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Quadratic to linear magnetoresistance tuning in TmB4
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The change of a material’s electrical resistance (R) in response to an external magnetic field (B) provides subtle
information for the characterization of its electronic properties and has found applications in sensor and storage
related technologies. In good metals, Boltzmann’s theory predicts a quadratic growth in magnetoresistance (MR)
at low B and saturation at high fields. On the other hand, a number of nonmagnetic materials with weak electronic
correlation and low carrier concentration for metallicity, such as inhomogeneous conductors, semimetals, narrow
gap semiconductors and topological insulators, and two dimensional electron gas, show positive, nonsaturating
linear magnetoresistance (LMR). However, observation of LMR in single crystals of a good metal is rare. Here
we present low-temperature, angle-dependent magnetotransport in single crystals of the antiferromagnetic metal,
TmB4. We observe large, positive, and anisotropic MR(B), which can be tuned from quadratic to linear by
changing the direction of the applied field. In view of the fact that isotropic, single crystalline metals with large
Fermi surface (FS) are not expected to exhibit LMR, we attribute our observations to the anisotropic FS topology
of TmB4. Furthermore, the linear MR is found to be temperature independent, suggestive of quantum mechanical
origin.
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I. INTRODUCTION

Interest in novel magnetotransport phenomena in metallic
magnets is driven by technological and fundamental consider-
ations. The technological motivation comes from harnessing
the unique functionalities associated with properties such
as giant magnetoresistance, while the fundamental motiva-
tion arises from discovering and understanding new quantum
many body physics. The quest for linear magnetoresistance
(LMR) in strongly correlated systems is one such example of
fundamental motivation [1]. Boltzmann’s classical electronic
transport theory shows that in a conductor with a large Fermi
surface (FS), magnetoresistance (MR) [defined as �ρ(B )

ρ(0) =
ρ(B )−ρ(0)

ρ(0) , where ρ(B ) is resistivity in magnetic field B] grows

as B2 at small fields and saturates to a constant value at
higher fields [2]. A linear and nonsaturating dependence on
B denotes a departure from conventional behavior. Notably,
LMR has been found to arise from multiple factors ranging
from classical [3–10] to quantum [11,12]. Discovery and
understanding of LMR in new materials and controlling the
underlying mechanism remains an active research frontier
[1,3–26].
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The superlinear, nonsaturating MR observed in nonsto-
ichiometric silver chalcogenides [13] (Ag2+δSe, Ag2+δTe),
two dimensional electron gas (2DEG) [23], and Bi2Se3 [5]
were explained using a classical random-resistor model [3,4].
Mobility (μ) [7] and density [10] fluctuations, along with
space-charge effect [24], have also been discussed to be the
primary origin of LMR in several materials. On the other
hand, LMR in single crystals of semimetals [15,16,19], nar-
row gap semiconductors [20], topological insulators [21,22],
and pressure-induced superconductors [1] have been ex-
plained with a quantum picture [11,12]. In single crystalline
metals with parabolic dispersion, LMR is atypical and only
observed previously in some members of the light rare-earth
diantimonide (RSb2) and RAgSb2 (R = La-Nd,Sm) families
[27,28]. Hence it would be interesting to explore a metal
where not only expected quadratic MR is realized, but also
a tuning to LMR can be achieved by changing certain ex-
perimental parameters, while maintaining the purity and stoi-
chiometry of the single crystal.

We performed low temperature (T), angle-dependent MR
measurements on single crystalline TmB4, which belongs to
the rare-earth tetraboride family and crystallizes in a tetrag-
onal structure with space group P 4/mbm, 127. The typical
layered crystal structure of TmB4, with four unit cells along
the c axis, is shown in Fig. 1(a). Tm atoms lie in the crystalline
ab plane, arranged in a Shastry-Sutherland lattice structure
[29–31] with approximately equal bond lengths [Fig. 1(b)].
Halfway between the Tm layers, planes of boron atoms form
a mixture of four-atom squares and seven-atom rings [31].
There are two different types of boron sites in these planes.
One type is an exclusive part of the boron plane, whereas the
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FIG. 1. Structural and experimental considerations. (a) The
alternating-layer crystal structure of TmB4. Four unit cells stacked
along the c axis are shown. The Tm (red) atom planes lie halfway
between the B (blue) atom layers, which are separated by a distance
of 3.985 Å. One type of boron lies exclusively within the boron plane,
whereas the other type is part of the boron plane and an octahedral
chain along the c axis. (b) A unit cell of TmB4 viewed along the c

axis. The sublattice of Tm atoms maps to a topologically equivalent
Shastry-Sutherland lattice structure [29] with perfect squares and
nearly equilateral triangles of sides 3.62 Å and 3.78 Å, respectively.
The crystal structure of TmB4 is prepared using VESTA [32]. (c) A
schematic of the experimental arrangement and main results. θ is the
tilt angle between B and the crystal c axis. The excitation current I is
applied parallel to the ab plane of the crystal, indicated in red, while
the voltage drop is measured across the two voltage contacts, V +

and V −. The MR(B) is linear for θ = 0◦ and tunable to quadratic for
θ = 90◦.

other is part of the boron plane and an octahedral chain along
the c axis [31]. Thus the crystal structure has both 2D and 3D
features.

The low-temperature magnetic measurements carried out
earlier [33–36] on TmB4 revealed a rich phase diagram with
multiple ground states for B applied along the c axis. The
ground state is antiferromagnetic (AFM), up to T = 9.9 K
(for B = 0 T) and B = 1.4 T (for T � 8 K). At higher values
of B and T, the system evolves to various other magnetic
ground states, viz. a narrow fractional plateau phase (FPP),
a wide half plateau phase, a modulated phase, and a high-
field paramagnetic phase [33–36]. Recently, specific heat
measurements described FPP not as a distinct thermodynamic
ground state of TmB4, but rather as being degenerate with
the AFM phase [37]. Understanding of the various magnetic
ground states in TmB4 has been at the forefront of exten-
sive experimental and theoretical research [33–42], although
transport properties [34,36,42] are relatively less studied. Our
previous magnetotransport investigation [36] revealed huge,
nonsaturating, and hysteretic in-plane MR (900% at 7 T for
2 K) with signatures of unconventional anomalous Hall effect
[36]. The large MR along with negative Hall coefficient
suggest [36,43] that the carriers have high electronic μ ∼
2.9 m2V−1s−1 at 2 K.

II. EXPERIMENTAL

Here, we focus on angle-dependent low-temperature mag-
netotransport experiments in TmB4 in its AFM phase (B �
1.3 T and T � 5 K). A schematic of the experimental arrange-
ment and the main result of this work are shown in Fig. 1(c),
where θ is the tilt angle between B and c axis. We find an
unexpected linear MR, tunable to quadratic by varying θ .
Single crystals of TmB4 were grown in a solution growth
method using Al solution. Details of the crystal growth can
be found elsewhere [35]. For MR measurements, the crystal
was oriented [36] and cut into pieces with its faces along
(001) direction using a tungsten wire. A rectangular piece of
dimensions ∼0.434 mm × 0.516 mm × 0.226 mm (weighing
∼0.35 mg) has been used for the measurements. The mea-
surement was done in a standard four point probe method
using a Quantum Design Physical Property Measurement
System (PPMS). The contacts were made with electrically
conductive silver epoxy paste (EpoTeK E4110) and gold wires
of diameter 25 μm and 50 μm as connectors for voltage
and current contacts, respectively. All measurements were
conducted well within the AFM phase (B � 1.3 T and T �
5 K). The angle-dependent magnetotransport measurements
were performed by placing the sample on a precision steeper
controlled horizontal rotator puck, which can move around an
axis perpendicular to B. The excitation current (1.8 mA and
5.0 mA) was applied parallel to the ab plane and B was applied
along various directions, relative to the crystal c axis [see
Fig. 1(c)]. The linearity of current voltage was ensured at both
300 K and 2 K prior to the magnetotransport measurements.
We found in all cases that the MR is minimum at B = 0.
The raw data of MR was then symmetrized to reflect the
expected B to −B invariance, and is plotted in Fig. 3(a). For
the anisotropic magnetoresistance (AMR) measurements, R
was measured as the sample was rotated continuously at a
fixed B and T.

III. RESULTS AND DISCUSSION

Figure 2 depicts the metallic [36] T dependence of the
in-plane resistivity (ρab) of TmB4 in a longitudinal (B ‖ c-
axis) field with varying field strengths. At room temperature
[36], the zero-field resistivity, ρab(B = 0), is 5 × 10−7 �m
and decreases monotonically with decreasing T down to
12.9 × 10−9 �m at 2 K giving residual resistivity ratio (rR =
ρ300 K

ρ2 K
) = 38. The rR value is either comparable to or even

slightly higher than the previously studied TmB4 crystals
[34,42], suggesting a good quality crystal with a moderate
amount of impurity. At B = 0, the ratio of ρab to the c-axis
resistivity [36], ρc, is 0.454 at 2 K. Loss of spin-disorder
scattering causes a sudden drop in ρab at 11.9 K (at B = 0)
as the system undergoes a magnetic phase transition from the
paramagnetic to the modulated phase. Following this second
order phase transition, a first order phase transition appears
at 9.9 K (B = 0) as the system moves from the magnetically
ordered modulated phase to an AFM state. Under B, these
transition T ’s shift to lower values.

As shown in the inset of Fig. 2, zero-field dρab

dT
shows

maxima at T = 9.9 K and 11.9 K, indicative of the above-
mentioned phase transitions. For T � 9 K, dρab

dT
decreases lin-

early with decreasing T down to 4 K, implying a T 2 variation
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FIG. 2. Temperature and field dependence of electrical resistivity
(ρ) in the TmB4 single crystal. Plots of in-plane electrical resistivity
(ρab), measured in various B, applied parallel to the crystal c axis,
against T. At B = 0, the transition from the paramagnetic state to
the modulated state occurs at 11.9 K and transition from modulated
phase to AFM phase occurs at 9.9 K. ρab increases and transition
temperature decreases as B is increased. For the angle-dependent
magnetotransport measurements, we consider the lower part [2 �
T (K) � 5] of the ρab − T curve. The lines are to guide the eye. Inset:
T derivative of ρab(B = 0) against T shows two maxima at the point
of inflections of ρab – T, implying the phase transitions. The abscissa
of the inset has the same label as the main panel. The black solid line
is the linear fit to the experimental data, signifying a T 2 dependence
of ρab, in accordance with the Fermi liquid behavior.

of resistivity and is almost T independent in the lower T
regime. This T 2 dependence of resistivity at low T, in a metal
with magnetic ordering can arise either from e − e scattering
or scattering of conduction electrons from magnons [44]. A
dominant e-magnon contribution results in a negative MR
due to the suppression of magnons [45] under B. However,
unlike magnetic metals, TmB4 exhibits a positive MR and
ρab increases with B (Fig. 2). This rules out scattering from
magnons as the primary source of resistivity in TmB4 and
only e − e scattering persists in accordance with Fermi liquid
theory (ρab = ρ0 + βT 2, where ρ0 is the residual resistivity).
ρc(T ) also follows a similar T 2 behavior [36]. The coefficient
β is inversely proportional to Fermi temperature and is set
by the exponent of T rather than the residual resistivity [46].
While, for the in-plane transport, β = 1.6 × 10−10 �mK−2,
its out-of-plane value is 83 × 10−10 �mK−2.

Figure 3(a) shows a set of normalized MR(B) isotherms
of TmB4 with θ = 0◦ to 90◦, measured at T = 3 K. Here, 0◦
(90◦) refers to a field B applied parallel (perpendicular) to the
crystal’s c axis [see Fig. 1(c)]. Unexpectedly, for θ = 0◦ to
45◦ the MR response is linear all the way down to very small
fields. The functional behavior of MR(B) changes gradually
to quadratic as θ → 90◦. While the classical MR does not
have any response when B is applied parallel to the excitation
current, we observed a close to quadratic growth of MR for
B ‖ I ‖ ab. The change in MR over the B range (θ = 90◦) is
less than 50% of that observed for θ = 0◦. MR (B = 1.3 T) is
maximum for θ = 0◦ (≈25%) and minimum (≈10.3%) for
θ = 90◦. MR(B) essentially shows similar features at other
temperatures in the AFM phase. One of the notable features
of the LMR in TmB4 is that it persists down to lowest
applied field, without showing any signature of crossover
to a quadratic behavior with change in B, as observed in

∆

(b)(a)

FIG. 3. Angular dependence of MR. (a) A generic MR(B) isotherm measured at T = 3 K, under various magnetic field directions. 0◦(90◦)
refers to whether B is applied parallel (perpendicular) to the crystal’s c axis. A linear MR can be seen for θ = 0◦, which gradually moves to a
quadratic form for θ = 90◦. The MR is anisotropic. For B = 1.3 T, the MR is ≈25% at θ = 0◦, whereas it is ≈10.3% for θ = 90◦. (b) The θ

variation of anisotropic magnetoresistance (AMR) (see text) measured at B = 1.0 T and T = 3 K. The experimental data can be described by
a |cos θ | function (solid line) indicating a quasi-2D FS [16,19]. Inset: Polar plot of AMR(θ ) measured at T = 2 K and 5 K, at B = 1.3 T. The
AMR shows two lobes over the full range of θ , suggesting a twofold symmetry.
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(b)

(d)

(a)

(c)

FIG. 4. Analysis of the magnetoresistance data for TmB4. (a) Magnetoresistance isotherm, measured at T = 4 K, under five different field
orientations, shown in a double logarithmic representation. The linearity in the log-log plot suggests a power law behavior, MR = ( B

B0
)p . The

solid lines are the fit of the experimental data to the power law. (b) The variation of the exponent, p, with θ , for various T ’s. For θ = 0◦, p is
close to 1, suggesting linear MR and gradually moves to a value close to 2, for θ = 90◦. The error for determining the value of p from the fit
(a) is ∼0.01 and shown in the plot. p varies in a similar manner for all T ’s. The lines are to guide the eye. (c) T scaling (Kohler rule) of MR for
B along c axis. The values of m used to scale the different T MR data are mentioned in the parentheses. (d) Comparison of the experimental
data (violet) and theoretical (red) plot. The experimental data was obtained for B ‖ c-axis configuration and measured at T = 2 K. The black
solid line is the linear fit to the experimental data. The theoretical curve was calculated from Eq. (1) using the values of Ni and ne (see text).
The values of both slopes (inset) agree within 7%.

CaMnBi2 [16], InAs [20], 2DEG [23], and CrAs [1]. In-
stead, this LMR is similar to the superlinear MR behavior
observed in nonstoichiometric silver chalcogenides [13], Bi
[14], WTe2 [19], and rare-earth diantimonides [27]. The slope
of ρab(B, 0◦) is (2.21 ± 0.01) × 10−9 �mT−1 and almost T
independent, suggesting the MR is not due to the phonon
scattering [20].

Furthermore, we find MR to be anisotropic. We define
anisotropic magnetoresistance [AMR(θ )] as R(θ )−Rmin

Rmin
, where

R(θ ) is the resistance at any θ , measured at a constant B

and T , and Rmin is the minimum resistance obtained as θ is
varied. In Fig. 3(b), we show the variation of AMR (θ ) at

T = 3 K for B = 1.0 T. AMR is maximum for B ‖ c axis
and diminishes as B is rotated away from the c axis. The
data can be satisfactorily fit with a |cos θ | dependence. This
suggests a (quasi-)2D FS [2,16,19], where MR responds to
the perpendicular component of the applied field, B |cos θ |.
The anisotropic MR further suggests an anisotropy in the
electronic effective mass [19]. AMR shows twofold symmetry
[inset, Fig. 3(b)].

To quantify the evolution of MR from linear to quadratic,
we fit MR(B, θ ) to ( B

B0
)p. A representative MR(B ) plot (in

double logarithmic scale), measured at 4 K for different θ

values, is shown in Fig. 4(a). For θ = 0◦, p ∼= 1 and gradually
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FIG. 5. Band structure for TmB4 from the spin polarized DFT
calculation using the GGA+U method, which shows dispersion in
the ab plane. The right panel shows the path (in blue) taken in the
BZ, �-�′-X′-X′′-�′-X′′′. A band crossing is observed exactly at EF

with linear dispersion in the kx − ky plane at �′.

grows to p ≈ 2 (varies between 1.5 to 1.9, for different T ’s)
for θ = 90◦ [Fig. 4(b)]. Crucially, p(θ ) varies similarly at all
temperatures and has a negligible T dependence within the
AFM phase [Fig. 4(b)].

MR (B, θ = 0) data at different T ’s can be scaled using the
Kohler relation, MR = α(T )[ B

ρ(0) ]
m [Fig. 4(c)]. The scaling

suggests that carriers with single salient relaxation time [2]
govern magnetotransport for B ‖ c axis in the AFM phase.
Furthermore, this robust T scaling, using a single α, adds
credence to the relative T insensitivity of LMR and implies
negligible phononic contributions. Therefore, the measured
MR is primarily governed by scattering of conduction elec-
trons by impurities.

The origin of LMR in TmB4 is not entirely clear, but it
is plausible that Abrikosov’s theory of quantum linear MR
[11,12,26,47] can be invoked for this purpose, considering
the topology of the FS of TmB4 [31]. The presence of two
symmetry related small pockets (as evident from the spin-
polarized DFT calculation using GGA+U method [48]) in
the kx − ky plane of the Brillouin zone (BZ) along the � − X

direction (labeled �′ in Fig. 5), with an approximately linear
crossing of two bands at the Fermi energy, EF (within the
numerical accuracy) (Fig. 5), is of particular interest here. The
low density and small effective mass of the carriers due to the
linear band crossing ensure that they can be confined to the
lowest Landau level and thus reach the extreme quantum limit
even at small (longitudinal) applied fields. This results to a
LMR and is given by

ρxx = NiB

πcen2
e

, (1)

provided the carrier concentration (ne ) satisfies ne �
( mzz

mxy
)

1
2 ( eB

h̄c
)

3
2 where mzz and mxy are the effective mass of

the carriers for motion along kz and in the kx − ky plane,
respectively and Ni (�ne ) is the density of static scattering
centers [11,12,26,47]. The low effective mass of the carriers
further gives a T limit for lowest Landau level confinement
(see Supplemental Material [49]), which is indeed satisfied in
our experiments [50]. At small fields, due to the low effective
mass of the electrons from the Fermi pockets, and conse-
quently their high cyclotron frequency, the linear contribution

dominates over the usual quadratic MR from the rest of the
FS [47]. Using the values of carrier density and their effective
masses estimated from band structure calculations [51], as
well as impurity concentrations (see Supplemental Material
[49]) from sample preparation conditions, Eq. (1) yields an
MR(B) that is in agreement with the experimentally observed
magnetotransport data in TmB4 [Fig. 4(d)]. The compliance
of MR (B, θ = 0) to Kohler scaling provides further support
to the assumption that magnetotransport at small longitudinal
fields is dominated by charge carriers from identical Fermi
pockets.

The mechanism identified above explains another intrigu-
ing feature of TmB4—the absence of Shubnikov–de Haas
(SdH) oscillations in the observed MR data. Since the extreme
quantum limit is already reached at very small fields for
the pocket under consideration, there are no Landau level
crossings of the FS with increasing field, and consequently
no SdH oscillations. In principle, the SdH oscillations should
be observed for B along the ab plane, but we could not
reach the required B, due to strong magnetic fluctuations and
experimental limitations.

Finally, the absence of LMR for transverse magnetic fields
can also be understood from the anisotropic FS topology.
Being a layered material, the small pockets in the kx − ky

plane of TmB4 are believed to originate from the overlap of
bands close to the FS due to the interlayer coupling. Conse-
quently, there are no such pockets at corresponding points on
the surface of the BZ in the XY plane. Since magnetotransport
of a solid is governed by the external cross section of the FS
along the field direction [16], only the quadratic contribution
of the total conductivity persists for B applied along the
principal plane. This picture, based on the topology of the FS
of TmB4, qualitatively explains the experimental observation
of tuning MR from quadratic to linear as the field direction is
rotated.

It should be noted that the above discussion is a plausible
rather than a rigorous elucidation for the origin of LMR
in TmB4. The present explanation depends crucially on the
existence of a linear band crossing very close to the FS in the
kx − ky plane. Unfortunately, DFT is unable to capture the
effects of strong correlations with high accuracy; therefore,
one must regard the interpretation as tentative and a much
rigorous analytic calculation is indeed required for better
insight into the problem. However, it is interesting that the
present approach based on anisotropic FS topology within
the quantum linear magnetoresistance framework is consistent
with the experimental observations. It thus provides a useful
platform for further studies of this compelling phenomenon.

IV. SUMMARY

In summary, we have discussed the tuning of MR from
linear to quadratic in single crystalline metal, TmB4, by
rotating B relative to the crystal c axis. We give a plausible
explanation of the LMR in this metallic system based on
its FS topology within the quantum linear magnetoresistance
picture, which predominantly holds true for semimetals and
topological insulators. We argued that the linear dispersion
near EF and the subsequent Fermi pocket in the FS of TmB4,
arising from its layered structure, give rise to a LMR in an
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otherwise normal metal and its complex FS topology governs
the tuning of in-plane MR from quadratic to linear.
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