L(3)�s,R(4)�

+
X

↵=L,R

g4
2

�⇤
s,↵(1)�⇤

s0,↵(2)�s0,↵(3)�s,↵(4)� (24)

where s̄ is the opposite spin of s. Since we are only interested in 1+ ✏ dimensions with ✏ ⌧ 1, we use
the same prescription as in Section 3 in our EPMS calculation of Z . Therefore the integrals including
the � functions look the same as in the 1-d case, except for the additional |k|✏ factor in the Peierls
channels. In the second order sunrise diagram, it is easy to see that each of the two body interaction
couplings above only couples to itself. The g2

1 , g
2
2 and (g1 � g2)2 terms in the contributions to the self

energy are all given by the same diagram, as shown in Fig. 2; so the net contribution is proportional
to g2 ⌘ g2

1 + g2
2 + (g1 � g2)2. Furthermore, there are contributions to the self energy proportional to

g2
4 coming from the diagrams in Fig. 7.
The calculation of the self energy using the EPMS prescription extended to 1+ ✏ dimensions using

the sunrise diagrams like the ones shown in Figs. 2 and 7, labeled such that k1 and k3 are from the
same branch (left branch for example), will hence involve the integrals

Z ⇤0

�⇤0

dk1
2⇡

Z ⇤0

�⇤0

dk2
2⇡

Z ⇤0

�⇤0
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1
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�⇤0
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|k3|✏dk3
2⇡

Z +1

�1

d!2

2⇡

Z +1

�1

d!3
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1
i!2 ± k2

1
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=
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�⇤0

dk2
2⇡

Z ⇤0

�⇤0

|k1|✏dk1
2⇡

Z +1

�1

d!2

2⇡

Z +1

�1

d!1

2⇡

⇥ 1
i(!1 + !2 � !) + (k1 + k2 � k)

1
i!2 ± k2

1
i!1 + k1

, (25)

where in the last step we have set k1 = �k3 and !1 = �!3. The last result is exactly what we
would have obtained by including the ✏ dependent factor into the k1 integral rather than into the k3
integral at the outset; i.e., in the case with k1 and k3 from the same branch, including |k3|✏ factor into
k3 integral is equivalent to including |k1|✏ into k1 integral. Henceforth, for convenience, we use |k1|✏ in
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Fig. 7. Sunrise diagrams with all momenta in the left branch (a) or right branch (b).

the following calculations of Z and =m⌃ in 1 + ✏ dimensions comparison with the formalism in the
1-d case. Also, since we are interested in the ! dependent part of the self energy, we set the external
k = 0 (at the Fermi surface) without loss of generality.

First we calculate the g2
4 diagram in Fig. 7. For the (n + 1)th step of EPMS, we need to calculate

(compare Eq. (9))

Ig4(k = 0, i!; ⇤n) = [g4(⇤n)]2
Z ⇤0

�⇤0

|k1|✏dk1n
2⇡

Z ⇤0

�⇤0

dk2n
2⇡

Z +1

�1

d!1n

2⇡

⇥
Z +1

�1

d!2n

2⇡
1

i!1n � k1n

1
i!2n � k2n

1
i(!1n + !2n � !n) � (k1n + k2n)

, (26)

where, as before, ⇤n = ⇤0/sn = ⇤0/en dl. The integral will vanish after integrating over !1n and !2n
unless the integrand has poles in different half planes; that is, either (k1n > 0, k2n > 0, k1n + k2n < 0)
or (k1n < 0, k2n < 0, k1n + k2n > 0). Either set of conditions is impossible to satisfy, so the integral
vanishes; hence the g2

4 term does not contribute to Z .
Next, consider the contribution proportional to g2. The relevant integral is

I(k = 0, i!; ⇤n) = [g(⇤n)]2sn
Z ⇤n

�⇤n

|k1|✏dk1
2⇡

Z ⇤n

�⇤n

dk2
2⇡

Z +1

�1

d!1

2⇡

⇥
Z +1

�1

d!2

2⇡
1

i!1 + k1

1
i!2 � k2

1
i(!1 + !2 � !) + (k1 + k2)

. (27)

Evaluating the frequency integrals by contour integration, we see that there are two regions of k1 �k2
space which can lead to non-vanishing contributions: either (k1 > 0, k2 < 0, k1 + k2 < 0) or (k1 < 0,
k2 > 0, k1 + k2 > 0). In the former case, after simplifying we get the condition (�⇤n < k2 < 0,
0 < k1 < �k2), leading to the contribution

I1(k = 0, i!; ⇤n) = [g(⇤n)]2sn
Z ⇤n

0

dk2
2⇡

Z k2

0

|k1|✏dk1
2⇡

�1
i! + 2k2

. (28)

Likewise, in the latter case, we have the contribution

I2(k = 0, i!; ⇤n) = [g(⇤n)]2sn
Z ⇤n

0

dk2
2⇡

Z k2

0

|k1|✏dk1
2⇡

�1
i! � 2k2

. (29)

It is convenient at this stage to change into real frequencies by the analytic continuation (i! !
! + i� ⌘ !+) so that we are looking at the renormalization of the retarded Green function. Thus,
from Eqs. (28) and (29), we get

I(k = 0, !+; ⇤n) = I1(k = 0, !+; ⇤n) + I2(k = 0, !+; ⇤n)

= �[g(⇤n)]2sn
Z ⇤n

0

k✏
2dk2

4⇡2(1 + ✏)

✓ �!/2
!+ + 2k2

+ !/2
!+ � 2k2

◆
. (30)
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Therefore, as per the prescription described in Section 3, the contribution to the incremental self
energy from the EPMS step reducing the cutoff from ⇤n to ⇤n+1 is

�I(k = 0, !+; ⇤n, ⇤n+1) = I(k = 0, !+; ⇤n) � I(k = 0, !+; ⇤n+1)[g(⇤n)]2
s[g(⇤n+1)]2

= �[g(⇤n)]2sn
Z ⇤n

⇤n+1

k✏
2dk2

4⇡2(1 + ✏)

✓ �!/2
!+ + 2k2

+ !/2
!+ � 2k2

◆

= [g(⇤n)]2
!n[(⇤n)

✏ � (⇤n+1)
✏]

8⇡2✏(1 + ✏)
+ o(!3) + i=m�I(k = 0, !; ⇤n, ⇤n+1), (31)

where !n = sn! as in Appendix A. We note that the self energy contribution is purely real unless
⇤n+1 < |!|/2 < ⇤n, and when this condition is satisfied, we have

=m�I(k = 0, !; ⇤n, ⇤n+1) = [g(⇤n)]2sn
8⇡2(1 + ✏)

���
!

2

���
1+✏

. (32)

Noting from its definition that incremental contributions to Z accumulate multiplicatively in the
same way as for the multiplicative renormalization factor a�1 in Eq. (75), and following Eq. (86), we
can calculate the Z factor after n steps of EPMS as the product

Z(⇤n) =
n�1Y

m=0

Z̃(⇤m ! ⇤m+1). (33)

Here [Z̃(⇤m ! ⇤m+1)]�1 �1 is the lowest order contribution to the coefficient of! in the real part of
the self energy arising from the (m + 1)th EPMS step reducing the cutoff from ⇤m to ⇤m+1. We note
from the above that ln(Z) is the sum of additive incremental contributions from each step of EPMS.
Hence by making these steps infinitesimal as before by the choice s = edl, we can derive a differential
equation for ln(Z):

Z̃(⇤m ! ⇤m+1) = 1

1 + @ Re�I(k=0,!;⇤m,⇤m+1)
@!n

���
!n!0

= 1 � g2(⇤m)e�✏mdl

8⇡2(1 + ✏)
dl; (34)

whence, keeping n dl = l and ⇤n = e�n dl = e�l fixed while letting n ! 1 and dl ! 0

d ln Zl = ln Z̃(⇤n ! ⇤n+1) = ln
✓
1 � g2

l e
�✏n dl

8⇡2(1 + ✏)
dl
◆

= � g2
l e

�✏l

8⇡2(1 + ✏)
dl, (35)

where we have denoted Zl ⌘ Z(⇤n) and g2
l ⌘ [g(⇤n)]2. Thus we get the differential equation for ln Z ,

d ln Z
dl

= � g2
l e

�✏l

8⇡2(1 + ✏)
. (36)

By definition [35], the flowing anomalous dimension is therefore

⌘(l) ⌘ �d ln Z
dl

= g2
l e

�✏l

8⇡2(1 + ✏)
. (37)

The emergent crossover scale l⇤ is evident here. From g2
l = 2(g2

1 + g2
2 � g1g2) = 2[(g2 �

g1/2)2 + 3g2
1/4] and using Eqs. (22) and (23) in Section 4, it is easy to see that for 1 ⌧ l ⌧ l⇤,

g2
l ⇡ 2(g20 � g10/2)2 and for l � l⇤, g2

l ⇡ 8⇡2/l2. Hence, when 1 ⌧ l ⌧ l⇤, the anomalous
dimension is essentially the same as in the 1-d case: ⌘(l) ⇡ [g20 � g10/2]2/(4⇡2). When l � l⇤, ⌘(l)



90 P. Mai et al. / Annals of Physics 370 (2016) 77–104

Fig. 8. The red solid line represents exact numerical Zl obtained first solving Eqs. (15) and (16) with ✏ = 0.01, g10 = 0.1
and g20 = 0.1, and then substituting the results into g2

l0 in Eq. (38). The dashed blue line represents the approximate analytical
model Zlapp in Eq. (40) which captures the crossover behaviors in region l � l⇤ and l ⌧ l⇤ where l⇤ = 1/✏ is the crossover scale.
When l ⌧ l⇤ , Zl decays very fast like the 1-d case, but converges a finite value when l � l⇤ as a feature in 1 + ✏ dimension.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

or d ln Z/dl ! 0, hence the anomalous dimension vanishes and Z converges to a constant in 1 + ✏
dimensions. From Eq. (36), we have

ln Zl = �
Z l

0

[g(l0)]2e�✏l0

8⇡2(1 + ✏)
dl0. (38)

From the above results for g2
l , we can write down the following approximate model which permits

an analytic calculation of Z:

[glapp]2 = ✓(l⇤ � l)2
⇣
g20 � g10

2

⌘2
+ ✓(l � l⇤)

8⇡2

l2
. (39)

This model captures the asymptotic behaviors of g1 and g2 in region l ⌧ l⇤ and l � l⇤ as shown in
Eqs. (22) and (23). Therefore, we get

Zlapp ⇡ ✓(l⇤ � l) exp

� ⌘

1 + ✏

1 � e�✏l

✏

�

+ ✓(l � l⇤) exp

� ⌘

1 + ✏

1 � e�1

✏
� ✏

1 + ✏
(e�1 � e�✏l + Ei(�1) � Ei(�✏l))

�
, (40)

where ⌘ = (g20 � g10/2)2/(4⇡2) is the asymptotic value of d ln Z/dl in 1-d when g10 6= 0 or the
anomalous dimension when g10 = 0. Here Ei(x) is the exponential function Ei(x) = �

R1
x

e�t

t dt .
Fig. 8 shows a comparison of the exact numerical evaluation of Zl with this approximate analytical

result. The exact numerical Zl is obtained by first solving Eqs. (15) and (16), substituting the results
into g2

l0 in Eq. (38) and then doing the integration numerically. The model captures the crossover of Z
between the two regimes but is not very accurate in capturing the asymptotic value of Z when l ! 1.

In order to find the dependence of Zl!1 on ✏ and coupling constants, we first look at the special
case with g10 = 0. When g10 = 0, g1(l) remains 0 according to Eq. (15). And Eq. (16) becomes

dg2
dl

= �g2
2 (1 � e�✏l)

2⇡
, (41)

which can be solved analytically as

g2(l) = g20
1 + g20(l � 1/✏ + e�✏l/✏)/(2⇡)

. (42)
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Fig. 9. (color line) (a) � ln Z1/(⌘3/4/
p

✏) versus 1/✏ is plotted for g10 = 0 and g20 = 0.5, 1, 2 corresponding to ⌘ =
1/(16⇡2), 1/(4⇡2), 1/⇡2 respectively to show that Z1 vanishes as exp[�d0 ⌘3/4/

p
✏] with d0 ⇡ 1.09 when ✏ ! 0.

(b) � ln Z1/(⌘3/4/
p

✏) versus 1/✏ is plotted for several combination of g10 6= 0 and g20. Three curves also converge to about
1.09. It shows that in the general case, Z1 also vanishes as exp[�d0 ⌘3/4/

p
✏] with d ⇡ 1.09 when ✏ ! 0.

Substituting g1(l) and g2(l) into Eq. (38), we get

ln Z1 = �
Z 1

0

e�✏l0

(1 + ✏)[1/⌘0.5 + l � 1/✏ + e�✏l0/✏]2 dl
0, (43)

where ⌘ = g2
20/(4⇡

2) is the anomalous dimension in 1-d fixed point. Since we look at the small ✏
behavior, we keep only the leading order of ✏. First replace 1+✏ by 1 in the denominator. The integral
can be separated into two parts l0 < 1/✏ and l0 > 1/✏. For the first part, e�✏l0 ⇡ 1 in the numerator
and l � 1/✏ + e�✏l0/✏ ⇡ ✏l02/2 in the denominator. So we have

Z 1/✏

0

1
[1/⌘0.5 + ✏l02/2]2 dl

0 =
✓
2
✏

◆0.5

⌘3/4
Z ⌘0.25(2/✏)0.5

0

1
[1 + l02]2 dl

0 ⇡ 1.11
⌘3/4
p

✏
. (44)

In the last step, we approximate the upper limit by infinity because we are interested in small ✏ and
the integral converges fast, and then use

R1
0 1/(1+ l02)2dl0 ⇡ 0.785. The second part of the integral is

Z 1

1/✏

e�✏l0

[1/⌘0.5 + l0 � 1/✏ + e�✏l0/✏]2 dl
0 = ✏

Z 1

1

e�l0

[✏/⌘0.5 + l0 � 1 + e�l0 ]2 dl
0 = o(✏). (45)

Therefore we can keep only the first part of the integral when ✏ is very small and

Z1 = exp
⇢
�d0

⌘3/4
p

✏

�
, (46)

where d0 is about 1.11 from Eq. (44). The numerical result in Fig. 9(a) attests this form with a
slightly smaller d as 1.09 because we overestimate the first part of the integral a bit in the analytical
calculation.

Then it is natural to ask whether Eq. (46) is still valid when g10 6= 0. Since Eqs. (15) and (16) cannot
be solved analytically on a general initial condition, we have to rely on numerical calculation. Fig. 9(b)
does show that Eq. (46) also works for g10 6= 0 with d0 around 1.09 and ⌘ = (g20 � g10/2)2/(4⇡2).

6. Calculation of the leading ! dependence of Z(!) and ⌃(!)

In this section, we calculate the full, frequency dependent self energy ⌃(!). In this and next
section, we use ! corresponding to the analytic continuation to real frequencies, i! ! ! + i� ⌘ !+.
We choose n such that ⇤n+1 < |!/2| < ⇤n, for, as seen in the previous section, if this condition is
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satisfied the leading contribution to the self energy is purely real up to the nth step of EPMS, and its
effects on the Greens function are basically captured by Z . To recapitulate, after n steps of EPMS, the
lowest order (i.e., free) Green function of the rescaled fields, Gn(⇤0) (also see Appendix A) is

Gn(!
+
n ; ⇤0) = 1

!+
n

, (47)

where we have set the external k = 0 (and also suppressed it as an argument of G), and kept only the
leading term in !. As before, !n ⌘ sn!. Hence the low energy effective or renormalized Green function
of the original fields, but with the reduced cutoff, is, to leading order,

G(!+; ⇤n) = snZn dlGn(⇤0) = Zl
!+ , (48)

which is a restatement of Eq. (85) in Appendix A using Z instead of a. We keep going back to the
original leading order Green function with a reduced cutoff because one aim of RG is to be able to
calculate the correlation function of slowmodes in a low energy effective theory [30]. However, again
as shown in the previous section, because of the chosen relation between ! and n, during the next
step of EPMS, according to Eqs. (31) and (32), we get a non-trivial self energy, with an imaginary part,
leading to the Green function:

Gn+1(!n+1; ⇤0) = 1

sn+1! + iZ̃(⇤n ! ⇤n+1)
g2l s

n+1

8⇡2(1+✏)
|!
2 |1+✏

, (49)

where, as before, we use� ln |!/2| ⇡ ln⇤n = n dl as the argument of the running coupling constant,
and will eventually take the limit dl ! 0. The low energy effective Green function is therefore

G(!; ⇤n+1) = Z(n+1)dlsn+1Gn+1(!n+1; ⇤0)

⇡ 1

Z�1
(n+1)dl! + i g2l

8⇡2(1+✏)
Z�1
n dl|!

2 |1+✏

. (50)

Now we take the limit dl ! 0 and n ! 1, fixing n dl = l = � ln |!/2|. And then we can replace the
dependence on l by !. The Green function is

G(kF , !) = 1

[Z(!)]�1! + i [g(!)]2
8⇡2(1+✏)

[Z(!)]�1|!
2 |1+✏

, (51)

where [g(!)]2 = g2
l with l = � ln |!/2| and

Z(!) = Zl = exp

"

� 1
2✏

Z 2

!

[g(!0)]2!0✏�1

8⇡2(1 + ✏)
d!0

#

, (52)

where the upper limit ‘‘2’’ is the dimensionless bandwidth. We may rewrite this usefully as

Z(!) = Z(0) ⇥ exp

"
1
2✏

Z !

0

[g(!0)]2!0✏�1

8⇡2(1 + ✏)
d!0

#

, (53)

where Z(0) is found from Eq. (52) by extending the lower integral to 0, and we note its value below.
To compare with the fix point (g10 = 0) model in 1-d, we plot Z(!) versus |!| in Fig. 10 for
several values of ✏, with g10 = 0. In the fixed point model in 1-d, there is an anomalous dimension
⌘ = g2

20/(4⇡
2), andwhen! ! 0, Z ! 0. In 1+✏ dimensions, when! ! 0, Z ! exp(�d0 ⌘3/4/

p
✏),

as discussed in Section 5. So when ✏ < ⌘, Z is considerably smaller than 1. We can define the system
in this regime, with a very small Z , as a fragile Fermi Liquid.

We can invert Eq. (53) to express

[g(!)]2 = 2✏(1 + ✏)8⇡2 Z 0(!)

Z(!)
⇥ !1�✏ . (54)
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Fig. 10. (color line) The quasi-particle weight Z(!) is plotted for different value of ✏ with g10 = 0 and g20 = 3 corresponding
to the 1-d fixed point g10 = 0. The inset shows Z(0) remains finite for any finite ✏, and vanishes when ✏ ! 0.

This gives us leading low energy behavior

G�1(kf , !)|!!0 ⇠ !

Z(0)
+ i

2
Z 0(!) ⇥

✓
!

Z(0)

◆2

. (55)

Notice the similarity with Eq. (1) where the Fermi liquid Greens function is noted in other interesting
cases. In particular, if Z 0(!) were finite at ! ! 0, this would be similar to a standard Fermi liquid
quasiparticle Greens function including the leading damping term. However we see next that Z 0

diverges at the lowest energies as

Z 0(!) ⇠ Z(0) ⇥ 1
2✏(1 + ✏)

1
!1�✏ (log(!/2))2

. (56)

This changes the damping rate from the familiar quadratic in! to!1+✏/(log(!/2))2. Combining with
Eq. (55) we obtain:

G�1(kf , !)|!!0 ⇠ !

Z
+ i

21+✏(1 + ✏)

✓ |!|
Z

◆1+✏

⇥ 1
(log(|!|/2))2 , (57)

where Z = Z(0) and we set Z✏ ! 1. This expression displays the !/Z scaling, ignoring the weak
logarithmic term for this purpose.

For small ! ⌧ e�1/✏ or ln |2/!| � 1/✏, we have

Z(! ⌧ e�1/✏) ⇡ exp
✓

�d0
⌘3/4
p

✏

◆
exp

"Z !

0

��!0
2

��✏�1

2(ln |!0/2|)2(1 + ✏)
d!0

#

= exp
✓

�d0
⌘3/4
p

✏

◆
exp

" ��!0
2

��✏

(ln |!0/2|)2(1 + ✏)✏
+ o

 ��!0��✏

(ln |!|)3

!#

⇡ exp
✓

�d0
⌘3/4
p

✏

◆"

1 +
��!0

2

��✏

(ln |!0/2|)2(1 + ✏)✏
+ o

 ��!0��✏

(ln |!|)3

!#

(58)

where we use the small ! or large l asymptotic behavior of [g(!)]2 in Eq. (39) and integrate by parts
in the second step.
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Fig. 11. The red line is plotted by substituting exact numerical Z(!) into Eq. (61) with g10 = 0 and g20 = 3 (⌘ =
9/(4⇡2) ⇡ 0.228), while the blue line represents the approximation model (62). This model captures the crossover behavior
from Tomonaga–Luttinger liquid region (! � !⇤) to Fermi liquid region (! ⌧ !⇤) with a crossover scale !⇤ = 2e1/✏ and the
right asymptotic behaviors in these two regions. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

From Eq. (51), we also get the imaginary part of the self-energy at the Fermi surface

=m⌃(kF , !) = =m⌃(k = 0, !) = � [g(!)]2
8⇡2(1 + ✏)

[Z(!)]�1
���
!

2

���
1+✏

. (59)

This can be rewritten as

=m⌃(kF , !) = � [g(!)]2
8⇡2(1 + ✏)

��!
2

��f (!,✏)
, (60)

with

f (!, ✏) ⌘ 1 + ✏ � ln[Z(!)]/ ln |!/2|. (61)

Using our approximate model Zapp(!) (which is Zlapp in Eq. (40) evaluated at l = � ln |!/2|) to
replace Z(!), we get an approximation model

fapp(!, ✏) = 1 + ✏ � ✓(! � !⇤)
⌘

1 + ✏

|!/2|✏ � 1
✏ ln |!/2| � ✓(!⇤ � !)


⌘

1 + ✏

e�1 � 1
✏ ln |!/2|

+ ✏

(1 + ✏) ln |!/2| (|!/2|✏ � e�1 + Ei(✏ ln |!/2|) � Ei(�1))
�

(62)

where we have used e�l = |!/2|, !⇤ = 2e�1/✏ . From the formula above, we see f ! 1 + ✏ � ⌘,
corresponding to 1-d like behavior when ! � !⇤ and f ! 1 + ✏ when ! ⌧ !⇤ as expected for a
Fermi liquid in 1 + ✏ dimensions. We plot f (!, 0.01) to show the crossover behaviors in Fig. 11 and
the approximate model fapp(!, 0.01) captures the right asymptotical behaviors and the crossover. To
compare directly with the fixed point model in 1-d, we plot =m⌃ for small frequencies for several
values of ✏ in Fig. 12(a). From the asymptotic behaviors of f , we see that there is Non-Fermi liquid
behavior at relatively high frequencies when ✏ < ⌘, which could be the signature of a fragile Fermi
liquid. To show this signature, we plot =m⌃/! for several values of ✏ in Fig. 12(b). For ✏ < ⌘, there is
an initial part in the curve which is Non-Fermi liquid behavior, like in 1-d.
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Fig. 12. (color line) (a) �=m⌃ versus |!| is plotted for several values of ✏ with g10 = 0 and g20 = 3. The quasi-particle can
be defined only when the decays rate �=m⌃ of quasi-particles is much smaller than their energy !, which is the case when
✏ > 0. (b) �=m⌃ versus |!| is plotted for several values of ✏ with g10 = 0 and g20 = 3 (⌘ ⇡ 0.228). When ✏ < ⌘, there is an
initial increase for large !, a Non-Fermi liquid behavior like 1-d Tomonaga–Luttinger case, which is a feature of fragile Fermi
liquid. For ✏ > ⌘, the plot decreases as Fermi liquid behavior from the beginning.

Next we calculate the spectral function. First we need the real part of the self energy, from which
we can compute

A(kF , !) = � 1
⇡

=m⌃(kF , !)

(! � <e⌃(kF , !))2 + (=m⌃(kF , !))2
. (63)

To the leading order, as in Eqs. (50) and (60),

<e[G�1(!; ⇤n+1)] = ! � <e⌃(k = 0, !) = [Z(!)]�1!, (64)

so the real part of self-energy at the Fermi surface for small ! is

<e⌃(kF , !) = <e⌃(k = 0, !) = (1 � [Z(!)]�1)! =
⇣
1 �

��!
2

��f (!,✏)�1�✏
⌘

!. (65)

Therefore the resulting spectral function is A(kF , !) / !✏�1 for small !, while the 1-d low energy
Tomonaga–Luttinger liquid spectral function [34,36] is A1�d(kF , !) / !⌘�1. We would expect an
intersection between the 1 + ✏ and the 1-d spectral functions when ✏ < ⌘ because A(kF , !) in 1 + ✏
dimensions is more singular than that in 1-d. This intersection is shown in Fig. 13. The intersection
shows the crossover behavior, but one cannot distinguish a spectral function as corresponding to 1+✏
dimensions or 1-d by looking at the low energy behaviors because one can fix ✏ and change ⌘ till ⌘ = ✏
or vice versa. The important feature of the 1 + ✏ dimensional spectral function is that the exponent
depends not on the interaction but on the dimension.

We can also obtain the k dependent self energy and spectral function for small k by noting that
the symmetry valid in one dimension that the Greens function, Self energy, etc., depend only on the
combination ! � k is approximately maintained in 1 + ✏ dimensions when k ! 0, as discussed in
more detail in the next section. Hence

d<e⌃(k, !)

dk

���
k!0

= �d<e⌃(kF , !)

d!
= �1 + 1

Z(!)
+ 1

Z(!)

[g(!)]2
��!
2

��✏ sgn(!)

8⇡2(1 + ✏)
. (66)

7. Breaking of the ! � k symmetry in 1 + ✏ dimensions

In one dimension, there is a symmetry by which the one particle Green function for the right
moving electrons close to the Fermi level depends on ! and k only in the combination ! � k. (For
the left moving electrons near the Fermi level the combination is ! + k.) This symmetry gets broken
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Fig. 13. The spectral function at Fermi surface is plotted for ✏ = 0, 0.025 and 0.05 with g10 = 0, g20 = 3 (⌘ = 9/(4⇡2) ⇡
0.228). The 1 + ✏ and 1-d spectral functions intersect when ✏ < ⌘, as explained in the text. Inset (a) shows the intersection
between spectral functions in 1-d and ones with ✏ = 0.025, and Inset (b) shows the intersection between 1-d and ones with
✏ = 0.5.

in higher dimensions. In our previous discussions, we only calculated the case with k = 0, so the
extent of validity or breaking of this symmetry has not been explicitly discussed. We will do so next,
and explore to what extent the symmetry is broken in 1 + ✏ dimensions by treating the case with
k 6= 0.

Looking at the (n + 1)th step of EPMS, without loss of generality, we choose k and n such that
⇤n+1 > k > 0. Then we have (compare with Eqs. (27) and (9))

I(k, i!; ⇤n) = [g(⇤n)]2sn
Z ⇤n

�⇤n

|k1|✏dk1
2⇡

Z ⇤n

�⇤n

dk2
2⇡

Z +1

�1

d!1

2⇡

Z +1

�1

d!2

2⇡

⇥ 1
i!1 + k1

1
i!2 � k2

1
i(!1 + !2 � !) + (k1 + k2 � k)

. (67)

Performing the frequency integrals using contour integration as before, it is not hard to see that one
set of non-vanishing contributions to I(k, i!; ⇤n) arisewhen (�⇤n < k1 < 0,�⇤n < k2 < 0,�⇤n <
k1 + k2 � k < 0). After simplifying, this corresponds to the conditions that either (0 < k1 < k � k2
and k � ⇤n < k2 < 0) or (�⇤n + k � k2 < k1 < ⇤n and �⇤n < k2 < k � ⇤n). Hence we get the
contributions (compare Eq. (28))

I1(k, i!; ⇤n)

sn[g(⇤n)]2
=
Z ⇤n�k

0

dk2
2⇡

Z k2+k

0

|k1|✏dk1
2⇡

1
i! + 2k2 + k

+
Z ⇤n

⇤n�k

dk2
2⇡

Z ⇤n

�⇤n+k+k2

|k1|✏dk1
2⇡

1
i! + 2k2 + k

. (68)

The other set of nonvanishing contributions to I(k, i!; ⇤n) arise when (0 < k1 < ⇤n, ⇤n > k2 > 0,
⇤n > k1 + k2 � k > 0), which, after simplifying, leads to the conditions �k2 + k < k1 < 0 and
k < k2 < ⇤n. So we get the second contribution to be (compare Eq. (29))

I2(k, i!; ⇤n)

sn[g(⇤n)]2
=
Z ⇤n

k

dk2
2⇡

Z k2�k

0

|k1|✏dk1
2⇡

1
i! � 2k2 + k

. (69)
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Assuming k ⌧ ⇤n, we can neglect the second term in I1. Then, after making the analytic continuation
i! ! !+, we get, for the incremental contribution to the k, ! dependent self energy as per the EPMS
prescription,

�I(k, !+; ⇤n, ⇤n+1)

sn[g(⇤n)]2

⌘ I1(k, !+; ⇤n) + I2(k, !+; ⇤n)

sn[g(⇤n)]2
� I1(k, !+; ⇤n+1) + I2(k, !+; ⇤n+1)

sn+1[g(⇤n+1)]2

=
Z ⇤n�k

⇤n+1�k

|k2 + k|✏dk2
4⇡2(1 + ✏)

1
2

✓
1 � !+ � k

!+ + 2k2 + k

◆

+
Z ⇤n

⇤n+1

|k2 � k|✏dk2
4⇡2(1 + ✏)

1
2

✓
�1 + !+ � k

!+ � 2k2 + k

◆
.

⇡
Z ⇤n

⇤n+1

|k2|✏dk2
4⇡2(1 + ✏)

1
2

✓
1 � !+ � k

2k2

◆
+
Z ⇤n

⇤n+1

|k2|✏dk2
4⇡2(1 + ✏)

1
2
(�1 + !+ � k

�2k2
)

= �
Z ⇤n

⇤n+1

|k2|✏dk2
4⇡2(1 + ✏)

!+ � k
2k2

(70)

where we have retained only leading term (!, k ⌧ ⇤n+1) in the last two steps. When k ! 0, we
go back to the leading term of Eq. (31). We see that the extra ✏ dimension brings a factor which only
depends on k and therefore breaks the symmetry. But for a small enough k, the symmetry can still be
thought of as approximately maintained.

8. Conclusions

In summary, we have presented the low energy Greens function of interacting fermions in 1 + ✏
dimensions, with the momentum fixed at the Fermi point. Going beyond the lowest order terms in
literature, our calculation gives the leading behavior of the damping of the quasiparticles. In order
to obtain this result we extended the poor man’s scaling method of Anderson into a Wilsonian type
framework. The extended poor man’s scaling method developed and used here retains the appealing
features of Anderson’s scaling and is applied to the Green’s functions rather than the Hamiltonian
itself as in the original method, and we expect that this might be useful in other contexts as well.

Our work shows that the Tomonaga–Luttinger behavior seen in 1-dimension is destroyed for
nonzero ✏, and the system becomes a Fermi liquid with a small but finite Z = exp(�d0 ⌘3/4/

p
✏), so

that for ✏ < ⌘ the Z decreases non analytically with ✏. Further at low! the damping rate is calculated
and found to be ⇠|!|1+✏/ log(|!|/2)2. Thus the damping is smaller than the particle energy ! and
supports the notion of a ‘‘Fragile Fermi Liquid’’, one where the quasiparticles are rendered fragile by
the small magnitude of Z . The damping rate found here, while different from the familiar !2 behavior
of a 3-d Fermi liquid, exhibits an !/Z scaling, apart from a weak logarithmic correction term. This
results in an explicit low frequency i.e. quasiparticle Green function given in Eq. (5). Although Eqs.
(3)–(5) depend on our choice of the specific 1+✏ prescription, we expect only quantitative differences
would result from other 1 + ✏ schemes.

While this fragile FL behavior is seen at the lowest!, we find a crossover to a Tomonaga–Luttinger
behavior at higher !. The crossover behavior is captured in the flow equations of coupling constants
and quasiparticle weight as well as damping term with a crossover scale l⇤ = 1/✏ or !⇤ = 2e1/✏ .
When l ⌧ l⇤ or ! � !⇤, the system behaves like a Tomonaga–Luttinger liquid, while in the other
limit l � l⇤ or ! ⌧ !⇤, it displays a fragile Fermi liquid behavior.

We also computed the electron spectral function for typical values of parameters in 1 + ✏
dimensions in Fig. 13. This result could cast some light on the expected spectral functions in ARPES
experiments on coupled linear chain compounds. A cautionary remark is due here, since the spectral
function for both the purely 1-d and 1 + ✏ dimensional cases diverge as power laws at ! ! 0,
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distinguishing between them from such plots is not an easy task. These results might be helpful in
designing further experiments to test the theory quantitatively.
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Appendix A. Wilsonian RG in interacting fermion systems

There are three steps in the Wilsonian RG for fermions, as explained in Shankar [30]. The first step
is mode elimination. Let us express the partition function as:

Z =
Z

[D�<][D�>]eS0(�<)eS0(�>)eSI (�<,�>) (71)

where �< and �> denote �(k) for 0  |k|  ⇤0/s (slow modes) and ⇤0/s  |k|  ⇤0 (fast modes)
respectively, S0 is the quadratic part of the action and SI is the interaction part. The effective action
S 0(�<) is defined such that

Z =
Z

[D�<]eS0(�<). (72)

Clearly,

eS
0(�<) = eS0(�<)

Z
[D�>]eS0(�>)eSI (�<,�>) = eS0(�<)heSI (�<,�>)i0> (73)

where hi0> stands for averages with respect to the fast modes, and
R
[D�>] exp[S0(�>)], a constant

which will not affect any correlation functions of slow modes, has been dropped. After mode
eliminations, there are two more steps. Suppose we had an initial action:

S(�) =
Z 1

�1

d!
2⇡

Z ⇤0

�⇤0

dk
2⇡

(i! � k)�⇤(k!)�(k!)

+
Z

k!;⇤0

u2(1, 2, 3, 4)�⇤(1)�⇤(2)�(3)�(4)�(1 + 2 � 3 � 4). (74)

After the fast modes are integrated out, themomentum cut-off in the effective action reduces to⇤0/s.
We can write the effective action in the form

S 0(�<) =
Z 1

�1

d!
2⇡

Z ⇤0/s

�⇤0/s

dk
2⇡

[a i! � b k + o(!2, k2, k!)]�⇤
<(k!)�<(k!)

+
Z

k!;⇤0/s
c u2(1, 2, 3, 4) �⇤

<(1)�⇤
<(2)�<(3)�<(4) �(1 + 2 � 3 � 4)

+
Z

k!;⇤0/s
u3(1, 2, 3, 4, 5, 6) · · · + · · · , (75)

where a, b and c are multiplicative renormalization coefficients of the various couplings arising from
mode elimination. There are also some higher order terms like the 3 particle interaction term u3 (not
written out in detail), 4 particle interaction terms, etc., that result from the mode elimination. It is
useful to have an effective action that looks as much like as our original action as possible [37]. So we
define new momenta, k0 = sk, and new frequencies, !0 = s! to represent the effective action. And
we also rescale the fields as

�0(k0, !0) = ⇣�1�<(k, !), (76)
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where conventionally [30] ⇣ = s3/2/a1/2 is chosen to fix the coefficient of i!0 in the quadratic part of
action to stay as 1. So the effective action can be written as

S 0(�0) =
Z 1

�1

d!0

2⇡

Z ⇤0

�⇤0

dk0

2⇡

✓
i!0 � b

a
k0 + o(!02/s, k02/s, k0!0/s)

◆
�0⇤(k0 !0)�0(k0 !0)

+
Z

k0 !0;⇤0

u0
2(1

0, 20, 30, 40)�0⇤(10)�0⇤(20)�0(30)�0(40)�(10 + 20 � 30 � 40)

+
Z

k0 !0;⇤0

u0
3(1

0, 20, 30, 40, 50, 60) · · · + · · · . (77)

Here the cutoff for k0 has been restored to the original cutoff⇤0 and �(10 +20 �30 �40) = �(k0
1 +k0

2 �
k0
3�k0

4)�(!
0
1+!0

2�!0
3�!0

4); u
0
2(1

0, 20, 30, 40) is a shorthand notation for u0
2(k

0
1 !0

1, k
0
2 !0

2, k
0
3 !0

3, k
0
4 !0

4),
and likewise for u0

3(1
0, 20, 30, 40, 50, 60), etc. Invoking the definition of renormalized couplings, we get

u0
2(1

0, 20, 30, 40) = ⇣ 4cu2(1, 2, 3, 4)
s6

= cu2(1, 2, 3, 4)
a2

, (78)

u0
3(1

0, 20, 30, 40, 50, 60) = ⇣ 6u3(1, 2, 3, 4, 5, 6)
s10

= u3(1, 2, 3, 4, 5, 6)
sa3

. (79)

Expanding the couplings in powers of the momenta and the frequencies, we can see from Eqs. (77)
and (78) that the leading one body terms and the two body couplings that are independent of the
momenta and the frequencies are marginal in the RG sense, because the power of s involved in their
linear recursion relations is 0; while the three body coupling is irrelevant due to the negative power of
s in Eq. (79), as is also the case for the non leading one body terms, and the frequency andmomentum
dependent two body terms. After n such steps of the RG, we take the infinitesimal mode elimination
limit s = edl and dl ! 0, holding n dl = l fixed, whence the running cutoff becomes ⇤n ! ⇤ =
⇤0e�l. Then we get the differential equations (RG flow equations) for the cutoff dependent quantities
like the coupling constants, examples of which are presented in Section 4 of the text.

Next, we discuss the changes in the Green function during the RG process. After the first step of the
mode elimination, we can clearly calculate low energy (|k|, |!| ⌧ ⇤1) Green functions of the original
fields using the effective action with the reduced cutoff ⇤1 (cf., Eq. (75)):

G(k, i!; ⇤1)�(k � q)�(! � ⌫) ⌘ h�<(k!)�⇤
<(q ⌫)iS0(�<). (80)

The corresponding Green function involving the rescaled fields is (cf., Eq. (77))

G1(k0, i!0; ⇤0)�(k0 � q0)�(!0 � ⌫ 0) ⌘ h�0(k0 !0)�0⇤(q0 ⌫ 0)iS0(�0). (81)

The momentum cutoff arguments in the Green functions refer to the cutoffs in the effective actions
using which the Green functions are being evaluated. From the relations between the original and the
rescaled fields (cf., Eq. (76)), it is straightforward to verify that the two Green functions are related as

G(k, i!; ⇤1) = s�2⇣ 2G1(k0, i!0; ⇤0) = a�1 s G1(k0, i!0; ⇤0), (82)

with k0 = sk and !0 = s!.
Consider doing perturbative calculations of these. Keeping only the leading order terms in k and

!, to zeroth order in the couplings we get (cf., Eq. (75))

G(0)(k, i!; ⇤1) = 1
a i! � b k

, (83)

whereas the corresponding lowest order Green function involving the rescaled fields is (cf., Eq. (77))

G(0)
1 (k0, i!0; ⇤0) = 1

i!0 � (b/a)k0 , (84)

with the relationship between the two in agreement with Eq. (82).
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Fig. 14. (a) is an example for the two body vertex and (b) is a three body vertex.

More generally, after n steps of the RG reducing the cutoff to ⇤n ⌘ ⇤0/sn, the corresponding
relation between the two Green functions is

G(k, i!; ⇤n) = s�2n[⇣ (⇤n)]2Gn(kn, i!n; ⇤0)

= [a(⇤n)]�1snGn(kn, i!n; ⇤0), (85)

with !n ⌘ !sn, kn ⌘ ksn, a(⇤n) and b(⇤n) being the accumulated multiplicative renormalization
coefficients, and ⇣ (⇤n) being the corresponding field rescaling factor. As can be seen for example by
iterating the relation (82), the recursive nature of RG allows us to write

a(⇤n) =
n�1Y

m=0

ã(⇤m ! ⇤m+1). (86)

b(⇤n) =
n�1Y

m=0

b̃(⇤m ! ⇤m+1). (87)

Here ã(⇤m ! ⇤m+1) and b̃(⇤m ! ⇤m+1) are the (multiplicatively) incremental renormalization
factors for the coefficients of the frequency and of the momentum respectively, due to the RG step
that reduces the running cutoff from ⇤m to ⇤m+1. For example, ã(⇤0 ! ⇤1) and b̃(⇤0 ! ⇤1)
correspond to the a and b in Eq. (75). Needless to say, a(⇤0) = 1 and b(⇤0) = 1. The relation in Eq.
(85) is consistent with that in Refs. [30,37].

G(0)
n (kn, i!n; ⇤0) = 1

i!n � [b(⇤n)/a(⇤n)]kn
(88)

is the lowest order Green function of the rescaled fields after n steps of RG.

Appendix B. Detailed discussion of the extended poor man’s scaling method

In this appendix, we show explicitly that the second order EPMS prescription presented in the text
includes the same second order diagrams as second orderWilsonian RG does if we reduce the running
cutoff from⇤0 to 0. Specifically, we show that the total contribution from formally irrelevant two and
three body vertexes arising at a certain step of mode elimination in Wilsonian RG to the self energy
in all the subsequent steps of the RG is equal to the result from that same mode elimination in EPMS.
We focus on the renormalization of the one body vertex, which is the same as the self energy, with
k chosen on the right branch without loss of generality. Consider the three body vertex produced at
the (m1 + 1)th step of RG, as shown in Fig. 14(b). There are two ways for this vertex to contribute
to the self energy in later steps of the RG. One is to have it first renormalize the two body vertex by
integrating out a secondmomentum (say k2) at the (m2+1)th step of RG, and then have it renormalize
the one body vertex by integrating out the third momentum (say k3) at the (m3 +1)th step of RG; and
vice versa. The other way is to have it renormalize the one body vertex at one shot by integrating out
the second and third momenta at the (m2 + 1)th step of RG. We look at the former way first, since it
is more general, and the second way can be obtained from it simply by settingm3 = m2.
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The three body vertex (in Fig. 14(b)) produced frommode elimination in the (m1 + 1)th RG step is

u3m1(0m1 , 2m1 , 3m1 , 5m1 , 6m1 , 7m1) = [g(⇤m1)]2

⇥
Z

d⇤0

dk1m1

2⇡

Z 1

�1

d!1m1

2⇡
1

i!1m1 + k1m1

�(1m1 + 2m1 � 3m1 � 0m1), (89)

where

u3m1(0m1 , 2m1 , 3m1 , 5m1 , 6m1 , 7m1) ⌘ u3m1(km1 i!m1 , k2m1 i!2m1 ,

k3m1 i!3m1 , k5m1 i!5m1 , k6m1 i!6m1 , k7m1 i!7m1), (90)

�(1m1 + 2m1 � 3m1 � 0m1) ⌘ �(k1m1 + k2m1 � k3m1 � km1)�(!1m1 + !2m1 � !3m1 � !m1), !am = !asm
and kam = kasm. There are other three body interaction terms arising from previous steps of the RG,
but we focus on this specific term appearing due to mode elimination at the (m1 + 1)th RG step and
see how it contributes to the two body and one body vertexes in subsequent steps of the RG. Next, at
the (m2 +1)th step of the RG, this three body interaction produces a two body coupling (in Fig. 14(a))
to linear order upon integration over k2 and !2:

u2m2(0m2 , 3m2 , 5m2 , 6m2) = 1
sm2�m1

Z

d⇤0

dk2m2

2⇡

Z 1

�1

d!2m2

2⇡
1

i!2m2 � k2m2

⇥ u3m1(0m1 , 2m1 , 3m1 , 5m1 , 6m1 , 2m1), (91)

where the factor 1/sm2�m1 , arising from a combination of the scaling of the momenta and of the fields
as discussed earlier, ensures the formal irrelevance of the three body vertex u3 as in Eq. (79). Here we
have neglected the corrections arising from the 1/a factors in Eq. (79) because we are only looking at
the second order contributions, while 1/a = 1 + o(g2) would introduce higher order contributions.
Then at the (m3+1)th step of the RG, again to linear order in the interaction, this two body interaction
produces a one body coupling upon integration

u1m3(0m3) =
Z

d⇤0

dk3m3

2⇡

Z 1

�1

d!3m3

2⇡
1

i!3m3 � k3m3

u2m2(0m2 , 3m2 , 3m2 , 0m2), (92)

which renormalizes the original one body vertex. We can do these three integrations in one line,
denoting the resulting one body vertex as Pm1m2m3(k, i!):

Pm1m2m3(k, i!) = [g(⇤m1)]2sm3

 
3Y

j=1

Z

d⇤mj

dkj
2⇡

Z 1

�1

d!j

2⇡

!

⇥ 1
i!1 + k1

1
i!2 � k2

1
i!3 + k3

�(1 + 2 � 3 � 0) (93)

where the momenta and frequencies have been restored to their original scales, whence the
momentum integrals are over the appropriatemomentum shells, with d⇤mj denoting themomentum
shell ⇤mj+1 < |kj| < ⇤mj . The reason why m1, m2, m3 are not the same is that these integrals are not
done at the same step of the RG.

As mentioned above, the second type of contribution to the one-body term can also be included
in this formalism simply as a special case, with m2 = m3 > m1. And so can the (vanishing) sunrise
diagram in Fig. 2(a), by settingm1 = m2 = m3. In fact, all contributions to the one-body term coming
from the two or three body vertex produced in any arbitrary [say (n + 1)th] step of Wilsonian’s RG
can be represented in terms of Pm1m2m3(k, !). From Eq. (93), it is not hard to see that we can redefine
Pm1m2m3(k, i!) for an arbitrary choice of m1, m2 and m3 as,

Pm1m2m3(k, i!) = [g(⇤ms)]2sml

 
3Y

j=1

Z

d⇤mj

dkj
2⇡

Z 1

�1

d!j

2⇡

!

⇥ 1
i!1 + k1

1
i!2 � k2

1
i!3 + k3

�(1 + 2 � 3 � 0), (94)
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where ml ⌘ max(m1,m2,m3) and ms ⌘ min(m1,m2,m3). Then we can calculate the self-energy
term arising from the two or three body vertexes produced at the (n + 1)th step of the RG as the
constrained sum:

�Q (k, i!; ⇤n, ⇤n+1) =
X

m1,m2,m3

�mln Pm1,m2,m3(k, !)

⇡ Q (k, i!; ⇤n+1)/s � Q (k, i!; ⇤n), (95)

where

Q (k, i!; ⇤n) ⌘ sn
 

3Y

j=1

Z ⇤0

⇤n

dkj
2⇡

Z 1

�1

d!j

2⇡
+

3Y

j=1

Z �⇤n

�⇤0

dkj
2⇡

Z 1

�1

d!j

2⇡

!

⇥ [g(|kl|)]2
1

i!1 + k1

1
i!2 � k2

1
i!3 + k3

�(1 + 2 � 3 � 0) (96)

with |kl| ⌘ max(|k1|, |k2|, |k3|). The approximation above becomes exact when we take the
infinitesimal mode elimination limit. Hence, for the incremental contributions to the multiplicative
renormalization coefficients, we obtain

ãw(⇤m ! ⇤m+1) = 1 + @�Q (k, i!; ⇤m, ⇤m+1)

@(i!m)

���
!!0,k!0

(97)

and

b̃w(⇤m ! ⇤m+1) = 1 + @�Q (k, i!; ⇤m, ⇤m+1)

@km

���
!!0,k!0

. (98)

The subscript ‘‘w’’ is for reminding ourselves that these contributions are from theWilsonian RG. Next,
we can compare aw(⇤n) and ae(⇤n) for example. By definition,

aw(⇤n) =
n�1Y

m=0

ãw(⇤m ! ⇤m+1)

=
n�1Y

m=0

✓
1 + @�Q (k, i!; ⇤m, ⇤m+1)

@(i!m)

���
!!0,k!0

◆
. (99)

Using Eqs. (9)–(12), we get

ae(⇤n) =
n�1Y

m=0

ãe(⇤m ! ⇤m+1)

=
n�1Y

m=0

✓
1 + @�I(k, i!; ⇤m, ⇤m+1)

@(i!m)

���
!!0,k!0

◆
. (100)

It is not hard to verify that
1X

m=0

�I(k, i!; ⇤m, ⇤m+1)

sm

⇡
3Y

j=1

Z ⇤0

�⇤0

dkj
2⇡

Z 1

�1

d!j

2⇡
[g(|kl|)]2

1
i!1 + k1

1
i!2 � k2

1
i!3 + k3

�(1 + 2 � 3 � 0)

= lim
n!1

Q (k, i!; ⇤n)

sn
=

1X

m=0

�Q (k, i!; ⇤m, ⇤m+1)

sm
. (101)
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where the approximation again becomes exactwhenwe take the infinitesimalmode elimination limit,
and ⇤1 = 0. So,

1X

m=0

@�I(k, i!; ⇤m, ⇤m+1)

@(i!m)

���
!!0,k!0

=
1X

m=0

@�Q (k, i!; ⇤m, ⇤m+1)

@(i!m)

���
!!0,k!0

. (102)

Set

x1m = [@�Q (k, i!, ⇤m, ⇤m+1)/(@(i!m))]
���
!!0,k!0

(103)

and

x2m = [@�I(k, i!, ⇤m, ⇤m+1)/(@(i!m))]
���
!!0,k!0

(104)

for convenience. Then, Eqs. (99), (100) and (102) can be rewritten as

aw(⇤1) =
1Y

m=0

(1 + x1m),

ae(⇤1) =
1Y

m=0

(1 + x2m),

1X

m=0

x1m =
1X

m=0

x2m. (105)

By definition, x1m 6= x2m, but both are small quantities that are of second order in the running coupling
constants. Hence a1(⇤1) and a2(⇤1) include the same second order Feynmandiagrams, but different
higher order diagrams, and likewise for b1(⇤1) and b2(⇤1). So we see that when the running cutoff
is reduced to 0, calculations of the self energy using Wilsonian RG and EPMS up to a specific order
in the running coupling constants sum over all the same diagrams up to that order, but in principle
different subsets of higher order diagrams. And as we have argued in this paper, the latter is much
easier to implement.
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