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We present the results for the low-energy properties of the infinite-dimensional t-J model with J = 0, using
O(λ2) equations of the extremely correlated Fermi liquid formalism. The parameter λ ∈ [0,1] is analogous to
the inverse spin parameter 1/(2S) in quantum magnets. The present analytical scheme allows us to approach
the physically most interesting regime near the Mott insulating state n ! 1. It overcomes the limitation to
low densities n ! 0.7 of earlier calculations, by employing a variant of the skeleton graph expansion, and a
high-frequency cutoff that is essential for maintaining the known high-T entropy. The resulting quasiparticle
weight Z, the low ω,T self-energy, and the resistivity are reported. These are quite close at all densities to the
exact numerical results of the U = ∞ Hubbard model, obtained using the dynamical mean field theory. The
present calculation offers the advantage of generalizing to finite T rather easily, and allows the visualization of
the loss of coherence of Fermi liquid quasiparticles by raising T . The present scheme is generalizable to finite
dimensions and a nonvanishing J .
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I. INTRODUCTION

The fundamental importance of the t-J model for under-
standing the physics of correlated matter, including high-Tc

superconductors, has been recognized for many years [1]. The
t-J model is a prototype of extreme correlations, incorporating
the physics of (Gutzwiller) projection to the subspace of
single occupancy. The added superexchange J provides the
mechanism for quantum antiferromagnetism at half-filling,
and upon hole doping, for superconductivity via singlet
pairing [1]. This viewpoint has attracted much attention in
the community. It has led to many approximate methods of
calculation being applied to the t-J model, in order to calculate
experimentally measured variables. Despite intense effort in
recent years, schemes for controlled calculations are rare since
the model has well-known fundamental complexities that need
to be overcome.

Motivated by this challenge, we have recently formulated
the extremely correlated Fermi liquid (ECFL) theory [2,3] for
tackling the t-J and related U → ∞ type models. The ECFL
theory deals with the t-J model by viewing it as a noncanonical
Fermi problem, and proceeds via a nonlinear representation of
Gutzwiller projected fermions in terms of canonical fermions.
It is pedagogically useful to draw a parallel [3] to the Dyson-
Maleev representation of spins [4] used in quantum magnets.
In this representation [4], the spins are hard core bosons, and
are nonlinearly expressed in terms of the canonical bosons,
namely, the spin waves. The ECFL methodology developed to
date consists of successive approximations in the expansion
parameter λ ∈ [0,1], playing a role analogous to the inverse
spin parameter 1/(2S) in quantum magnetism. This analogy
is developed in [3], where parallels between the ECFL calcu-
lations and earlier calculations of the partition function and
Green’s functions of the spin problem are drawn. It is useful
to note that the classical limit for spins 1/S → 0 corresponds

to the limit of free-fermion limit λ → 0. Continuity in λ leads
to a protection of the Fermi surface volume for the interacting
theory, i.e., the Luttinger-Ward volume theorem is obeyed.
Low-order expansions can be performed analytically for the
most part, and therefore have all the usual advantages of
analytic approaches, such as explicit formulas for variables
of interest and also flexibility for different situations. Several
recent applications of the ECFL theory, mentioned below,
show promise in terms of reproducing the salient features of
exact numerical solutions of strong coupling models, wherever
available [5,6]. The theory has also had success in reconciling
extensive data on angle-resolved photoemission (ARPES) line
shapes [7], including subtle features such as the low-energy
kinks, and has made testable predictions on the asymmetry of
line shapes [8].

In order to understand better the nature as well as limitations
of a low-order expansion in λ, we have tested the solution
against two important strongly correlated problems where the
numerical renormalization group and related ideas provide
exact numerical results. In [5], the asymmetric Anderson impu-
rity problem, solved by Wilsonian renormalization numerical
group methods [9–12] was used as one of the benchmarking
models. Second, in [6], the d → ∞ Hubbard model at large
U , solved numerically by the dynamical mean field theory
(DMFT) method [13–39], was used as the benchmarking
model. These benchmarking studies show that the ECFL ap-
proach is overall consistent with the exact solutions, with some
caveats. There are indeed differences in detailed structures at
higher energies [40]. However, the raw initial results seem both
useful and reliable for obtaining the low-energy spectrum, and
for a broad understanding of the occupied side of the spectral
functions. We further found that the calculations are very close
to the exact solutions, provided we scale the frequencies by the
respective quasiparticle weights Z of the two theories.
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FIG. 1. ρdc on absolute scale vs T in Kelvin for particle density
n = 0.85. We have used the estimates D = 12 000 K and ρ0 =
258 µ$ cm. The latter is obtained by using [57] ρ0 ≈ ha0d

e2 , where we
estimate a0d ≈ 10−8 cm. The Fermi liquid behavior with quadratic
resistivity in the blue dotted line breaks down above TFL ≈ 30 K, and
is followed by a regime of linear resistivity.

The version of the ECFL presented in [6] and the closely
related [5] is therefore promising, but has the limitation of
being confined to low density n ! 0.7. In the most interesting
density range n ! 1, it falls short of being a “standalone
theory” since the magnitude of the calculated Z is too large.
One requires rescaling frequencies to compensate for the
incorrect magnitude of Z, and thereby improve the agreement.
It is therefore important to find ways to extend this analytical
approach to cover the physically most interesting density
regime 0.7 " n " 1. A diagnostic objective of this paper is
to identify the cause for the inaccurate Z in the earlier version,
and to explore ways to overcome it. We have found it possible
to do both. This paper presents an alternative scheme that can
be pushed to high-particle densities as well. We show here that
the resulting scheme gives satisfactory results for most of the
interesting low ω,T variables of the model.

Amongst the several variables of interest, the transport
objects are the most difficult ones to compute reliably. The
difficulty lies in their great sensitivity to the lowest excitation
energies, and in the paucity of reliable tools to capture these.
The limit of large dimensionality is helpful here since it has the
great advantage of killing the vertex corrections [41]. Thus, a
knowledge of the one-electron Green’s function can give us
the exact resistivity of a metal, arising from inelastic mutual
collisions of electrons. Despite the stated simplification, this
calculation remains technically challenging. In important
recent work, this calculation has been performed in [42,43]
for the large-U Hubbard model in infinite dimensions. The
authors have produced exact resistivity results that are so rare in
condensed matter systems. We can use them to benchmark our
results for the resistivity at different densities and temperature.
We report the results of this comparison in this paper. Figure 1
shows one of the main results of the calculation presented here,
the details leading to it are described below.

In Sec. II, we summarize the second-order equations and
introduce the various Green’s functions and self-energies
needed. In Sec. III, we identify the conditions necessary for
getting a satisfactory Z near half-filling. In Sec. IV, after
summarizing the self-consistency loop, we give a prescription
for modifying the earlier equations and give the new set. This
requires using a slightly different skeleton graph expansion,
where certain objects are evaluated exactly using the number
sum rule. The ECFL theory has some intrinsic freedom in

choosing the details of the skeleton expansion, more so than
in the standard Feynman graph based canonical models. That
freedom can be usefully employed here. We find that it is also
obligatory to introduce a high-energy cutoff, in order to recover
the known high-T entropy of the model. While the precise form
of the cutoff is not uniquely given by theory, we found that
several reasonable functional forms gave comparable results
at low energies and low T , provided that the parameters were
chosen to yield the high-T entropy. This cutoff also eliminates
weak tails in the spectral functions that otherwise extend to
large negative (i.e., occupied) energies.

In Sec. V, we present results for the T and n variation
of the chemical potential and the quasiparticle weight Z. We
also present the ω, T , and n variation of the self-energy and
spectral functions, where the quasiparticles, the asymmetry
of the spectral functions, and the thermal destruction of the
quasiparticles are highlighted. In Sec. VI, we present results for
the resistivity at low and intermediate T for various densities.
In Sec. VII, we provide a summary and discuss the prospects
for further work.

II. SUMMARY OF SECOND-ORDER ECFL THEORY

Let us begin by recounting the exact formal expression for
the Green’s function of the t-J model. In the ECFL theory,
this object is given exactly as

G(k,iωn) = g(k,iωn) × µ̃(k,iωn), (1)

a product of the auxiliary Green’s function g and the “ca-
parison” function [44] given in terms of a second self-energy
%(k,iωn) and the particle density n as µ̃(k,iωn) = {1 − n/2 +
%(k,iωn)}. The auxiliary Green’s function g(k,iωn) given by

g(k,iωn) = 1
iωn + µ − {1 − n/2} εk − '(k,iωn)

, (2)

where µ is the chemical potential and εk the band energy. In
the infinite-dimensional limit, it is demonstrated in [45] that
an exact simplification occurs with these equations, whereby
the momentum dependence is given by

%(k,iωn) = %(iωn), (3)

'(k,iωn) = χ (iωn) + εk%(iωn), (4)

where both % and χ are functions of only the fermionic Mat-
subara frequency ωn = (2n + 1)πβ, but not the momentum
k. These expressions can be used in Eq. (1) and upon using
the analytic continuation iωn → ω + i0+, we may express the
Green’s function in the standard Dyson representation

G(k,ω + i0+) = 1
ω + i0+ + µ − εk − +(ω + i0+)

, (5)

where the Dyson self-energy is now manifestly momentum
independent, and given by

+(ω + i0+) = µ + ω + χ (ω + i0+) − µ − ω

1 − n
2 + %(ω + i0+)

. (6)

This result demonstrates the momentum independence of the
Dyson self-energy of the t-J model in infinite dimensions. It
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is consistent with the analogous result for the Hubbard model
at any U [13–15].

Within the ECFL theory we rely upon a systematic λ
expansion to compute the two self-energies % and χ . This
λ expansion is described in detail in [2,46,47], in brief the
parameter λ lives in the range ∈ {0,1}, and plays the role of
the quantum parameter 1/(2S) in the large spin expansions
familiar in the theory of magnetism. A skeleton diagram
method can be devised for expanding the self-energies % and
χ in a formal power series in λ, with terms that are functionals
of g and the band energies εk . This expansion uses the full
g (rather than noninteracting propagators g0) as fundamental
units, or “atoms,” for the expansion. The procedure is in close
analogy with the skeleton diagram methods used in many-body
theory. Having the self-energies to a given order in λ, one
now reconstructs the Green’s functions self-consistently, the
scheme is to second order in the present case.

The explicit equations to second order are found to be

G(k,iωn) = g(k,iωn){aG + λ%(k,iωn)}, (7)

g−1(k,iωn) = iωn + µ′ − λ χ (k,iωn)

− {aG + λ%(k,iωn)}
(

εk − u0

2

)
, (8)

with

aG = 1 − λG(j,j−) = 1 − λ
∑

k

G(k,iωn) eiωn0+
, (9)

where µ′ = µ − u0
2 . In Eq. (9), the middle (last) term is

in space-time (wave-vector-frequency) variables, denoted re-
spectively in the compact notation j ≡ (R⃗j ,τj ),k ≡ (k⃗,iωn),
and denoting j− ≡ (R⃗j ,τj + i 0−). The two self-energy func-
tions % and χ are expanded formally in λ as % = %[0] +
λ%[1] + · · · and χ = χ[0] + λχ[1] + . . . . A systematic expan-
sion in λ is available to third order in [46], from the low-order
results [48] we find %[0] = 0,χ[0] = −

∑
p g(p)(εp − u0

2 ) and

%[1](k) = −
∑

pq

(εp + εq − u0)g(p)g(q)g(p + q − k),

(10)

χ[1](k) = −
∑

pq

(
εp+q−k − u0

2

)
(εp + εq − u0)

× g(p)g(q)g(p + q − k). (11)

In view of the explicit factors of λ in Eqs. (7) and (8), this leads
to an O(λ2) approximation for G; the recipe further requires
that the parameter λ is set to unity before computing. Here,
u0 denotes the second chemical potential. It enters the theory
as a Hubbard-type term with a self-consistently determined
coefficient u0, as described in [47]. This chemical potential
is essential in order to satisfy the shift invariance of the t-J
model order by order in λ, namely, tij → tij + c δij with an
arbitrary constant c. For instance, we see in Eq. (11) that a shift
of the energies εk → c + εk is rendered immaterial due to the
structure of the terms, the constant c can be absorbed into u0.
The two chemical potentials µ and u0 are determined through
the pair of sum rules on the auxiliary g and the standard number

sum rule on G:
∑

k

g(k) eiωn0+ = n

2
=

∑

k

G(k) eiωn0+
. (12)

In dealing with Eq. (9), the composite nature of the G on
view in Eq. (1) offers a choice for implementing the skeleton
expansion. Such a choice is absent in the more standard many-
body problems. On the one hand, we could use the sum rule
Eq. (12) for G giving

a
(I )
G → 1 − λ

n

2
, (13)

reducing to the exact answer aexact
G = 1 − n

2 as λ → 1.
Alternately, we could expand the G in powers of λ, a

procedure we followed in [6,49]. We expanded G out to
first order in λ from Eq. (7) since that already gives the
required O(λ2) correction. Thus, we set G = g(1 − λn/2) +
O(λ2), where the sum rule Eq. (12) was used for evaluating∑

k,ωn
g(k). As a result, we obtain the approximate result

a
(II )
G = 1 − λ

n

2
+ λ2 n2

4
+ O(λ3). (14)

Setting λ → 1, we thus get two alternate approximate skeleton
versions of Eq. (7):

G(I )(k,iωn) = g(I )(k,iωn){1 − n/2 + %(k,iωn)}, (15)

G(II )(k,iωn) = g(II )(k,iωn)

× {1 − n/2 + n2/4 + %(k,iωn)}, (16)

where both expressions involve the same approximate % given
in Eq. (10), and the auxiliary g(...) is also adjusted to have the
appropriate expression for aG in Eq. (8). This dichotomous
situation arises due to the composite nature of the physical
G, whereas in standard many-body problems the skeleton
expansion is unique.

In [6] as well as [49] we employed Eq. (16) to compute
the electron self-energy and spectral functions. It was argued
that this expression should be valid for low-particle density
n ! 0.7. In [6], the results were compared with the numerically
exact DMFT results for the same model. It was found that
the self-energy is indeed close to the exact answer in the
low-density limit. At the other end of high densities n ! 1,
it was found that the self-energy is also very close to the exact
result, provided we scale the frequencies by the quasiparticle
weight Z of that theory. This remarkable observation shows
that in ECFL theory, the Dyson self-energy (6) found by
compounding two simpler expressions χ and ψ , has the
correct functional form. Moreover, the unusual and important
feature of particle-hole asymmetry, i.e., the presence of a
strong ω3 term in the Im +, comes about “naturally” within
the scheme. This feature has been argued to be generic for
strongly correlated systems, as argued in [8] and in the closely
related [5] for the Anderson impurity model. The need for
rescaling the frequency arises because the computed Z(II )

using the approximate version (16) overestimates this variable
as n increases beyond the estimated limit of n ∼ 0.7. We see
in [6] (Fig. 16) that Z(II ) does not even vanish as n → 1, as
one expects in a Mott insulator.
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Within the spirit of Eq. (16) one might expect that further
approximations involving higher-order terms in λ will enhance
the range of validity in density. Such a program is essentially
numerically intensive since beyond second order, one needs
to use other techniques, such as Monte Carlo generation and
evaluation of diagrams [50–52]. We are currently performing
these calculations, and have made formal progress towards this
goal in [46], by enumerating the nontrivial diagrammatic rules
in this model. The diagrams that we encounter include and
go beyond Feynman diagrams, as necessitated by the lack of
Wick’s theorem in the noncanonical theory.

On the other hand, the analytical ease of the second-order
theory offers considerable advantage relative to other contem-
porary methods. For low orders in λ most calculations can be
done by hand, and the remaining computations are modest in
scope. Analytical methods also have a much greater flexibility:
they can be applied in lower dimensions as well. Further, the
agreement with the other methods (DMFT [13–39], numerical
renormalization group [5]) and also experiments on ARPES
for the electron line shapes [7] is very good. In view of
these positive factors, it appears to be useful to examine
if the problem with the quasiparticle weight Z(II ) at n ! 1
can be understood and corrected, making other necessary
approximations along the way. This is indeed the purpose
of this paper; we will see below that the approximation (15)
provides us with the correct direction for such an approach.

III. SUM RULES NECESSARY FOR THE VANISHING
OF Z NEAR THE MOTT INSULATING STATE

Let us first understand the factors that make Z vanish as
we approach the Mott insulating limit. For this purpose, it
is useful to recall the local density of states of the Hubbard
model for the case of a sufficiently large U (see [53] for a useful
discussion). Here, we expect the formation and clear separation
of characteristic lower and upper Hubbard bands, as indicated
in the schematic Fig. 2. Specializing to T = 0 for simplicity,

ωµ

(a) (b) (c)

FIG. 2. A schematic depiction of the local spectral density
of states ρGLocal(ω) [popularly called ALocal(ω)] for the large-U
Hubbard model, where the correlation split Hubbard bands are clearly
separated. It shows three regions: (a) occupied electronic states, (b)
unoccupied lower Hubbard band states, and (c) unoccupied upper
Hubbard band states, with their respective weights as in Eq. (18). The
t-J model sends the region (c) off to infinity with weights given in
Eq. (19). The area in region (b) is exactly (1 − n), and preserving this
in an approximation is key to obtaining the correct low-energy scale.

we note that for the Hubbard model with n < 1, the spectral
weight for the local ρG(ω) of the physical electron satisfies the
unitary sum rule

∫
dω ρG(ω) = 1. We use a notation where

a sum over k⃗ is implied for unlabeled functions (without the
k⃗ argument), e.g., ρG(ω) ≡

∑
k ρG(k⃗,ω). The local Green’s

function itself is given by

G(ω + i0+) =
∫

dν
ρG(ν)

ω − ν + i0+ , (17)

and so the ω → ∞ asymptotic behavior is determined by this
sum rule as G(ω) →

∫
dνρG(ν)

ω
= 1

ω
. This can be partitioned

into three sum rules as depicted in Fig. 2:
∫ 0

−∞
dω ρG(ω) = n/2,

∫ $∗

0
dω ρG(ω) = 1 − n,

∫ ∞

$∗

dω ρG(ω) = n/2, (18)

where $∗ is an energy scale denoting the upper end of the
lower Hubbard band and hence is ∼O(W ); it is well defined
provided U ≫ W . As stated, these three integrals add up to 1,
ensuring that a full electron is captured. On the other hand, the
t-J model spectral function ρG(ω) satisfies

∫ 0

−∞
dω ρG(ω) = n/2,

∫ ∞

0
dω ρG(ω) = 1 − n, (19)

where the upper Hubbard band (and $∗) is pushed off to
+∞, and thus the occupied and unoccupied portions add up to
1 − n/2. This can be visualized clearly with the help of Fig. 2.
This argument also determines the ω → ∞ asymptotic form
limω→∞ G(ω) → 1−n/2

ω
, and gives us a relation of importance

to this study:
(

lim
ω→∞

G(ω) → 1 − n/2
ω

)
↔

(∫ ∞

0
dω ρG(ω) = 1 − n

)
.

(20)

To see its relevance, we note that as n → 1, the chemical
potential increases towards the top of the lower Hubbard band.
This implies that the unoccupied portion of the lower Hubbard
band shrinks to zero. Since roughly half of the quasiparticle’s
weight [54] resides in this shrinking energy domain of O(1 −
n) times the bandwidth, the quasiparticle residue Z must vanish
at least as fast as O(1 − n).

We may now refer back to Eq. (16); since from the defini-
tions (10) and (11) we can see that limω→∞ (%(ω),χ (ω)) → 0
and also limω→∞ g(ω) → 1

ω
, we combine these to obtain

lim
ω→∞

G(II )(ω) → 1 − n/2 + n2/4
ω

,

whereby the unoccupied region
∫ ∞

0 dω ρG(II ) (ω) = 1 − n +
n2/4, in conflict with the condition (20) for a vanishing Z,
as n → 1.

Having thus identified this weakness of the approximation,
we also see by the same argument that Eq. (15) would
automatically give us a vanishing Z, as n → 1; the factors
are now appropriate for the condition (20) to hold.

045138-4



LOW-ENERGY PHYSICS OF THE t-J MODEL IN . . . PHYSICAL REVIEW B 94, 045138 (2016)

IV. CUTOFF SECOND-ORDER ECFL THEORY

Motivated by the above discussion, we now implement a
skeleton graph expansion, where the basic atoms, or units, are
still g, but in static terms involving G, such as in Eq. (9), we
use the exact particle-number sum rule (12). This leads us to
study the equations in Eq. (15).

A. Full set of self-consistent equations

For convenience and future reference, we summarize the
full set of equations to be solved self-consistently. These are
similar to the ones used in [6,49] with all the necessary changes
for the present case made. The band density of states is taken
as the semicircular expression D(ϵ) = 2/(πD)

√
1 − (ϵ/D)2,

and thus 2D is the bare bandwidth. The complex frequency
is denoted as z = ω + i0+, the local Green’s function and its
energy moments are defined by

g−1(ϵ,z) = z + µ′ − (ϵ − u0/2)
(

1 − n

2
+ %[1](z)

)

−χ[1](z), (21)

gLoc,m(z) =
∫

dϵ D(ϵ)g(ϵ,z)ϵm =
∫

dν
ρgL,m(ν)
z − ν

. (22)

The chemical potential µ′ absorbs all constants such as χ[0],
leading to

µ = µ′ + u0

2

(
1 + n

2

)
−

∫
dω f (ω)ρgL,1(ω), (23)

where f (ω) = 1/(1 + exp βω) is the Fermi function and we
will need below f̄ = 1 − f . Equation (22) serves to introduce
the spectral functions ρgL,m(ν); these are most often computed
from the reversed relation

ρgL,m(ω) = − 1
π

ImgLoc,m(ω + i0+). (24)

The physical Green’s function is found from G(ϵ,z) = [1 −
n/2 + %(z)] × g(ϵ,z), and the Dyson self-energy from +(z) =
z + µ − ε − G−1(ϵ,z). We define its local version GLoc(ω) and
its density through a band integration

GLoc,m(z) =
∫

dϵ D(ϵ)ϵm G(ϵ,z),

ρGL,m(ω) = − 1
π

ImGLoc,m(ω + i0+). (25)

The physical momentum-integrated spectral function ρGL,0 is
an object of central interest. It is also needed for the number
sum rule below Eq. (30). The computation of g requires the
two complex self-energies %,χ . These can in turn be found
from expressions involving the fundamental convolution:

ρ
(I)
abc(u) =

∫

u1,u2,u3

δ(u + u3 − u1 − u2){f (u1)f (u2)f̄ (u3)

+ f̄ (u1)f̄ (u2)f (u3)}ρgL,a(u1)ρgL,b(u2)ρgL,c(u3),

(26)

where the right-hand side is conveniently computed from
the local densities ρgL,a , by using fast Fourier transforms.

This density is required for (a,b,c) = 0,1, and determines the
complex function

Iabc(z) = P
∫

dν
ρ

(I)
abc(ν)
z − ν

. (27)

From this object, the two self-energies can be found as the
combinations

%[1](z) = 2I010(z) − u0 I000(z),

χ[1](z) = 2I011(z) − u0[I010(z) + I001(z)] +
u2

0

2
I000(z).

(28)

In summary, we can compute g in terms of χ ,% from Eq. (21).
Having done so, we compute χ ,% in terms of the g from
Eq. (28), thus defining the second part of the loop. The two
chemical potentials µ and u0 are found from Eq. (23) and the
two particle-number sum rules:

∫
dωf (ω) ρgL,0(ω) = n

2
, (29)

∫
dωf (ω) ρGL,0(ω) = n

2
, (30)

thereby all variables can be self-consistently calculated
through a simple iterative scheme. The only inputs are the
density of particles n and the temperature T .

B. Considerations of high density n → 1 at low T ,
and the entropy at high T

Before discussing the results, we note an important
constraint that arises when we study the theory at high
temperatures. We need to make sure that the number of states
after the Gutzwiller projection has the correct value; this
requires that the chemical potential has the correct asymptotic
value at high T . When T ≫ t,J the chemical potential grows
linearly with T . From simple considerations of the atomic limit
t = 0 = J , one can calculate the partition function exactly,
from this one finds

µ ∼ kBT ln{n/[2(1 − n)]}, (31)

where Ns and n = N/Ns are the number of sites and the
density, respectively. This linear growth with T with the correct
coefficient also ensures that the entropy near the Mott limit
is correctly reproduced at high T . Upon using the Maxwell
relation (∂S/∂N )/T = −(∂µ/∂T )N , and the initial condition
S(n → 0) = 0, we find

S ∼ −kBNs{n ln n/2 + (1 − n) ln (1 − n)}, (32)

a well-known result. We must therefore also ensure that the
approximation satisfies this condition (31), in order to obtain
the correct entropy at high T .

Upon solving Eqs. (21)–(30) at high densities n # 0.8 as
T → 0, or high T ≫ D with moderated densities n $ 0.7,
we find that in each case the spectral function tends to flatten
out on the occupied side, extending in range to ω ≪ −D
with little weight in the tails. For the high-T case, a second
consequence is that the computed slope dµ/dT begins to
depart from Eq. (31). The flattening is consequence of the
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growth of u0 which also increases linearly with T , becoming
larger than the bandwidth 2D, as seen in Fig. 5. This growth
enhances the coefficients in the self-energies Eq. (28) and
pushes one into a strong u0 regime, unless we impose some
cutoff. In the T → 0 limit, the exact numerical results for
spectral functions from DMFT [6] do confirm the expectation
of a compact support for the spectral function, and hence the
observed growth is artificial.

C. Cutoff scheme with a Tukey window

We saw above that two physically distinct regimes involving
different types of physics, namely, the high-T regime at any
density and the high-density regime at low T , share the
common problem of growing tails of the spectral function.

In order to control this unphysical growth in both cases, we
need to impose an appropriate high-energy cutoff. Higher-
order terms in the λ expansion are expected to eliminate
this growth in a systematic way, without needing an extra
prescription. A detailed analysis of the cutoff issue within
the λ expansion is underway currently, and we expect to
present the details in a forthcoming paper. However, at the
the level of the lowest-order approximations, it seems that
we do need to impose an extra cutoff, thereby introducing
one more approximation. A rough estimate of the cutoff can
be made by observing that the self-energy calculated by using
the bare g0 (setting χ → 0 and % → 0) in Eq. (26) would
give the spectral weights a width of maximum range ±3D;
by setting u1 = D, u2 = D, u3 = −D, we satisfy one of the
Fermi combinations with u ∼ 3D. By flipping signs we can
reach u = −3D, thus, a range of frequencies −3D " ω " 3D
is feasible. The region near |ω| ∼ 3D would then be in the tails
of the function. In a skeleton expansion, on the other hand, with
increasing interaction strength u0, we have the possibility of a
runaway growth since under first iteration, the computed ρgL

can now extend to ±3D as compared to the range ±D of the
bare density, and so forth. Hence, one plausible strategy would
be to limit the growth of the auxiliary spectral functions to a
range ±c0, with c0 ∼ 2D, with the physical spectral functions
possibly extending somewhat beyond this. Since two very
different regimes, that of high T and high density are involved,
we can test the additional approximations self-consistently,
and thereby avoid unduly biasing the results.

It appears reasonable to choose the high-energy cutoff
by requiring that we obtain the known high-T slope and
therefore the high-T entropy (32) at all densities. While it
might be possible to obtain the exact entropy by adjusting the
cutoffs at each density separately, we content ourselves by
finding a reasonable global fit instead, i.e., one set of density-
independent cutoffs yielding the roughly correct entropy at
relevant densities. The high-T entropy is estimated at T ! 1.
It should be noted that T ∼ 1 is not always in the high-T limit,
especially for the tricky region close to n ∼ 2/3 where we
know that dµ/dT vanishes at high T from Eq. (31), hence,
it is expedient to limit the high-T region to T ! 1. Having
chosen such a cutoff, one can then explore the other physically
interesting domain, and study the spectral functions at low
T in the energy range |ω| ! D. This is a low-energy scale
compared to the cutoffs, but already a very high-energy scale,
in comparison to the physically interesting regimes |ω| ! D

3

" " "
#

FIG. 3. Multiplication through the Tukey window WT (ω)
[Eq. (34)] is used for providing a cutoff in our scheme (33). It is
applied only to the auxiliary local Green’s function ρgL,m(ω), while
the physical spectral functions ρGL(ω) are unconstrained, apart from
an overall window |ω| " 5D used for numerical purposes. In this
work, the upper cutoff used is $(+)

c = 2D, and the lower cutoff
$(−)

c = 1.5D.

or even lower. We find below that the low-T spectra indeed
are better behaved with the cutoff. The low-energy results
presented here are quite insensitive to the details of the choice
for the cutoff, and hence one might be reasonably confident
that the answers are not unduly biased by the choice made.

The method employed for imposing the high-energy cutoff
was arrived at after some experimentation. We multiply the
local spectral function (24) by a Tukey window function used
in data filtering:

ρ̂gL,m(ω) = 1
V

ρgL,m(ω)WT (ω), (33)

where the constantV is found from the normalization condition∫
ρ̂gL,0(ω) dω = 1. Here, the smooth Tukey window WT (ω)

is unity over the physically interesting, i.e., feature-rich
frequency domain |ω| " $(−)

c , where it starts falling off
smoothly, and vanishing beyond the high-frequency cutoff
|ω| = $(+)

c . It is defined as a piecewise function (see Fig. 3)

WT (ω) = 1 for $(−)
c $ |ω|

= 1
2

(
1 + sin

{
π/2

$(+)
c + $(−)

c − 2|ω|
$

(+)
c − $

(−)
c

})

for $(+)
c $ |ω| $ $(−)

c

= 0 for |ω| > $(+)
c . (34)

This procedure involves a single rescaling: after computing
the local spectral functions ρgL,m (with m = 0,1) from the
self-energies as in Eq. (24), we multiply with WT and rescale
as in Eq. (33) before sending the result back into the self-energy
calculation in Eq. (28). Note that the prescription (33) involves
the auxiliary local Green’s function gL,m which is the basic
building block in the theory. The cutoff is imposed only on ρg
in Eq. (24), and the other spectral functions are then computed
by the unchanged equations (21)–(30).

We chose the parameters $(+)
c = 2D, and the lower cutoff

$(−)
c = 1.5D after some experimentation. This choice of the

cutoffs is in accord with the discussion above where we
concluded c0 ∼ 2D. With this cutoff and rescaled auxiliary
Green’s function, the physical spectral function ρG is computed
as per the rules without any further assumptions. It typically
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n"increasing

!

FIG. 4. Left: The chemical potential at particle densities n = 0.4,0.5,0.6,0.7,0.75,0.775,0.8,0.825,0.85,0.875 increasing from bottom to
top. We confine ourselves to the limited regime T " 1.2 since higher T requires further adjustment of the cutoffs. Note that within this regime,
the µ(T ) curve turns around at a density around n ∼ 0.7. For lower densities, µ decreases monotonically with increasing T , whereas at higher
densities we have a shallow minimum followed by a regime of rising µ. This change of behavior is expected from Eq. (31), and has important
physical consequence of changing the sign of the Kelvin thermopower for correlated matter [55]. Right: The slope dµ/dT is calculated from
the µ(T ) curves at T = 1, and contrasted with the exact values from Eq. (31). The points are taken from the same set of particle densities n as
the figure on left, increasing from left to right. Since there is yet some curvature in the figures at left when T = 1, our procedure provides only
a rough estimate. We note that these are in fair correspondence, especially at low hole density (see top right quadrant).

does extend to about 4.5D or 5D on the occupied side, but
not beyond this scale. For numerical purposes, we also use an
upper cutoff for the physical spectral function range as ∼5D,
this energy corresponds to $∗ in Fig. 2.

V. RESULTS FOR CHEMICAL POTENTIAL,
QUASIPARTICLE WEIGHT, SELF-ENERGY,

AND SPECTRAL FUNCTIONS

A. Chemical potential and quasiparticle weight Z

With the chosen cutoff, we examine the chemical potential
as a function of density and T in Fig. 4. We observe in the left
panel of Fig. 4 that the chosen cutoff provides a reasonable
description of the µ versus T curves at different densities.
These exhibit an upturn between n = 0.6 and 0.7 in the T
domain that is computationally reliable within this scheme.
The right panel of Fig. 4 shows that the slope dµ/dT is also
in reasonable agreement with the exact answer for this slope,
apart from some error near the difficult regime of n ∼ 2

3 . Here,
we know from Eq. (31) that the slope is zero at high enough T
and this causes problems of convergence.

We examine the various pieces adding up to the chemical
potential in the right panel of Fig. 5. These curves also
show that the Mott-Hubbard physics of the upturn of µ(T )
is enforced by the u0 term, it is thus quite crucial within this
formalism. We also note that calculations without the cutoff
lead to much larger values of u0.

Overall, it seems that the results for µ are quite reasonable
in the hole-rich region n $ 0.75 (i.e., δ " 0.25) with the
global choice made, i.e., without requiring a fine tuning of
the cutoffs with the density. We therefore proceed to use this
for computing the spectral functions, and other physically
interesting variables, also evaluated in the complementary
low-T region.

Turning to the main objective of this work of calculating
the correct energy scale near the Mott limit, we display the
computed Z versus the hole density δ = 1 − n in the left
panel of Fig. 6. It is interesting that the values obtained are
significantly better than those reported in [6], we now find

Z vanishes as δ → 0. The solid line gives the numerically
exactly determined Z from DMFT, which is extremely well
fit by Z ∼ δ1.39. This latter behavior is noteworthy in that it
vanishes faster than linear in δ. The “mean field descriptions”
involving slave auxiliary particles as well as the Brinkman-
Rice theory [56] of the correlated metallic state give a linear
Z ∝ δ. Therefore, this result indicates the need to account for
fluctuations beyond the mean field description. It is interesting
that the present calculation also gives a nonlinear behavior,
with a slightly larger exponent than 1.39. We plan to return
to a closer analytical study of this interesting result, obtained
from the numerics of our solution.

B. Self-energy and spectral functions at low T

We have also studied the quasiparticle decay rate at T ∼ 0,
defined for |ω| " ZD through a Fermi liquid form with the
expected particle-hole asymmetric correction [8]

− Im+(ω) = ω2

$0

(
1 − ω

2

)
, (35)

whereby introducing two energies: $0, which determines the
magnitude of Im+ and 2 the asymmetry scale. In [6] and also
in [5], it was pointed out that $0 varies like Z2 near the Mott
insulating limit, leading to a scaling of the Green’s function
frequency with Z at low energies. In this work, the $0 is
computed by averaging Im+(ω) in the domain |ω| " ZD. In
the bottom right panel of Fig. 7, we show the variation of $0
versus Z2 and in the inset with δ2. Since we have seen nonlinear
corrections in Z as seen in Fig. 6, these two plots seem to
support more closely the scaling of $0 with Z2, rather than
δ2 at the lowest δ. It seems possible to improve the agreement
by choosing a density-dependent cutoff, however, the global
cutoff already achieves fair agreement.

In the top left panel of Fig. 7, we plot −Im+ versus
ω/Z at different densities. As already noted in [6], these
curves fall on top of each other quite well. The curves also
exhibit particle-hole asymmetry as noted before [2,8]. This
is exhibited by decomposing the Im+ into symmetric and
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FIG. 5. The T dependence of the chemical potential µ and its three additive contributions from Eq. (23) at two densities. The physical
chemical potential µ (I, red), the auxiliary part: µ′ (II, blue), the u0 contribution: (1/2 + n/4)u0 (III, purple), and the small part from the integral
−

∫
fρgL,1 (IV, magenta). The observed upturn in µ at high T for n = 0.8, reflecting the physics of Mott holes near half-filling, is predominantly

due to the upturn of the second chemical potential u0. Its growth, in turn, causes the numerical issues requiring the implementation of a cutoff
in this work.

antisymmetric components in the the top right and bottom left
panels. The antisymmetric part can be analyzed to read off the
energy scale 2 in Eq. (35). We find that 2 is proportional to
Z again, but with a weak density-dependent correction:

2(δ) = Z(δ){3.38 − 15.6δ + 27.1δ2}. (36)

The region beyond the straight line is captured on average, by
extending Eq. (35) to

− Im+(ω) = ω2

$0

(
1 − ω

2
√

1 + 2 ω2/Z2

)
. (37)

This expression is potentially useful for phenomenological
extensions of the theory.

In Figs. 8 and 9, we display the raw unscaled spectral
functions and the imaginary part of the self-energy for various
physical parameters. In Fig. 8, the low-T spectra are shown at
different densities. Note that the significant range of ω where
the spectral functions and self-energy vary, shrinks rapidly

FIG. 6. The computed quasiparticle weight Z (dots) versus the
hole density δ = 1 − n, compared with the exact numerical results
from DMFT ([6] solid curve), which fits very well to the formula Z ∼
δ1.39. We see that the present scheme accounts well the suppression
of Z near δ ∼ 0, even reproducing nonlinear vanishing near the Mott
limit seen in [6]. This nonlinear feature goes beyond the predictions
of both slave-boson mean field and Brinkman-Rice theory [56], and
signifies an important correction to the mean field behavior.

with increasing n; this is indirectly a reflection of variation of
the Z with density in Fig. 6 since the scale of variation of + is
set by Z. We also note that the spectral asymmetry in Im+ is
very clearly visible here.

C. Temperature variation of the self-energy
and spectral functions

In Fig. 9, we display the T dependence of the spectral
function and the self-energy. One of the advantages of our
computational scheme is the ease with which T variation can
be computed. We are thus able to obtain easily the crossover
from a coherent (extremely correlated) Fermi liquid regime
at low T to an incoherent nondegenerate correlated state.
The spectral function peaks rapidly broaden and shift as
the temperature is increased. We also note that the Fermi
coherence,signaled by a small magnitude of Im+ at small
ω, is rapidly lost on heating, leading to a flat and structureless
function. A comparison of the curves at n = 0.85 and 0.875
shows that in this range of densities, where the Z is already
very small, the effective Fermi temperature is also diminished
since the same (small) variation of T produces a relatively
large change in the damping.

VI. TEMPERATURE DEPENDENCE OF RESISTIVITY
AND RELATED QUANTITIES

Perhaps the single most important characterization of a
theory is via the resistivity. It is a notoriously hard object to
calculate reliably, and yet one that is most sensitive to the
lowest-energy excitations of the system. Since we have argued
that the present version of ECFL captures the low-energy
excitations of the electron, it is useful to examine its results
for resistivity for the t-J model in infinite dimensions, or
equivalently the U = ∞ Hubbard model. The resistivity has
been calculated numerically from DMFT quite recently in
two papers [42,43], and hence it is of interest to see how
our analytical calculation compares with these exact results.

We start with the Kubo expression for resistivity, with
the vertex correction thrown out, thanks to the simplification
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FIG. 7. Top left: −Im+(ω) versus ω/Z at several densities n = 0.7,0.725,0.75,0.775,0.8,0.825,0.85,0.875,0.9 from bottom to top. We
see that the frequency dependence scales well with Z, with better behavior on the occupied side ω " 0. Top right: The symmetrized function
[−+′′(ω) − +′′(−ω)]/2 exhibits the quadratic behavior at ω ∼ 0 expected from a Fermi liquid. Bottom left: The antisymmetric part is defined
as R = [+′′(ω) − +′′(−ω)]/[+′′(ω) + +′′(−ω)], so that if we assume Eq. (35) then R = −ω/2. We show the computed R multiplied by 2/Z

at the above densities versus ω/Z, with n = 0.9 at the top and n = 0.7 at the bottom for ω " 0. These collapse to a straight line with slope −1
in the range |ω| " Z, provided we allow for an additional mild density dependence of the ratio 2/Z, as in Eq. (36). Bottom right: The energy
scale $0 [Eq. (35)] determining the magnitude of the Im+ at T = 0 is shown versus Z2, and in the inset versus the hole density δ2. Here, $0

is seen to scale better with Z2 rather than with δ2.

arising from d → ∞:

σDC = 2π!e2

V

∑

k

(
vx

k

)2
∫

dω (−∂f/∂ω) ρ2
G(ϵk,ω), (38)

where the band velocity is given as !vx
k = ∂εk/∂kx . We wrap

the velocity into a useful function

'(ϵ) = 1
a0

1
Ns

∑

k

δ(ε − εk)
(
vx

k

)2
/a2

0

= 1
a0

D(ϵ)
〈

(vx
k )2

a2
0

〉

εk=ϵ

, (39)

where a0 is the lattice constant in the hypercubic lattice, and Ns

the number of sites and we use the Bethe lattice semicircular
density of states D(ϵ) = 2

πD

√
1 − ϵ2/D2. Deng et al. [42,57]

calculate that

'(ϵ)
'(0)

= 4(1 − ϵ2/D2) 3/2
√

1 − ϵ2/D2, (40)

where '(0) is absorbed into a constant σ0 = e2!'(0)/D,
which is identified with the Ioffe-Regel-Mott conductivity.
With this choice of the vertex we obtain

σDC = σ02πD

∫∫
dϵ dω (−∂f/∂ω)

(
'(ϵ)
'(0)

)
ρ2
G(ϵ,ω).

(41)

We write the (inverse) Green’s function at real ω as

G−1
± (ϵ,ω) = A(ω) − ϵ ± iB(ω), (42)

where the retarded case corresponds to G+, and

A(ω,T ) = ω + µ − Re +(ω,T ),

B(ω,T ) = πρ+(ω,T ) = −Im +(ω,T ), (43)

and + is the Dyson self-energy. Setting D = 1 and using the
identities ρG = i/(2π )(G− − G+) and G2

± = ∂ϵG±, and further
integrating by parts over ϵ we obtain

σ = σ0

∫
dω (−∂f/∂ω)ξ (ω),

ξ (ω) = 1
2π

∫
dϵ

{
i

B
(G+ − G−)

'(ϵ)
'(0)

+ (G+ + G−)
'′(ϵ)
'(0)

}
.

(44)

Using the explicit form of ' and G±, we reexpress ξ exactly
as

ξ (ω) = 1
π

∫ 1

−1
dϵ

√
1 − ϵ2 1 − 3ϵA + 2ϵ2

B2 + (A − ϵ)2
. (45)

The evaluation of this integral is straightforward, and leads to a
cumbersome result. A simple answer for the leading behavior
when B ≪ 1 can be found, provided (A − ϵ) goes through zero
in the interval of integration. Since we will see that |A| ≪ 1 for
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FIG. 8. The two figures on the left display the physical local spectral function ρGL,0 = − 1
π

ImGLoc,0(ω + i0+) from Eq. (25), and the two
figures on the right show the Dyson self-energy − 1

π
Im+(ω), plotted against the frequency ω/D. The figures are at low T for the six indicated

values of the density, and display a region that is somewhat greater than the one, where it is expected to be reliable |ω| ! ZD. One sees a
correlation between the quasiparticle weight Z (Fig. 6) and the scale of variation of the decay rate. Densities n > 0.875 have larger errors in Z

compared to the exact DMFT results (see Fig. 6), and therefore not shown. However, it is easy to picture them at low ω, using the observation
that scaling ω with Z collapses +′′.

all temperatures and frequencies of interest (ω ∼ 0, T
D

! 0.3),
this will always be the case. We may write ϵ = A + B tan(θ ),
retain the leading terms for small B, and set B → 0 in the
remainder. With this, we obtain the asymptotic approximation

lim
B≪1

ξ (ω) ∼ [1 − A2(ω)]3/2

B(ω)
4[1 − A2(ω)]. (46)

In Fig. 10, we use Eq. (46) to plot ρdc

ρ0
versus T

D
for 0.75 " n "

0.85, where ρ0 = 1
σ0

. These resistivity curves have both the
same shape and the same scale as those found through DMFT
(see Fig. (1a) of Ref. [42]). We find a Fermi liquid regime
[ ρdc

ρ0
∝ ( T

D
)2] for 0 < T < TFL, where TFL = (c D) × Z(T =

0), and c ≈ 0.05. Furthermore, ρdc

ρ0
is a function of T

DZ(T =0)
for T ! 2TFL [Fig. 10(c)]. An important scale emphasized
in DMFT studies [42,43] is the Brinkman-Rice scale (TBR =
Dδ), which is the renormalized bandwidth of the quasiparticles
rather than the quasiparticle weight. Since Z(T = 0) ∝ δα ,
with α > 1, the Fermi liquid scale is contained within the
Brinkman-Rice scale, and is smaller than the latter by some
power of δ. As T is increased above TFL, the Fermi liquid
regime is followed by a linear regime for TFL < T ! 0.01D.
In Fig. 10(a), the Fermi liquid regime is tracked using the
blue dashed parabola, while the linear regime is tracked
using the magenta dashed line. Finally, this linear regime
connects continuously to a second linear regime, existing for
T # 0.07D [displayed in Fig. 10(b)].

We now analyze more closely the low-temperature regime
(T ! 0.01D). For this range of temperatures, the Sommerfeld

expansion can be applied to Eq. (44). To leading order
[−∂f/∂ω = δ(ω)], and using Eq. (46), this gives

ρDC ∼ ρ0
−Im+(0,T )

[1 − {µ − Re+(0,T )}2]3/2
. (47)

The constituent objects −Im+(0,T ) and A(0,T ) are plotted
along with Z(T ) in the relevant temperature range in Fig. 11.
We first examine A(0,T ) = µ − Re+(0,T ), displayed in
Fig. 11(c). For TFL ! T ! 0.01D, it is linear, as tracked by
the dashed blue line. We also notice that A2(0,T ) ≪ 1, and
can therefore be neglected in Eq. (47). Equation (47) then
implies that the resistivity is proportional to [−Im+(0,T )]
in this low-temperature range. Accordingly, in Fig. 11(a), we
see that [−Im+(0,T )] is quadratic for T ! TFL (tracked by
the blue dashed parabola) and linear for TFL ! T ! 0.01D
(tracked by the magenta dashed line). Finally, in Fig. 11(b),
we see that Z(T ) is approximately constant for T ! TFL, and
grows linearly for TFL ! T ! 0.01D, with a slope on the order
of the bandwidth (tracked by the magenta dashed line). The
blue dashed curve tracks the functional form discussed below,
which approximates Z(T ) very well for T # TFL. As empha-
sized in [43], the temperature dependence of [−Im+(0,T )]
and Z(T ) lead to a quasiparticle scattering rate, defined as
[−Im+(0,T )] × Z(T ), which is quadratic well above TFL.

In Fig. 12, we plot the temperature dependence of these
objects in a broader temperature range. In Fig. 12(c), the blue
dashed line indicates the presence of a second linear regime
in A(T ) (with a slope slightly smaller than the first), meeting
the latter at a kink at T ≈ 0.01D. Figure 12(a) shows that for
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FIG. 9. The temperature variation with the frequency ω/D, of the spectral function ρGL,0 on the left and the Dyson self-energy − 1
π

Im+ on
the right, at density n = 0.875 (top), n = 0.85 (middle), and at n = 0.6 (bottom). With increasing T we note the rapid broadening and shifting
of ρGL,0. Here, − 1

π
Im+ displays a rapid destruction of the coherent Fermi liquid behavior observed at the lowest T , by the filling up of the

minimum at ω = 0. Comparing the top two sets shows that at the lowest hole density, a small change in T has a large effect, due to the low
effective Fermi temperature. We also observe here, as well as in Fig. 8, that − 1

π
Im+ has a strong asymmetric correction to the quadratic ω

dependence of the standard Fermi liquid, as highlighted in the bottom left panel of Fig. 7. This is in accord with one of the basic analytical
predictions of the ECFL theory, and also is found in the DMFT results.
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FIG. 10. (a), (b) ρdc

ρ0
vs T

D
for n = 0.75, 0.8, 0.85 from bottom to top. In (a), the blue dashed parabola tracks the FL regime 0 < T < TFL

where ρdc

ρ0
∝ ( T

D
)2. The magenta dashed line tracks the first linear regime TFL < T ! 0.01D. In (b), the blue dashed line tracks the second

linear regime T # 0.07D. (c) ρdc

ρ0
vs T

DZ(T =0) for n = 0.75, 0.8, 0.85 (red, orange, green). The blue dashed parabola tracks the Fermi liquid
regime, demonstrating that TFL = (c D) × Z(T = 0), with c ≈ 0.05, and that ρdc

ρ0
is a function of T

DZ(T =0) for T ! 2TFL.
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FIG. 11. (a) [−Im+(0,T )] vs T
D

for n = 0.75, 0.8, 0.85 from bottom to top. [−Im+(0,T )] is quadratic for T ! TFL (tracked by the
blue dashed parabola) and linear for TFL ! T ! 0.01D (tracked by the magenta dashed line). (b) Z(T ) vs T

D
for n = 0.75, 0.8, 0.85 from

top to bottom. Z(T ) is approximately constant for T ! TFL, and grows linearly for TFL ! T ! 0.01D, with a slope on the order of the

bandwidth (tracked by the magenta dashed line). The blue dashed curve is the fit to the functional form Z(T ) =
√

1+aT +bT 2

c+dT
using a broader

range of temperatures than the one shown here [Fig. 12(b)]. This form works well for T # TFL. (c) A(0,T ) = µ(T ) − Re +(0,T ) vs T
D

for
n = 0.75, 0.8, 0.85 from bottom to top. For TFL ! T ! 0.01D, it is linear, as tracked by the dashed blue line.

T > 0.01D, [−Im+(0,T )] continues to grow, until it finally
begins to saturate at higher temperatures. Finally, in Fig. 12(b),

we fit Z(T ) to the functional form Z(T ) =
√

1+aT +bT 2

c+dT
,

tracked by the blue dashed curve. This form works well for
T # TFL. For T ! 0.01D, it reproduces the behavior shown
in Fig. 11(b), while for T # 0.01D, it is consistent with the
behavior Z(T ) ∝

√
T . Therefore, Z2(T ) is linear in T over a

very wide temperature range starting with T ≈ 0.01D.

VII. CONCLUSIONS

In this work, we have presented an analytical calculation of
properties of the t-J model in infinite dimensions, and shown
that it provides a quantitative description of variables known
from exact numerical work in [42,43]. The results include the
quasiparticle weight, the self-energies, and spectral functions
with particle-hole asymmetry that have been argued to be
characteristic of very strong correlation [6,8]. Finally, we also
give a good account of the temperature variation of resistivity.
Results with the present technique at high T are less reliable
and are not presented. In the low- to intermediate-T results
reported here, we reproduce the main features of the exact
DMFT calculations, including a narrow regime with quadratic
T dependence followed by two distinct linear T -dependent
regimes. We are further able to identify the origin of these
regimes in terms of the parameters of the theory.

The t-J model studied here contains two essential
ingredients of strong correlations: the physics of Gutzwiller
projection to the subspace of single occupancy, and the
physics of the superexchange. The first is captured in the
present scheme, while the second is lost since we limit the
study to infinite dimension for the purpose of benchmarking
against known exact results. The scheme by itself has no
intrinsic limitations to the case studied, and is generalizable to
finite dimensions as well as finite superexchange. Thus, it may
be expected to yield interesting results in lower dimensions,
including transitions between different broken-symmetry
states. Such calculations are currently underway.

In this work, we have discussed the characteristics of the re-
sulting ECFL state. The state reported here is Fermi liquid like,
but only so at a surprisingly low temperature. Upon minimal
warming, this state devolves into one exhibiting linear resis-
tivity. Our calculation yields a reduction of the effective Fermi
temperature, due to extreme correlations, that far exceeds the
expectations [58] based on a simple estimate T eff

F ∼ δ TF .
Within the terms of its limitations of d → ∞ and J =

0, this work provides useful insights. At the density n ∼
0.85 relevant for cuprate superconductors, we obtain a state
displaying linear resistivity for T beyond ∼45 K as seen in
Fig. 1. A similar onset of linearity occurs at a slightly higher
T within DMFT, the difference is due to our Z (from Fig. 6)
being about half of the exact value. If we imagine that the
effects of reduced dimensionality and nonzero J can stabilize

0.02 0.04 0.06 0.08 0.10
T

D

0.1
0.2
0.3
0.4
0.5
0.6
0.7

Im

a

0.05 0.10 0.15 0.20 0.25
T

D

0.1

0.2

0.3

0.4

0.5

Z
b

0.05 0.10 0.15 0.20 0.25
T

D

0.2

0.1

0.1

0.2
A

c

FIG. 12. Same plots as in Fig. 11 over a broader range of temperatures. (a) [−Im+(0,T )] continues to grow as T is increased beyond

0.01D, until it finally begins to saturate at higher temperatures. (b) The blue dashed curve is the fit to the functional form Z(T ) =
√

1+aT +bT 2

c+dT
,

which works well for T # TFL. For T # 0.01D, Z(T ) ∝
√

T . (c) The blue dashed line tracks the second linear regime in A(T ) (with a slope
slightly smaller than the first) for T # 0.01D.
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this smaller onset scale, then the possibility of observing the
asymptotic T 2 resistivity of a Fermi liquid would become
remote. Thus, the quadratic behavior, so essential for making
a formal distinction between Fermi liquids and the elusive
non-Fermi liquids [59], could be rendered unobservable in
practice as well as divested of any essential difference.
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