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Abstract
We extend the standard result for the eigenspectrum of the Toeplitz matrix
Ci j = e−κ|i− j| with 0 ! i, j ! N andκ ∈ C to a combination of a Toeplitz matrix
and a Hankel matrix. We apply this result to find the plasma modes of a lay-
ered assembly of a two-dimensional electron gas. We find a sum rule relating
the geometric mean of the frequencies of the plasma modes to the determi-
nant of this Toeplitz matrix, for which an analytical expression is obtained. We
apply the same technique to the generalized case when the layers are not evenly
spaced, where the corresponding matrix is not a Toeplitz–Hankel combination.
Despite this fact, it is possible to find properties of the eigenspectrum, and the
eigenmodes are localized to a few layers instead of extending across the system.
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1. Introduction

In the course of our study of layered electronic systems initiated in reference [1], we came
across an interesting Toeplitz matrix

Ci j = e−κ|i− j|, 0 ! i, j ! N. (1)

Eigenfunctions and eigenvalues of Toeplitz matrices are usually found by the Wiener–Hopf
technique [2, 3]. The special case of equation (1) is called a Kac–Murdock–Szegö matrix [4],
which can be solved [5–8] by noting that its inverse is a simple tridiagonal matrix, whose
eigenfunctions and eigenvalues can easily be found. The method of finding the eigenfunctions
and eigenvalues of the matrix Ci j by constructing its inverse can be generalized to a matrix that
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is the combination of a Hankel matrix and a Toeplitz matrix:

Mi j = ae−κ|i− j| + beκ|i− j| + c
[
e−κ(i+ j) + e−κ(2 N−i− j)] (2)

with arbitrary a, b, c ∈ C with a ̸= b. It can also be generalized to the case when the matrix no
longer has the Toeplitz form, and is

D =

⎛

⎜⎜⎜⎜⎜⎝

1 e−κ01 e−(κ01+κ12) e−(κ01+κ12+κ23) . . .
e−κ01 1 e−κ12 e−(κ12+κ23) . . .

e−(κ01+κ12) e−κ12 1 e−κ23 . . .
e−(κ01+κ12+κ23) e−(κ12+κ23) e−κ23 1 . . .

...
...

. . .

⎞

⎟⎟⎟⎟⎟⎠
(3)

which, as we shall discuss in this paper, is relevant for disordered systems. (Here κi,i+1 for
i = 0, 1, . . . , N − 1 are complex random variables.) These generalizations are the subject of
this paper.

The two generalizations given above are relevant for solving the plasma modes of a layered
assembly of two-dimensional electron gas, when the layers are equally spaced and randomly
spaced respectively. For the ordered case, the plasma mode frequencies have been found numer-
ically by a method different from ours [9–11], and have in fact been studied experimentally
using Raman scattering [12]. Applying our method to this problem yields a simple expres-
sion for the eigenfunctions associated with these plasma modes, as well as a sum rule relating
the frequencies of the (N + 1) branches of the plasma frequency as functions of the parallel
component of the photon wave vector. The density of states of eigenvalues is also of interest
experimentally [14] and evaluated analytically here.

In the rest of this paper, we first summarize the calculation of the inverse of C and its eigen-
spectrum. We then generalize the method to calculate the eigenspectrum of the matrix M in
equation (2) and the matrix D in equation (3). We apply the results to the layered electron gas.

2. Properties of Cij

2.1. Eigenvalues and eigenvectors

In this subsection, we review previous results [5–8] for the spectra of Toeplitz matrices. It is
easy to verify that the tridiagonal matrix A with

Aii = coth κ, Ai,i+1 = Ai,i−1 = − 1
2 sinh κ

(4)

for N > i > 0,

A00 = ANN =
eκ

2 sinh κ
, A01 = AN−1,N = − 1

2 sinh κ
, (5)

then A = C−1.
It is easier to diagonalize C−1 than to diagonalize C. For 0 ! j ! N we denote the basis

column vector ê j (with 1 at the jth row and 0 elsewhere) as | j⟩, and write an operator Ĉ such
that Ĉ| j⟩ =

∑N
l=0 Cl j|l⟩. To find the eigenvectors of Ĉ and Ĉ−1, we try states of the form

|Ψ(q)⟩ =
N∑

j=0

cos(q j − Φ(q))| j⟩ (6)
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and seek to satisfy the condition

Ĉ−1|Ψ(q)⟩ = Λ−1|Ψ(q)⟩ (7)

which implies Ĉ|Ψ(q)⟩ = Λ|Ψ(q)⟩. Here q and Φ(q) as well as the eigenvalue Λ are to be
determined. The interior terms 1 ! j ! N − 1 are satisfied by this wavefunction provided

Λ−1 = coth κ− cos q
sinh κ

. (8)

The amplitude at j = 0 requires the condition

(
Λ−1 − eκ

2 sinh κ

)
cos Φ = − 1

2 sinh κ
cos(q − Φ). (9)

Simplifying further, we find the phase shift determined by

Φ(q) = arccot
{

sin q
cos q − e−κ

}
. (10)

The phase shiftΦ(q) varies continuously with q in the interval 0 ! q ! π, decreasing monoton-
ically fromπ/2 to−π/2. It is thus a convenient parameterization for finding all the eigenvalues.
The amplitude at j = N is satisfied if

(
Λ−1 − eκ

2 sinh κ

)
cos(qN − Φ(q)) = − 1

2 sinh κ
cos(q(N − 1) − Φ(q)).

(11)

Simplifying further,

sin(qN − 2Φ(q)) = 0. (12)

Alternatively, we can observe that the eigenfunctions must be odd or even functions of the
index j measured from the midpoint of j = N/2 (this is true even if N is odd), so that either
sin(qN/2 − Φ(q)) or cos(qN/2 − Φ(q)) is zero for each eigenfunction. The product of the two
expressions, and therefore sin(qN − 2Φ(q)), must be zero for every eigenfunction.

It is straightforward to verify that the N values ν = 0, 1, . . . , N yield the N + 1 distinct
eigenvalues

Λ(qν ,κ) =
sinh κ

cosh κ− cos qν
(13)

with

qνN = νπ + 2Φ(qν). (14)

We will usually denote Λ(qν ,κ) as Λ(qν ). At finite N the values q = 0 and q = π are excluded
since for these the wavefunction |Ψ(q)⟩ vanishes identically, formally these correspond to
ν = −1 and ν = N + 1 respectively. Also we note that in the limit κ→ +∞, the phase shift
Φ(q) = π/2 − q and hence qν = ν+1

N+2π.
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2.2. Density of states

For large N it is useful to employ the density of states of the exact eigenvalues, these can be
found straightforwardly. We note the identity

dΦ(q)
dq

= −1
2

(1 + Λ(q)), (15)

so that we can write the difference in successive solutions from equation (14) in the form

π∆ν = N∆qν − 2∆Φ(qν) = ∆qν(N + 1 + Λ(qν)). (16)

So that any function of the eigenvalues that is summed over all eigenvalues can be converted
to an integral in the large N limit:

N∑

ν=0

f (Λν) →
∫ qN

q0

dq
∆ν

∆q
f (Λ(q,κ)) =

∫ qN

q0

dq
π

f (Λ(q,κ)) {N + 1 + Λ(q)} .

(17)

From equation (14),

dq
dΛ

= − sinh κ

Λ2
[
1 −

(
cosh κ− sinh κ

Λ

)2
]1/2 (18)

and hence we can convert a sum over solutions to an integral over eigenvalues with a density
of states

1
N

∑

ν

f (Λν) → 1
πN

∫ Λ>

Λ<

dΛ
Λ2

{N + 1 + Λ} sinh κ
[
1 −

(
cosh κ− sinh κ

Λ

)2
]1/2 f (Λ) + O

(
1

N2

)
,

(19)

where

Λ< =
sinh κ

cosh κ + 1
, Λ> =

sinh κ

cosh κ− 1
. (20)

Here we assume that f(Λ) is a function that is well-defined in the large-N limit. Thus the
integral in equation (19) gives the leading term as well as the first correction term at large N
with further corrections relegated to O( 1

N2 ). We checked that using this density of states to
compute the sum

∑
ν logΛ(qν ,κ), yields the log-determinant of C correct to the terms quoted

in equation (27).

2.3. Szegö’s theorem for the determinant of Cij

The determinant of the matrix C is well known, and is given here because it is relevant to the
experiments discussed later in this paper. It is elementary to calculate the determinant exactly
by using Gauss’s method of triangulation, leading to

det(C) = (1 − e−2κ)N. (21)
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An alternative approach exploits the tridiagonal nature of C−1. If one defines A j to be the
j × j submatrix of (2 sinhκ)C−1 that ends at the bottom right corner of C−1, it is easy
to verify that det(Aj+1) = V j det(Aj) − det(Aj−1) for j = 1, 2 . . . , N with V j = eκ − δ j,Ne−κ.
The boundary condition is det(A0) = 1 and det(A1) = eκ. The solution to the recurrence
relation is det(Aj) = e jκ for 0 ! j ! N, and so det(AN+1) = e(N+1)κ(1 − e−2κ). Therefore
det(C) = (2 sinh κ)N+1/[e(N+1)κ(1 − e−2κ)] = (1 − e−2κ)N .

We can also calculate the determinant from the strong theorem of Szegö [15], assuming for
this step a real and positive κ. This theorem is guaranteed to give the two leading terms in the
limit of large N. Specifically the theorem says that when the (N + 1) ×(N + 1) Toeplitz matrix
C is generated by a density ϕ(eiθ) through a Fourier series, i.e.

Ci j =

∫ π

−π

dθ
2π

e−iθ(i− j)ϕ(eiθ) (22)

and further if

log ϕ(eiθ) =
∞∑

l=−∞
eilθνl (23)

then the determinant for large N is given by

log det(C) =

{
(N + 1)ν0 +

∞∑

l=1

l|νl|2 + o(N)

}
. (24)

In the present case of equation (1) it is readily seen that

ϕ(eiθ) =
sinh κ

cosh κ− cos(θ)
, (25)

and

νl = δl,o (log 2 sinh κ− κ) + (1 − δl,o)
e−κ|l|

|l| . (26)

Substituting into equation (24) and carrying out the summation over l we find

log det(C) = (N + 1)
[
log (1 − e−2κ)

]
−
[
log(1 − e−2κ)

]
+ o(N)

= N
[
log(1 − e−2κ)

]
+ o(N). (27)

Comparing with equation (21) we see that the above expression is exact if we drop the o(N )
correction terms altogether. The rather unexpected vanishing of the o(N ) correction term, as
explained to us by Prof. Ehrhardt, is the consequence of the following general result [16]. With
z = eiθ, the density ϕ(z) in equation (22) clearly has an infinite Laurent series expansion in z.
However in special cases such as the one considered here, the inverse of the density i.e. ϕ−1(z)
the Laurent series is truncated to a finite number of terms. In such cases the coefficients of terms
zk vanish, both for k > m and for k < −m. Under these conditions, det(Ck) the determinant in
k dimensions (i.e. with N + 1 = k) satisfies the following condition: for k " m we have a
purely exponential growth det(Ck+1)/det(Ck) = G, where G is independent of k. Therefore
det(CM) = GM−m det(Cm). For our matrix equation (25), ϕ(z) = coth κ− 1

2 cschκ(z + z−1),
and hence m = 1, and therefore det(C1), det(C2), det(C3) . . . form a geometrical series. We
note that, while Szegö’s theorem is limited to real and positive κ, our results apply to general
complex κ.
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3. Generalization to combined Toeplitz Hankel matrices

Toeplitz matrices are closely related to Hankel matrices: the elements Hi j of a Hankel matrix
H only depend on i + j. It is clear that any Hankel matrix is related to some Toeplitz matrix
through reflection about the midpoint: i → N − i or j → N − j. In particular, the matrix

Hi j = e−κ|i+ j−N|, 0 ! i, j ! N (28)

is a reflection of the Toeplitz matrix Ci j which we have analyzed. Since Ĥ = R̂Ĉ, where R̂ is the
reflection operator, any eigenvector of Ĉ satisfies Ĥ|Ψ⟩ = R̂Ĉ|Ψ⟩ = ΛR̂|Ψ⟩. Since, as we have
remarked earlier, the eigenvectors of Ĉ are even or odd under reflection about the midpoint,
Ĥ|Ψ⟩ = (−1)PΛ|Ψ⟩, where P is the parity of the eigenvector.

A related Hankel matrix, H′
i j = exp[−κ(i + j)], for which there is no cusp on the diagonal,

is even simpler to solve. Define the vector |Θ⟩ by ⟨ j|Θ⟩ = exp[−κ j]. Then Ĥ′ = |Θ⟩⟨Θ|. A
vector |Ψ⟩ is a null vector of Ĥ′ if |Θ⟩⟨Θ|Ψ⟩ = 0, i.e. ⟨Θ|Ψ⟩ = 0. Thus the null space of Ĥ′ is N-
dimensional. The N + 1’th eigenvector of Ĥ′ is the vector that is orthogonal to this null space,
|Θ⟩. The eigenvalue is obtained from the equation Ĥ′|Θ⟩ = |Θ⟩⟨Θ|Θ⟩, i.e. the eigenvalue is
⟨Θ|Θ⟩ =

∑N
j=0 exp[−2κ j].

We now consider the problem of finding the eigenvalues of a combination of Hankel and
Toeplitz matrices:

Mi j = a exp
[
−κ|i − j|

]
+ b exp

[
κ|i − j|

]

+ c {exp [−κ(i + j)] + exp [−κ(2N − i − j)]} (29)

with the restriction a ̸= b. This can be expressed as M = aC + bC̃ + cH, where C and C̃ are
Toeplitz matrices and H is a Hankel matrix. Considering the three parts of M separately, we
have C−1C = I, and

C−1C̃ = −I +

⎛

⎜⎜⎜⎝

1 eκ e2κ . . .
0 0 0 . . .
...

. . .
eNκ e(N−1)κ . . .

⎞

⎟⎟⎟⎠
(30)

while

C−1H =

⎛

⎜⎜⎜⎝

1 e−κ e−2κ . . .
0 0 0 . . .
...

. . .
e−Nκ e−(N−1)κ . . .

⎞

⎟⎟⎟⎠
. (31)

Putting all these together, with

T =
1

a − b
C−1 =

1
2(a − b) sinh κ

⎛

⎜⎝
eκ −1 0 . . .
−1 2 cosh κ −1 . . .

...
. . .

⎞

⎟⎠ (32)
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we obtain

TM = I +

⎛

⎜⎜⎜⎝

α0 α1 . . .
0 0 . . .
...

...
. . .

αN αN−1 . . .

⎞

⎟⎟⎟⎠
(33)

with the elements of additional matrix on the right-hand side equal to

αi =
1

a − b
(b exp[κi] + c exp[−κi]). (34)

From equation (33),

det(M) = [(1 + α0)2 − α2
N]/ det(T)

= (a − b)N−1(1 − e−2κ)N[(a + c)2 − (ce−Nκ + beNκ)2]. (35)

We assume that this is non-zero, so that the matrix M is invertible. The inverse of M is then

M−1 = T +

⎛

⎜⎜⎜⎝

x0 x1 . . .
0 0 . . .
...

...
. . .

xN xN−1 . . .

⎞

⎟⎟⎟⎠
, (36)

where

TM +

⎛

⎜⎜⎜⎝

x0 x1 . . .
0 0 . . .
...

...
. . .

xN xN−1 . . .

⎞

⎟⎟⎟⎠
M = I +

⎛

⎜⎜⎜⎝

α0 α1 . . .
0 0 . . .
...

...
. . .

αN αN−1 . . .

⎞

⎟⎟⎟⎠
+

⎛

⎜⎜⎜⎝

x0 x1 . . .
0 0 . . .
...

...
. . .

xN xN−1 . . .

⎞

⎟⎟⎟⎠
M = I. (37)

Since MT = M, the condition to be satisfied by the xi’s is

⎛

⎜⎜⎜⎝

x0

x1
...

xN

⎞

⎟⎟⎟⎠
= −M−1

⎛

⎜⎜⎜⎝

α0

α1
...
αN

⎞

⎟⎟⎟⎠
= −T

⎛

⎜⎜⎜⎝

α0

α1
...
αN

⎞

⎟⎟⎟⎠
−

⎛

⎜⎜⎜⎜⎝

∑
αixi

0
...∑
αN−ixi

⎞

⎟⎟⎟⎟⎠
. (38)

Substituting equations (32) and (34) in the first term on the right-hand side, all the elements
of T · α except the first and last ones are zero. Therefore, x1, x2, . . . , xN−1 = 0 and we are left
with the coupled equations

(
x0

xN

)
= −

(
T00α0 + T01α1

TN,N−1αN−1 + TNNαN

)
−
(

x0 xN

xN x0

)(
α0

αN

)

= − 1
(a − b)2

(
c

beNκ

)
− 1

a − b

(
x0 xN

xN x0

)(
b + c

beNκ + ce−Nκ

)
(39)

7



J. Phys. A: Math. Theor. 54 (2021) 175201 O Narayan and B S Shastry

which has the solution

x0 =
b2e2κN − ac + bc − c2

(a − b)[(a + c)2 − (ce−Nκ + beNκ)2]

xN =
c2e−Nκ − abeNκ

(a − b)[(a + c)2 − (ce−Nκ + beNκ)2]
. (40)

From equation (36), we see that M−1 is a tridiagonal matrix with an extra element on the top
right and bottom left. As before with the Toeplitz matrix C, it is easy to see that the eigenvectors
can be written with elements ψq( j) = cos[q( j − N/2)] or ψq( j) = sin[q( j − N/2)] with the
eigenvalues related to q through

Λ−1 =
1

a − b

[
coth κ− cos q

sinh κ

]
. (41)

The boundary conditions for the even and odd eigenvectors

(x0 + xN) cos qN/2 =
1

2(a − b) sinh κ
[e−κ cos qN/2 − cos q(N/2 + 1)]

(x0 − xN) sin qN/2 =
1

2(a − b) sinh κ
[e−κ sin qN/2 − sin q(N/2 + 1)]

(42)

respectively determine the allowed values of q.
When c = 0, the eigenvalues and eigenvectors obtained in this section are given in reference

[7]. The N →∞ limit discussed in that paper assumes that a − b = 1, in which case there
are two eigenvalues that tend to ±∞, leading to the divergence in det(M). As seen in the
next section, the physically appropriate N →∞ limit has b/a ∼ exp[−2Nκ] and c/a being
independent of N. With this choice, for N →∞, xN = 0 and the boundary conditions for even
and odd eigenvectors reduce to

− c
a + c

cos qN/2 =
1

eκ − e−κ
[e−κ cos qN/2 − cos q(N/2 + 1)] = 0

− c
a + c

sin qN/2 =
1

eκ − e−κ
[e−κ sin qN/2 − sin q(N/2 + 1)] = 0

(43)

respectively.
Unlike the case for a single Toeplitz matrix, discussed in section 2, all the eigenvectors of

the Toeplitz–Hankel matrix need not be oscillatory. We can seek eigenvectors of the form

|Ψ±(z)⟩ =
∑

j

(
z j−N/2 ± zN/2− j

)
| j⟩, (44)

where the ± characterizes eigenvectors that are even or odd about the midpoint of the system.
Then cos q is replaced by (z + 1/z)/2 in equation (41), and since the eigenvalues must be real,
z either has unit magnitude or is real. The second case corresponds to solutions that have com-
ponents that grow or decay exponentially as j is varied. We do not have a general expression

8
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for the number of such solutions in terms of a, b, c,κ and N. However, if the N →∞ limit is
taken as discussed above, equation (43) reduces to

c
a + c

eκ +
a

a + c
e−κ = lim

N→∞

zN/2+1 ± z−N/2−1

zN/2 ± z−N/2 . (45)

If z is real, choosing |z| > 1 without loss of generality, the right-hand side reduces to z. Thus
for N →∞, if (ceκ + ae−κ)/(a + c) > 1, there is exactly one odd and one even exponentially
varying eigenvector, with the same z and therefore the same Λ−1 for both. Equivalently, there is
exactly one eigenvector that decays exponentially as one moves away from j = 0 boundary, and
similarly for the j = N boundary. All other solutions are of the form ψq( j) = cos[q( j − N/2)]
or ψq( j) = sin[q( j − N/2)]. If (ceκ + ae−κ)/(a + c) < 1, all the eigenmodes are oscillatory
for N →∞.

4. 2D plasmon spectrum

As mentioned in the introduction, the Toeplitz matrix Ci j arises in the context of plasmons in
multilayer systems, a system that has been studied extensively earlier. The original systems
studied in the work of Olego, Pinczuk, Gossard and Wiegmann [12, 13] consists of alternating
layers of insulating GaAs and conducting (AlxGa1−x)As. Here the conducting planes are cou-
pled by the Coulomb interaction only, i.e. one ignores the direct hopping of electrons between
layers [1]. Recent advances in materials allows a vast range of composite materials, gener-
alizing this initial system [17–20]. To understand plasmons in these systems, one needs to
understand the dielectric function of layered systems [9–11], where the plasmon is a pole of
a charge response function, probed by either a charged particle surface scattering, or as in the
case of [9, 12, 13] by photons using Raman scattering. Within the widely used random phase
approximation for these systems, the plasmon is found as the eigen-solution of a homogeneous
Fredholm equation [9] satisfied by δρ(l), the induced charge density on layer l due to a small
excess external charge:

δρ(l) = D0(k∥,ω)V(k∥)
N∑

m=0

e−k∥d|l−m|δρ(m), (46)

where k∥ is the magnitude of the component of the photon parallel to the 2d layer, d the sepa-

ration between the N + 1 layers, V(k∥) = 2πe2

k∥εM
and εM is the material dielectric constant. Here

D0(k∥,ω) is the ‘bubble’ polarization in 2d; it is approximated well in terms of the 2d density
n and effective mass m∗ by

D0 ∼
nk2

∥

m∗ω2 .

When the dielectric constants in the different layers are different, one must also add image
charges to equation (46) as explained in [9], who provide a complete numerical solution for all
cases.

When image charges can be neglected, equation (46) corresponds to the
Kac–Murdock–Szegö matrix reviewed in section 2. Comparing equation (46) with equation (1)
we see that the plasmon frequencies for the N + 1 layer problem are obtained from Λν in

9
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Figure 1. The six plasmon branches for a six layer system in blue solid curves, the geo-
metric mean frequency from equation (49) in red dashed curve, and the 3d bulk and
2d bulk plasmon in magenta dotted curves. The parameters used are similar to those of
sample 1 in [12], we used d = 900A0, n = 7.3 ×1011 cm−2, m∗ = 0.07me, ε = 13.1.

equation (13)

ων(k∥) =

√
2πne2

εMm∗

√
k∥Λ(qν ,κ) (47)

by identifying

κ = k∥d. (48)

The allowed qν’s are given by equation (14), and are not evenly spaced. The exact determina-
tion of the Toeplitz determinant implies that the geometric mean of the plasmon frequencies is

⟨ω(k∥)⟩gm ≡
[

N∏

ν=0

ων(k∥)

] 1
N+1

=

√
2πne2

εMm∗

√
k∥
[
(1 − e−2k∥d)

] N
2(N+1) . (49)

Equivalently, this is a sum rule for the logarithms of the plasmon frequencies, log(ων(k∥)). It
is worth mentioning that the various plasma branches can be measured experimentally for a
fixed k∥, and hence this sum rule has the potential for experimental verification. In figure 1, we
illustrate the plasmon solutions for the case of 6 layers using parameters close to those in [12],
and also display the geometric mean.

It is useful to note that in general layered systems, the background dielectric function varies
between layers, often described as a ϵ0–ϵ–ϵ0 configuration of the layers [9]. The pure Toeplitz
spectrum is obtained when ϵ0 = ϵ. In fact the experiment in [13] corresponds to such a case,
with a vanishing dielectric contrast.

In the generic ϵ0–ϵ–ϵ0 configuration of the layers [9], the problem corresponds to the
more complicated Toeplitz–Hankel combination discussed in the previous section, with (in
the notation of reference [9], with N → N + 1)

c/a =
ϵ− ϵ0

ϵ + ϵ0

b/a =

(
ϵ − ϵ0

ϵ + ϵ0

)2

exp[−2κN]. (50)
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(Here we have assumed that the width L of the region of the system with dielectric constant
ϵ is equal to Nd, where d is the separation between the layers. The case when L > Nd is a
straightforward extension of the analysis given here, but with more complicated expressions.)
Equation (49) is then modified to

⟨ω(k∥)⟩gm =

√
2πne2

εMm∗

√
k∥
[
(1 − e−2k∥d)

] N
2(N+1)

×
(

(a + c)2 − (ce−Nκ + beNκ)2

(a − b)2

) 1
2(N+1)

. (51)

In the N →∞ limit, (b/a)exp[Nκ] → 0, and this reduces to (1 + c/a)1/(N+1). The nature of
the eigenvectors, and the possibility of zero or one eigenmodes that decay exponentially away
from the boundary of the system for N →∞, was discussed at the end of section 3.

5. Disordered case

So far, we have assumed that the two-dimensional electron gas layers are equally spaced. With
this assumption, we have found that all the eigenfunctions have an oscillatory behavior as one
moves from one layer to the next, and extend across the entire system. However, it is not difficult
to relax this assumption and construct a system where the spacings between the layers are
irregular. In this case, the coupling between the i’th layer and j’th layer is still an exponentially
decaying function of the distance between the i’th and j’th layers, but this distance is the sum
of the random distances between the successive layers in the interval from i to j. Modifying
equation (48) appropriately, we have to find the spectrum of the matrix (limiting ourselves to
the ϵ–ϵ–ϵ case, where the background dielectric medium is the same in the layered region as
everywhere else, and there are therefore no image charges)

D =

⎛

⎜⎜⎜⎜⎜⎝

1 e−κ01 e−(κ01+κ12) e−(κ01+κ12+κ23) . . .
e−κ01 1 e−κ12 e−(κ12+κ23) . . .

e−(κ01+κ12) e−κ12 1 e−κ23 . . .
e−(κ01+κ12+κ23) e−(κ12+κ23) e−κ23 1 . . .

...
...

. . .

⎞

⎟⎟⎟⎟⎟⎠
. (52)

We define the tridiagonal matrix T with the elements

Ti,i−1 = − 1
2 sinh κi−1,i

Ti,i =
1
2

(coth κi−1,i + coth κi,i+1)

Ti,i+1 = − 1
2 sinh κi,i+1

. (53)

for 0 < i < N and

T00 =
eκ01

2 sinh κ01

T01 = − 1
2 sinh κ01

11
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TNN =
eκN−1,N

2 sinh κN−1,N

TN,N−1 = − 1
2 sinh κN−1,N

(54)

for the first and last rows. Then it is possible to verify that TD = I, i.e. T is the inverse of D.
The crucial observation here is that, when the i’th row of any tridiagonal matrix T acts on the
j’th column of D, all the columns for j > i yield expressions that are multiples of each other,
and all the columns for j < i yield expressions that are multiples of each other. Therefore, it
is sufficient to choose the elements of T in a manner such that (TD)i−1,i = (TD)i+1,i = 0 and
(TD)ii = 1, which is possible since there are three elements in each row of T . (This argument
is slightly modified for the first and last rows.)

The eigenfunctions of T are the same as the eigenfunctions of D, and the eigenvalues
of the two matrices are the reciprocals of each other. The matrix T is the Hamiltonian of a
tight-binding model for a chain with disordered on-site potentials and nearest neighbor hop-
pings. The hopping elements are all random and uncorrelated with each other, but the on-site
potentials can be obtained from the adjacent hopping elements.

One dimensional disordered chains generically have a spectrum that consists entirely of
localized modes. Because the correlation in the randomness is short-range, one would not
expect this result to be affected. To confirm this, we use the standard procedure of converting
the system with the Hamiltonian T into an open system, with transfer matrix

(
ψi+1

ψi

)
= Ti

(
ψi

ψi−1

)
(55)

with

Ti =

(
sinh(κi−1,i + κi,i+1)/ sinh κi−1,i − 2E sinh κi,i+1 − sinh κi,i+1/ sinh κi−1,i

1 0

)
(56)

at an energy E. We can rewrite the product of transfer matrices as

. . . Ti+1TiTi−1 . . . = . . . (O−1
i+2,i+1Ti+1Oi+1,i)(O−1

i+1,iTiOi,i−1)

(O−1
i,i−1Ti−1Oi−1,i−2) . . . (57)

where the O j+1, j’s are multiples of the identity matrix, with diagonal elements (sinh κ j, j+1)1/2.
Since

O−1
i+1,iTiOi,i−1 =

(
sinh(κi−1,i + κi,i+1)/αi − 2Eαi µi

−1/µi 0

)
, (58)

where αi = (sinh κi,i+1 sinh κi−1,i)1/2 and µi = −(sinh κi,i+1/ sinh κi−1,i)1/2, this is a product
of matrices, each of which belongs to the group SL(2, R). The product of the two eigenvalues
of each such matrix is unity, and the sum is equal to the top left element of the matrix. Since
the κ j, j+1’s are chosen randomly, in the matrix product in equation (57) we will generically
find successive matrices of the form in equation (58) with unequal top left elements. This
means that they have no common eigenvalues or eigenvectors. Invoking the results proved
by Furstenberg and Ishii [21, 22], the matrix product has a diverging norm as the number of
matrices is increased. Thus we conclude that all states of the matrix D are localized. This is
somewhat unexpected since D has long distance coupling, where it is not usually possible to
make such a strong statement.

12
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Figure 2. The histogram of the participation ratio
∑

j |ψ j|4/(
∑

j |ψ j|2)2 for
N + 1 = 50, 100, 200, 400 and 800 is shown. For each N, the number of random
systems that were randomly generated was sufficient to yield 105 eigenstates. The
counts in each bin are shown; the bins each have width 1. The histograms approach a
limiting form as N is increased, as one expects from localized states. (Note that the
participation ratio, not the inverse participation ratio, is plotted here.)

For a 1000 ×1000 system, with κ j, j+1 as a uniform random variable between 0.5 and 1.5,
we have verified numerically that the inverse participation ratio

∑
j |ψ j|4/(

∑
j |ψ j|2)2 is of

the order of 0.1, which is much greater than ∼ 1/N. Visually, many of the eigenfunctions
are seen to be significantly different from zero over approximately 10 to 20 layers, and the
distribution of participation ratios is seen in figure 2 to approach a limiting form as N increases.
(The numerical results are intended to estimate how localized the eigenfunctions are, rather
than as a proof of localization which we have given analytically.) The localized states mean
that each plasmon mode is restricted to a small range of layers instead of extending over the
entire system. Thus the two-dimensional plasmon spectrum of multilayer systems with random
spacing can potentially be used to test one of the canonical doctrines of Anderson localization:
that in the presence of disorder, all states are localized in one dimension.

6. Conclusion

In this paper, we have extended standard techniques for Toeplitz matrices to a combination of
Toeplitz and Hankel matrices, and obtained the eigenmodes of two-dimensional electron gas
multilayers. Apart from reproducing earlier results [9], we have obtained a sum rule for the
eigenvalues, and a simple form for the eigenfunctions. We have further extended this approach
to the case when the spacings between layers are random, where the matrix in question is no
longer Toeplitz–Hankel, and shown that, in such a system, every eigenmode will be localized
to a few layers.
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