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a b s t r a c t

Superconductivity in the t-J model is studied by extending the
recently introduced extremely correlated fermi liquid theory.
Exact equations for the Greens functions are obtained by gener-
alizing Gor’kov’s equations to include extremely strong local re-
pulsion between electrons of opposite spin. These equations are
expanded in a parameter λ representing the fraction of double
occupancy, and the lowest order equations are further simplified
near Tc , resulting in an approximate integral equation for the su-
perconducting gap. The condition for Tc is studied using a model
spectral function embodying a reduced quasiparticle weight Z
near half-filling, yielding an approximate analytical formula for
Tc . This formula is evaluated using parameters representative
of single layer High-Tc systems. In a narrow range of electron
densities that is necessarily separated from the Mott–Hubbard
insulator at half filling, we find a typical Tc∼102 K.

© 2021 The Author(s). Published by Elsevier Inc. This is an open
access article under the CC BY-NC-ND license
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1. Introduction

The single band t-J model Eq. (1), [1,2], and the closely related strong coupling Hubbard model
ave attracted much attention in recent years. In large part the interest is due to the potential
elevance of these models in describing the phenomenon of High Tc superconductivity, discovered
n cuprate materials in 1987 [3] and later, in other materials. These models lead to a single sheet
f the fermi surface, and are specified by fixing the band hopping t and the exchange energy J for
he t-J model, or equivalently 4t2/U for the strong coupling (U ≫ t) Hubbard model, where the
nteraction is given by VHub. = U

∑
i ni↓ni↑. The exotic possibility of superconductivity arising from

uch inherently repulsive systems, is surprising from a theoretical perspective, and also challenging.
ignificant theoretical work using a variety of tools on the strong coupling Hubbard model and
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he extremely strong coupling t-J models [4–16] has given useful insights into the role of strong
orrelations in cuprate superconductivity. However given the non-triviality of the theoretical task
f analytically solving these models, progress in that direction has been slow.
In this work we extend the extremely correlated fermi liquid theory (ECFL) [17,18] recently

ormulated to overcome the analytical difficulties of the strong coupling models, to include su-
erconducting type broken symmetry. Upon cooling the normal metallic state, a superconducting
nstability is expected to arise, and our main goal in this study is to determine the conditions for
he occurrence of this state, and to provide its detailed description.

In order to motivate these calculations of the superconducting state, it is useful to summarize
he main features of ECFL theory as applied to the normal (non-superconducting) state so far. We
rovide a broad overview next, further details can be found in Refs. [17,18].
The methodology developed in this theory starts with exact functional differential equations

or the various Greens function, obtained using the Tomonaga–Schwinger approach of external
otentials. These equations incorporate the modification of the anti-commutation relations between
he fermion operators due to Gutzwiller projection (see Eq. (5)). While providing a formally exact
tarting point for us, these equations are not yet amenable to systematic approximations. The core
ifficulty is that an additional set of terms arise from this modified non-canonical anticommutator
tructure Eq. (5). These non-canonical terms multiply the most singular term in the equation,
amely the Dirac delta function (originating in the time derivative of the time ordering Θ functions
n the Greens functions). For an explicit example, note the γ term multiplying the delta function in
q. (34).
In order to make progress, we therefore need to go beyond the established framework of

omonaga–Schwinger. The first development in ECFL is that the above inconvenient feature of
non-canonical coefficient of the delta function, is eliminated by factoring the Greens function

nto two parts, the auxiliary Greens function g and the caparison function µ̃ (see Eq. (46) and
the discussion in the text following it). The auxiliary Greens function g now satisfies a canonical
equation (as in Eq. (51) by ignoring the term involving f ), while the caparison function µ̃ accounts
for the non-canonical nature of the original equation (as in Eq. (52)). This factorization process and
the resulting equations are exact.

As the next development, we introduce a parameter λ in the range 0 ≤ λ ≤ 1 into these exact
quations. Setting λ=0 gives the uncorrelated system, while λ=1 gives the exact equations of the
trongly correlated system. The λ parameter has a formal similarity to the expansion parameter 1

2S
sed in the Dyson–Maleev (or Holstein–Primakoff) formulations [19,20] of the spin-wave theory
f magnets. The magnetic models involve spin operators satisfying the SU(2) (angular momentum)
ie algebra. They can be approached using different strategies. On the one hand we may think of
pins as canonical bosons with a constraint on their occupation number nb

i at any site i, namely
b
i = 0, 1, . . . , 2S. This constraint can be implemented using a repulsive interaction between bosons
nb
i (n

b
i −1) . . . (nb

i −2S), and finally letting U→∞. This bosonic Hubbard model is difficult to solve,
ince the large energy scale U makes the use of perturbation theory impractical. On the other hand
e can employ the Dyson–Maleev (or Holstein–Primakoff) non-linear mappings to bosons, and
xpand the relevant Heisenberg equations of motion in a series in 1

2S . This gives an efficient way of
solving the models to considerable precision at fairly low orders in 1

2S . This latter method is parallel
o the λ expansion employed here, since the modified anticommutators Eq. (5) also yield a (non-
anonical) Lie algebra. This analogy is discussed further in Ref. [18] (Sec. 6). In a different setting,
he parameter λ can also be related to the fraction of doubly occupied states [21] (see Appendix.
).
The parameter λ serves two important and related objectives. Firstly it provides a continuous

ath between the uncorrelated and the fully correlated system equations. Since 0 ≤ λ ≤ 1, dialing
t up from 0 does not involve invoking a large energy scale, unlike for example, dialing up U in the
Hubbard model. This (isothermal) continuity enables the ECFL method to retain the ideal (i.e. non-
interacting) fermi surface volume at low T. This ideal volume is expected for weakly interacting
fermi systems from the Luttinger–Ward perturbative arguments [22], and importantly, survives
the transition to extremely strongly correlated regions, as argued recently using non-perturbative
arguments [23]. Lastly, the ideal volume is also seen in photoemission studies of overdoped and
2
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ptimally doped cuprate superconductors in the normal state [24], which provide a useful starting
oint for our study.
The second aspect of λ is that it can be used to organize a systematic power series expansion,

nalogous in spirit to the skeleton graph expansion of Dyson [25] in perturbative theories. This
expansion can be carried out order by order, leading to a set of successive equations that are

menable to numerical study. A question might arise, whether a low order calculation in this
xpansion can capture the strongly correlated limit. For answering this, it is useful to examine the
esults for the d = ∞ Hubbard model at U = ∞, where numerically exact results are available
rom the dynamical mean field theory [26]. The λ expansion to O(λ2) is compared with the exact
umerical result from the dynamical mean field theory [27], in Fig. (6) of Ref. [28]. This shows that
he calculated quasiparticle weight Z vanishes upon approaching a density of 1-particle per site,
.e. half filling. This vanishing is a hallmark of the strong correlation limit, where the Mott–Hubbard
nsulating state is realized. In the above d = ∞ study, and also in the case of the 2-dimensional t-
model [29–31], the λ expansion describes an extremely correlated Fermi liquid state, characterized
y a small quasiparticle weight that vanishes near the Mott–Hubbard insulator, accompanied by a
ich set of low energy scales located above the (strongly suppressed) effective fermi temperature.
he O(λ2) equations for the normal state have been applied to calculations of the asymmetric
hotoemission lines [30–32], and most recently the calculation of the almost T-linear resistivity
n single layer cuprates [29].

In this paper we extend the above formalism to the case where superconducting order emerges
t low temperatures. This requires a non-trivial generalization to the superconducting state of the
arious steps of the ECFL theory highlighted above. In a similar fashion to the normal state, we
irst obtain exact equations for the normal and anomalous Greens functions for the t-J model.
hese equations generalize Gor’kov’s equations for BCS type weak coupling superconductivity [33]
y including the effect of extremely strong local repulsion between electrons. These equations are
tudied further using a specific decomposition of the Greens functions into two pieces (see Eq. (46)).
his step is followed by a systematic expansion in a parameter λ. This leads to a set of equations

Eqs. (51), (52), (54), iterating these in λ to all orders constitutes the exact answer. In the present
work, we perform a leading order calculation.

In order to obtain explicit results, Eqs. (51), (52), (54) are further simplified near Tc where the
rder parameter is small, leading to simplified versions of these in Eqs. (55)–(57). These are treated
o O(λ2), and the lowest order condition for Tc is formulated in Eq. (68). In summary Eq. (68)
is the leading order term near Tc , within the λ expansion, and constitutes an important formal
result of the present work. In principle it should be possible to find further systematic equations
to higher order, and also to extend the results for T ≪ Tc following the procedure laid out here. In
this work we are content to study this first set in detail. The transition temperature is given from
Eq. (68), which is expressed in terms of the electronic Greens function, renormalized by strong
correlations. In this renormalization the short ranged Hubbard–Gutzwiller terms are dominant, and
the pairing energy causing the instability, is provided by the much smaller exchange energy J . This
equation exhibits both a tendency towards an insulating state due to a diminished quasiparticle
weight, and a tendency towards superconductivity due to the exchange term J . Their competing
tendencies play out in Eq. (68) and the closely related Eq. (70). These equations determine whether
superconductivity is found at all, and further identifies the model parameters that promote it. When
the superconducting state is found, they also provide an estimate of the range of densities and
temperatures which favor it.

The conditions Eqs. (68) and (70) are evaluated using a simple phenomenological electronic
spectral function, modeling strong correlations near half filling in terms of a density dependent
quasiparticle weight Z and a wide background. This model has the advantage of leading to an
explicit analytical formula for Tc , in terms of the various parameters of the t-J model, thus allowing
for a thorough understanding of the role of different parameters on the result. Evaluating this
expression we find that the model supports a d-wave superconducting phase consistent with
data [34,35], located away from half filling. The Tc is found to be typically ∼102 K, i.e. an order of
magnitude smaller than that of the model Eq. (2) where the sole difference from the t-J model
is that short ranged Hubbard–Gutzwiller type correlations are ignored, in a range of densities
3
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etermined by the band parameters. The temperature–density phase diagram has the form of a
apered tower Fig. 1. A smooth dome structure reported in cuprates, is replaced here by a somewhat
arrow density range and an exaggerated height near the peak. The location of the peak can be
aried by choosing the hopping parameters, but always remains well-separated from the insulating
imit.

The paper is organized as follows. In Section 2 we define the t-J Hamiltonian, express it in
erms of the correlated fermionic operators, and outline the method of external potentials employed
o generate the exact dynamical equations for the electron Greens function G and the Gor’kov
nomalous Greens function F . In Section 3 the equation is expanded in λ and further simplified
ear Tc . In Section 4 the condition for Tc is evaluated using a model spectral function. This section

contains expressions that involve only the electronic spectral function, and might be directly
accessible to readers who are more interested in the concrete results. In Section 5 we conclude
with a discussion of the results.

2. Theoretical preliminaries

The t-J Hamiltonian [1,2] is

H tJ = Ht + HJ (1)

Ht = −

∑
ijσ

tij̃c
†
iσ c̃jσ − µ

∑
i

ni

HJ =
1
2

∑
ij

Jij(S⃗i.S⃗j −
ninj

4
)

here tij are the band hopping matrix elements detailed below, Jij the nearest neighbor exchange
nd µ the chemical potential, with the density operator ni =

∑
σ c̃†

iσ c̃iσ , and spin density operator
Sα
i =

1
2

∑
σσ ′ c̃†

iσ τ α
σσ ′̃ciσ ′ , τ α is a Pauli matrix and the correlated fermi destruction operator c̃i is found

rom the plain (i.e. canonical or unprojected) operators ci, by sandwiching it between two Gutzwiller
projection operators c̃iσ = PGciσ PG, where PG ≡

∏
j(1− nj↑nj↓) [36]. It acts by eliminating all states

ith double occupancy in the state space. The creation operators follow by taking their hermitean
onjugate. The physical meaning of this sandwiching process is that the fermi operators act within
he subspace where projector PG enforces single occupancy at each site. The t-J model may be
obtained by taking the large U limit of the Hubbard model [1]. It has also been argued [2] to be
the low energy effective Hamiltonian for an underlying three-band model, describing the copper
oxygen lattice of the cuprate superconductors, where it is found by eliminating high energy states
of the model.

In the following work we will also find it useful to study the model

Hunc-tJ = −

∑
ij

tijc
†
iσ cjσ − µ

∑
i

ni +
1
2

∑
ij

Jij(S⃗i.S⃗j −
ninj

4
). (2)

e may view it as an uncorrelated t-J model in contrast to the correlated version Eq. (1), here the
ltra strong short ranged Hubbard–Gutzwiller correlations with U ≫ max{|tij|} are turned off,
hile the relatively weak exchange term J ≪ max{|tij|} is retained. All operators that appear in
q. (2), including the density and spin, are defined by the same expression as Eq. (1) but with the
nprojected fermion operators ciσ , c†

iσ ’s. In this model the exchange term, which is usually viewed
s the mechanism for antiferromagnetism, doubles up to play the role of a superconducting pairing
otential. This fruitful observation of Anderson, Baskaran and Zou [5,6] follows from viewing the
nteraction in the crossed or Cooper channel. It is paralleled in our discussion later (see paragraph
elow Eq. (30)), where the exchange term, after a rearrangement amounting to a crossed channel,
eads to a mean Cooper pair expectation in Eq. (31). Its superconducting solution, found by standard
CS-Gor’kov meanfield theory, is presented below (see Eqs. (74), (75)), and serves as a useful
eference point in the study of the strongly correlated t-J model.
4
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It is convenient for our calculations to use the operators invented by Hubbard Refs. [37,38] to
epresent this projection process. Ref. [39] (Sec.8) discusses the origin of difficulties of the early
ork employing the Hubbard operators, in reproducing the Luttinger–Ward Fermi surface volume
t low temperatures. In contrast the present ECFL formalism achieves this goal successfully, using
ontinuity with the Fermi gas and the λ expansion described in [17,39] and below. We denote

c̃†
iσ ↔ Xσ0

i , c̃iσ ↔ X0σ
i , c̃†

iσ c̃iσ ′ ↔ Xσσ ′

i . (3)

hese operators satisfy the following fundamental anti-commutation relations and their adjoints:

{X0σi
i , X

0σj
j } = 0 (4)

{X0σi
i , X

σj0
j } = δij

(
δσiσj − σiσjX

σ̄iσ̄j
i

)
, σ̄ = −σ . (5)

n physical terms, for a given site index i and with {a, b} ∈ {0, ↑, ↓} limited to the three allowed
initial and final states of the projected Hilbert space, the symbol Xab

i represents an operator
representing all allowed matrix elements. To yield the correct fermion antisymmetry, the creation
operator Xσi,0

i anti-commutes with creation or destruction operators at different sites with any spin.
In terms of these operators we can rewrite

Ht = −

∑
ij σ

tijXσ0
i X0σ

j − µ
∑
i σ

Xσσ
i (6)

HJ = = −
1
4

∑
ij σiσj

JijσiσjX
σiσj
i X

σ̄iσ̄j
j . (7)

In the following we employ a convenient repeated internal spin summation convention. We shall
follow the convention that in an equation defining any object, often (but not always) indexed
by external spin indices, all the internal and repeated spin indices are to be summed over. As an
example, we could drop the explicit summation over spins in Eqs. (6) and (7), but not in Eq. (5)
where σi, σj are external spin indices that appear on the left hand side. We also use a repeated
internal site index below.

In order to calculate the Greens functions for this model, we add an imaginary time τ dependent
xternal potential (or source term) A to the definition of thermal averages. The expectation of
n arbitrary observable Q (τ1, . . .), composed e.g. of a product of several (imaginary) time ordered
eisenberg picture operators, is written in the notation

⟨⟨Q (τ1, . . .)⟩⟩ = Tr Pβ Tτ {e−AQ (τ1, . . .)}. (8)

ere Tτ is the time-ordering operator, an external potential term A =
∫ β

0 dτA(τ ), and Pβ =
−βH/Tr

(
e−βHTτ e−A

)
is the Boltzmann weight factor including A. Here A(τ ) is a sum of two terms,

ρ(τ ) involving a density-spin dependent external potential V , and AC (τ ) involving J (J ∗) Cooper
air generating (destroying) external potentials. These are given by

Aρ(τ ) =

∑
i

V
σiσj
i (τ )X

σiσj
i (τ )

AC (τ ) =
1
2

∑
ij

(
J ∗

jσjiσi (τ )X
0σi
i (τ )X

0σj
j (τ ) + Jiσijσj (τ )X

σi0
i (τ )X

σj0
j (τ )

)
, (9)

where the repeated internal spin convention implies summing over σi, σj, and where we require
the antisymmetry Jiσi;jσj = −Jjσj;iσi and likewise for J ∗. The external potentials J ,J ∗ in Eq. (9)
couple to operators that add and remove Cooper pairs of correlated electrons, and are essential
to describe the superconducting phase. At the end of the calculations, the external potentials are
switched off, so that the average in Eq. (8) reduces to the standard thermal average. Tomonaga [40]
in 1946 and Schwinger [41] in 1948 (TS) pioneered the use of such external potentials [25,42]. We
next illustrate this technique for the present problem.
5
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.1. Using external potentials

The advantage of introducing these external potential (or ‘‘sources’’) is that we can take the
functional) derivatives of Greens function with respect to the added external potentials in or-
er to generate higher order Greens functions. If we abbreviate the external term as A =

i Uj(τ )Vj(τ ), where Uj(τ ) is one of the above c-number potential, and Vj(τ ) is the corresponding op-
rator in the imaginary-time Heisenberg picture, and Qi(τ ) an arbitrary observable, straightforward
ifferentiation leads to the TS identity

TrPβTτ {e−AQi(τ ′)Vj(τ )} = ⟨⟨Qi(τ ′)⟩⟩ ⟨⟨Vj(τ )⟩⟩ −
δ

δUi(τ )
⟨⟨Qi(τ ′)⟩⟩ (10)

his important identity can be found by taking the functional derivative of Eq. (8) with respect to
j(τ ) (see e.g. Ref. [21] Eq. (18)), and is now illustrated with various choices of the external potential.
From Eq. (10) we note the frequently used result

⟨⟨σiσjX
σ̄iσ̄j
i (τ )Q (τ ′)⟩⟩ =

(
γσiσj (iτ ) − Dσiσj (iτ )

)
⟨⟨Q (τ ′)⟩⟩ (11)

here

γσiσj (i, τ ) = σiσj⟨⟨X
σ̄iσ̄j
i (τ )⟩⟩

Dσiσj (i, τ ) = σiσj
δ

δV
σ̄iσ̄j
i (τ )

, (12)

The singlet Cooper pair operator is(
X0↑
i X0↓

j − X0↓
i X0↑

j

)
= σX0σ

i X0σ̄
j , (13)

where summation over σ is implied on the right hand side, and its Hermitean conjugate

−

(
X↑0
i X↓0

j − X↓0
i X↑0

j

)
= σ̄Xσ0

i X σ̄0
j . (14)

We define the (singlet) Cooper pair correlation functions at time τ as

Cij(τ ) = ⟨⟨σX0σ
i (τ )X0σ̄

j (τ )⟩⟩ (15)

C∗

ij (τ ) = ⟨⟨σ̄Xσ0
i (τ )X σ̄0

j (τ )⟩⟩, (16)

where σ is summed over. We note that C∗

ij equals the complex conjugate of Cij only after the external
otentials are finally turned off, but not so in the intermediate steps.
The basic equation Eq. (10) for the Cooper pair operators with an arbitrary operator Q is

δ

δJ ∗

iσijσj
(τ )

⟨⟨Q ⟩⟩ = ⟨⟨X
0σj
j (τ )X0σi

i (τ )⟩⟩⟨⟨Q ⟩⟩ − ⟨⟨X
0σj
j (τ )X0σi

i (τ )Q ⟩⟩ (17)

δ

δJiσijσj (τ )
⟨⟨Q ⟩⟩ = ⟨⟨X0σi

i (τ )X
0σj
j (τ )⟩⟩⟨⟨Q ⟩⟩ − ⟨⟨X0σi

i (τ )X
0σj
j (τ )Q ⟩⟩ (18)

rom these relations the Cooper-pair correlations can be found by summing over the spins

⟨⟨σX0σ
i (τ )X0σ̄

j (τ )Q ⟩⟩ =
[
Cij(τ ) − Kij(τ )

]
⟨⟨Q ⟩⟩ (19)

⟨⟨σ̄Xσ0
i (τ )X σ̄0

j (τ )Q ⟩⟩ =
[
C∗

ij (τ ) − K∗

ij(τ )
]
⟨⟨Q ⟩⟩ (20)

where

Kij(τ ) = σ̄
δ

δJ ∗

iσ ;jσ̄ (τ )
(21)

K∗

ij = σ̄
δ

δJiσ ;jσ̄ (τ )
, (22)

where σ is summed over.
6
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c

.2. Greens functions and their dynamical equations

We are interested in the electron Greens function (see e.g. Ref. [21] Eq. (17)) expressed
ompactly by

Giσijσf (τ , τ ′) = −⟨⟨X0σi
i (τ )X

σf 0
j (τ ′)⟩⟩, (23)

where the Dyson time ordering Tτ and the external potential factor e−A are included in the
definition of the brackets Eq. (8). To describe the superconductor, following Gor’kov [33] we define
the anomalous Greens function :

Fiσijσf (τ , τ ′) = σ̄i⟨⟨X
σ̄i0
i (τ )X

σf 0
j (τ ′)⟩⟩ (24)

where σ̄ ≡ −σ , and as in Eq. (23), the Dyson time ordering Tτ and the external potential factor
e−A are included in the definition of the brackets Eq. (8)

We note that the Cooper pair correlation functions Eq. (16), which plays a crucial role in defining
the order parameter of the superconductor, can be expressed in terms of the anomalous Greens
function using

C∗

ij (τ ) = Fiσ jσ (τ , τ ), (25)

where σ is to be summed over, as per the convention used. We will also need the equal time
correlation of creation operators Cij(τ ) Eq. (15). It is straightforward to show that when the external
potentials A are switched off, this object is independent of τ and can be obtained by complex
conjugation of C∗

ij . It is possible to add another anomalous Greens function with two destruction
operators as in Eq. (24), corresponding to Nambu’s generalization of Gor’kov’s work. In the present
context it adds little to the calculation and is avoided by taking the complex conjugate of C∗

ij to
evaluate Cij.

2.2.1. Greens function G
The equations for the Greens functions follow quite easily from the Heisenberg equations,

followed by the use of the identity Eq. (10), and has been discussed extensively by us earlier. There
is one new feature, concerning an alternate treatment of the HJ (exchange) term, necessary for
describing superconductivity described below. In this section we make use of the internal repeated
site index summation convention quite extensively.

Taking the τ derivative of G we obtain

∂τ ⟨⟨X
0σi
i (τ )X

σf 0
f (τ ′)⟩⟩ = δ(τ − τ ′)δif (δσiσf − γσiσf (iτ ))

+⟨⟨[Ht + HJ + A(τ ), X0σi
i (τ )] X

σf 0
f (τ ′)⟩⟩ (26)

We work on the terms on the right hand side. At time τ we note

[Ht + Aρ, X0σi
i ] = µX0σi

i − V
σiσj
i X

0σj
i + tij(δσiσj − σiσjX

σ̄iσ̄j
i )X

0σj
j , (27)

where the repeated internal indices σj and j are summed over. From this basic commutator, using
Eq. (10), Eq. (11) and the definitions Eq. (12) we obtain

⟨⟨[Ht + Aρ(τ ), X
0σi
i (τ )] X

σf 0
f (τ ′)⟩⟩ =

(
µδσiσ − Vσiσ

i

)
⟨⟨X0σ

i (τ )X
σf 0
f (τ ′)⟩⟩

+tij⟨⟨X
0σi
j (τ )X

σf 0
f (τ ′)⟩⟩ − tij(γσiσ (i, τ ) − Dσiσ (i, τ ))⟨⟨X

0σ
j (τ )X

σf 0
f (τ ′)⟩⟩, (28)

where the repeated spin index σ , and the site index j are summed over, while σi, σf and site indices
i, f are held fixed.

For the exchange term

[HJ , X
0σi
i ] =

1
2
Jijσiσ X0σ

i X σ̄iσ̄
j (29)

= −
1
JijσiX

σ̄i0
(
X0↑X0↓

− X0↓X0↑
)

, (30)

2 j i j i j

7
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here the repeated internal indices σ and j are summed over. In order to obtain Eq. (30) from
q. (29), we used X σ̄iσ̄

j = X σ̄i0
j X0σ̄

j and anticommuted the equal time operators X0σ
i X σ̄i0

j into
−X σ̄i0

j X0σ
i , followed by an explicit sum over σ . This subtle step is essential for obtaining the

superconducting phase, as discussed (para following Eq. (2)) in the Introduction, since the role of
exchange in promoting Cooper pairs manifests itself here. Using Eq. (19) we find

⟨⟨[HJ , X
0σi
i (τ )]X

σf 0
f (τ ′)⟩⟩ = −

1
2
Jijσi

(
Cij(τ+) − Kij(τ+)

)
⟨⟨X σ̄i0

j (τ )X
σf 0
f (τ ′)⟩⟩, (31)

where the repeated internal index j is summed over, and with η is a positive infinitesimal we
ndicate here and elsewhere τ+

≡ τ + η and τ−
≡ τ − η .

In treating this term we could have proceeded differently by sticking to Eq. (29), using Eq. (10)
with a different external potential term as in Eq. (11) to write

⟨⟨[HJ , X
0σi
i (τ )]X

σf 0
f (τ ′)⟩⟩ =

1
2
Jijσiσ ⟨⟨X0σ

i (τ )X σ̄iσ̄
j (τ )X

σf 0
f (τ ′)⟩⟩

= −
1
2
Jij

(
γσ̄iσ̄ (j, τ ) − Dσ̄iσ̄ (j, τ )

)
⟨⟨X0σ

i (τ )X
σf 0
f (τ ′)⟩⟩, (32)

where the repeated spin index σ , and the site index j are summed over, while σi, σf and site
ndices i, f are held fixed. These two expressions Eq. (31) and Eq. (32) are alternate ways of writing
the higher order Greens functions [43]. In order to describe a broken symmetry solution with
superconductivity, we are required to use Eq. (31), since using the other alternative disconnects the
normal and anomalous Greens functions altogether, thereby precluding a superconducting solution.

The term ⟨⟨[AC (τ ), X
0σi
i (τ )]X

σf 0
f (τ ′)⟩⟩ generates a term that is linear in J which is treated

imilarly and the final result quoted in Eq. (34).
We summarize these equations compactly by defining

G−1
0iσijσj

= δijδσiσj (µ − ∂τ ) + tijδσiσj − δijV
σiσj
i

Yiσijσj = tijγσiσj (i, τ )

Xiσijσj = −tijDσiσj (i, τ ), (33)

and write the exact equation

(G−1
0iσijσj

− Yiσijσj − Xiσijσj )Gjσjf σf (τ , τ ′) = δ(τ − τ ′)δif (δσiσf − γσiσf (i, τ ))

+
1
2
Jij

(
Cij(τ ) − Kij(τ )

)
Fjσif σf (τ , τ ′)

+Jjσj;iσk

(
δσi,σk − γσiσk (i, τ ) + Dσiσk (i, τ )

)
σjFjσ̄jf σf (τ , τ ′), (34)

where the spins σj, σk and the site index j are summed over, while σi, σf and site indices i, f are held
fixed. The final term drops off when we switch off the external potential J . Viewing the spin and
site indices as joint matrix indices, these equations and their counterparts Eq. (40), are transformed
into matrix equations below.

2.2.2. Greens function F
The Gor’kov Greens function F in Eq. (24) satisfies an exact equation that can be found as follows.

First we note

∂τ ⟨⟨X
σ̄i0
i (τ )X

σf 0
f (τ ′)⟩⟩ = ⟨⟨[Ht + HJ + A(τ ), X σ̄i0

i (τ )] X
σf 0
f (τ ′)⟩⟩ (35)

A part of the right hand side satisfies

⟨⟨[Ht + Aρ(τ ), X
σ̄i0
i (τ )] X

σf 0
f (τ ′)⟩⟩ = −

(
µδσiσ − V σ̄iσ̄

i

)
⟨⟨X σ̄0

i (τ ) X
σf 0
f (τ ′)⟩⟩

−t ⟨⟨X σ̄i0(τ ) X
σf 0(τ ′)⟩⟩ + t (γ (iτ ) − D (iτ ))⟨⟨Xσ0(τ ); X

σf 0(τ ′)⟩⟩, (36)
ij j f ij σ̄ σ̄i σ̄ σ̄i j f

8
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here the repeated spin index σ , and the site index j are summed over, while σi, σf and site indices
, f are held fixed. The exchange term is treated similarly to Eq. (29)

[HJ , X
σ̄i0
i ] =

1
2
Jij

(
X↑0
i X↓0

j − X↓0
i X↑0

j

)
σiX

0σi
j (37)

so that using Eq. (20) we get

⟨⟨[HJ , X
σ̄i0
i ] X

σf 0
f (τ ′)⟩⟩ = −

1
2
Jijσi

(
C∗

ij (τ
−) − K∗

ij(τ
−)

)
⟨⟨X0σi

j (τ )X
σf 0
f (τ ′)⟩⟩, (38)

where the repeated internal index j is summed over
We gather and summarize these equations in terms of the variables that are ‘‘time-reversed’’

partners of Eq. (34) and hence denoted with hats:

Ĝ−1
0iσijσj

= δijδσiσj (µ + ∂τ ) + tijδσiσj − δijV
σ̄iσ̄j
i

Ŷiσijσj = tijγσ̄jσ̄i (i, τ )

X̂iσijσj = −tijDσ̄jσ̄i (i, τ ) (39)

So that(̂
G−1
0iσijσj

− Ŷiσijσj − X̂iσijσj

)
Fjσjf σf (τ , τ ′) = −

1
2
Jij

(
C∗

ij − K∗

ij

)
Gjσif σf (τ , τ ′)

+σi

∑
m

J ∗

iσ̄nmσm
(δσi,σn − γσ̄nσ̄i (i, τ ) + Dσ̄nσ̄i (i, τ ))Gmσmf σf (τ , τ ′) (40)

where the repeated spin indices σj, σn, σm and site index j are summed over, while σi, σf and i, f
are held fixed. The final term arising from ⟨⟨[AC , X

σ̄i0
i ]X

σ̄f 0
f (τ ′)⟩⟩ drops off when we switch off the

external potential J ∗.

2.2.3. Summary of equation in symbolic notation
Eq. (34) and Eq. (40) are exact in the strong correlation limit. Noting that all terms containing γ

nd D in Eq. (34) and Eq. (40) arise from Gutzwiller projection, we obtain the corresponding equa-
ions for the uncorrelated t-J model in Eq. (2) by dropping these terms. Recall also that the external
potentials J ,J ∗ represent the imposed symmetry-breaking terms that force superconductivity, and
are meant to be dropped at the end. In this uncorrelated case, let us understand the role of the terms
with the Cooper pair derivatives K,K∗. If we ignore these terms and also set J ,J ∗

→ 0 right away,
Eq. (34) and Eq. (40) reduce to the Gor’kov mean-field equations for the uncorrelated model [33],
with the equation Eq. (25) providing a self consistent determination of C∗

ij in terms of F . Thus by
neglecting the terms with K,K∗, the role of the exchange J is confined to providing the lowest order
electron–electron attraction in the Cooper channel. This amounts to neglecting the O(J2) dressings
of the electron self energies and irreducible interaction i.e. the pairing kernel in Eq. (64). When
retained, the normal state studies (see Ref. [31] Figs. (22,23,24-(a))) show that the self energy terms
arising from J change the spectral functions of the model only slightly. Regarding the irreducible
interaction in the superconducting channel, the O(J) term is already attractive. Since we are in the
regime of J ≪ max{|tij|} the retained term is expected to dominate the neglected higher order
term. In summary, strong Hubbard–Gutzwiller type short ranged interactions renormalize the
Greens function to G from G0, and the self energy terms due to J are minor [17,31]. The role of J is
significant only insofar as it provides a mechanism for superconducting pairing, and potentially
magnetic instabilities close to half filling. Keeping these considerations in mind, we drop the terms
involving K,K∗,J ,J ∗ in Eq. (34) and Eq. (40). This suffices for our initial goal, of generalizing a
Gor’kov type [33] mean-field treatment of Eq. (2) to the strongly correlated problem Eq. (1).

Multiplying the γ and D terms, or equivalently the X and Y terms with λ and expanding the
resulting equations systematically in this parameter constitutes the λ-expansion that we discuss
below.

With these remarks in mind we make the following changes to Eq. (34) and Eq. (40):

(i) We drop the terms proportional to J ,J ∗ and the corresponding derivative terms K,K∗.
9
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(ii) Defining the gap functions:

∆ij =
1
2
JijCij and ∆∗

ij =
1
2
JijC∗

ij (41)

(iii) We scale the each occurrence of γ , X, Y , X̂, Ŷ by λ.

With these changes we write the modified Eq. (34) and Eq. (40):

(G−1
0iσijσj

− λYiσijσj − λXiσijσj )Gjσjf σf

= δ(τ − τ ′)δif (δσiσf − λγσiσf (i, τ )) + ∆ij Fjσif σf (42)

(̂
G−1
0iσijσj

− λŶiσijσj − λX̂iσijσj

)
Fjσjf σf = −∆∗

ijGjσif σf , (43)

where σj is summed over in both Eq. (42) and Eq. (43). Note that the self consistency condition
Eq. (16) and Eq. (25) fix the correlation functions C ’s in terms of F . As λ → 0 we get back the
meanfield equations of Gor’kov for the uncorrelated-J model. The λ parameter governs the density
of doubly occupied states, and hence a series expansion in this parameter builds in Gutzwiller type
correlations systematically. We expand the Greens functions to required order in λ and finally set
λ = 1.

We write Eq. (42) and Eq. (43) symbolically as

(g−1
0 − λY − λX).G = (1 − λγ ) + ∆.F (44)

(̂g−1
0 − λŶ − λX̂).F = −∆∗.G (45)

where the symbols G,F etc are regarded as matrices in the space, spin and time variables, 1 is
the Dirac delta function in time and a Kronecker delta in space and spin, with the dot indicating
matrix multiplication or time convolution. In the case of X, X̂ it also indicates taking the necessary
functional derivatives.

3. Expansion of the equations in λ

We decompose both Greens functions in Eq. (44) and Eq. (45) as

G = g.µ̃, F = f .µ̃ (46)

where µ̃ is a function of spin, space and time that is common to both Greens function. As an example
of the notation, the equation G = g.µ̃ stands for Giσijσj (τi, τj)=

∑
kσk

∫ β

0 dτk giσikσk (τi, τk) µ̃kσkjσj (τk, τj).
Here µ̃ is called the caparison (i.e. a further dressing) function, in a similar treatment of the normal
state Greens function. The terms g and f are called the auxiliary Greens function. The basic idea
is that this type of factorization can reduce Eq. (44), to a canonical type equation for g, where the
terms 1− λγ are replaced by 1. We remark that this is a technically important step since the term
1 − λγ modifies the coefficient of the delta function in time, and encodes the distinction between
canonical and non-canonical fermions.

To simplify further, we note that X contains a functional derivative with respect to V , acting on
objects to its right. When acting on a pair of objects, e.g. X .G = X .g.µ̃, we generate two terms.
One term is (X .g).µ̃, where the bracket, temporarily provided here, indicates that the operation of
X is confined to it. The second term has the derivative acting on µ̃ only, but the matrix product
sequence is unchanged from the first term. We write the two terms together as

X .g.µ̃ = X .g.µ̃ + X .g.µ̃, (47)

so that the ‘contraction’ symbol refers to the differentiation by X , and the ‘.’ symbol refers to the
matrix structure. We may view this as the Leibnitz product rule.
10
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Let us now operate with X on the identity g.g−1
= 1, where g−1 is the matrix inverse of g. Using

he Leibnitz product rule, we find

X .g = −

(
X .g.g−1

)
.g (48)

and hence we can rewrite Eq. (47) in the useful form

X .g.µ̃ = −

(
X .g.g−1

)
.g + X .g.µ̃. (49)

With this preparation we rewrite Eq. (44) the equation for G as

(g−1
0 − λY + λ

(
X .g.g−1

)
).g.µ̃ = (1 − λγ ) + ∆.f .µ̃ + λX .g.µ̃ (50)

We now choose g, f such that

(g−1
0 − λY + λ

(
X .g.g−1

)
).g = 1 + ∆.f . (51)

Substituting Eq. (51) into Eq. (50), we find that µ̃ satisfies the equation

µ̃ = (1 − λγ ) + λX .g.µ̃. (52)

Note that Eq. (51) has the structure of a canonical equation since we replaced the 1 − λγ term by
1 in Eq. (50). Thus the non-canonical Eq. (44) for G,F is replaced by a pair of canonical equations
for g, µ̃. In Eq. (51) we note that the action of X is confined to the bracket λ

(
X .g.g−1

)
, unlike the

term λX .G in the initial Eq. (44) . We may thus view the term in bracket in Eq. (51) as a proper self
energy for g.

For treating the equation for F Eq. (45) we use the same scheme Eq. (46) and find

X̂ .F = X̂ .f .µ̃ = −

(
X̂ .f .f −1

)
.f .µ̃ + X̂ .f .µ̃ (53)

With this we rewrite Eq. (45) after canceling an overall right multiplying factor µ̃

(̂g−1
0 − λŶ + λX̂ .f .f −1).f = −∆∗.g + λX̂ .f .µ̃.µ̃−1 (54)

Summarizing we need to solve for f , g, µ̃, ∆∗ from Eqs. (51), (52), (54) by iteration in powers of λ.

3.1. Simplified equations near Tc

For the present work, we note that Eq. (54) simplifies considerably, if we work close to Tc . In
this regime f may be assumed to be very small, enabling us to throw away all terms of O(f 2) and
also to discard terms of O(λf ). This truncation scheme is sufficient to determine Tc for low orders
in λ.

When T ∼ Tc , throwing away terms of O(f 2) and O(λf ), we obtain the simplified version of
q. (54)

f = −̂g0.∆
∗.g + o(λf ), (55)

o that Eq. (51) can be written as

g−1
= g−1

0 − λY + λ

(
X .g.g−1

)
+ ∆.̂g0.∆

∗ (56)

In this limit the above two are the O(λ2) equations required to be solved, together with Eq. (52)
and the self consistency condition Eq. (41), Eq. (25). The latter can be combined with Eq. (24) as

∆∗

ij =
1
2
JijC∗

ij = −
1
2
Jij

∑
Fiσ ,jσ (τ+, τ ) (57)
σ

11
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nd further reduced using Eq. (46). On turning off the external potentials we regain time translation
nvariance. We next perform a fourier transform to fermionic Matsubara frequencies ωn =

π
β
(2n+1)

using the definition F(τ ) =
1
β

∑
n e

−iωnτF(iωn), and write Eq. (46) in the frequency domain as

Fpσ (iωn) = f pσ (iωn)µ̃pσ (iωn). (58)

Thus taking spatial fourier transforms with the definition

J(q) = 2J
(
cos qx + cos qy

)
, (59)

so that the self consistency condition Eq. (57) finally reduces to

∆∗(k) = −
1
2β

∑
pσωn

J(k − p)f pσ (iωn)µ̃pσ (iωn) (60)

e may write Eq. (55) as

f pσ (iωn) = −̂g0σ (p, iωn)∆∗(p)gσ (p, iωn) (61)

here the time reversed free Greens function

ĝ0(p, iωn) =
1

−iωn + µ0 − ε−p
=

1
−iωn − ξp

(62)

with ξ = εp − µ0 and by using εp = ε−p, and µ0 is taken as the non-interacting system chemical
potential, discarding the corrections of µ due to λ. Therefore Eq. (60) becomes

∆∗(k) =
1
2β

∑
pσωn

J(k − p)̂g0σ (p, iωn)∆∗(p)gσ (p, iωn)µ̃pσ (iωn) (63)

ere g is taken from Eq. (56), i.e. the O(λ2) Greens function with a small correction (for T ∼ Tc)
rom the gap ∆. Performing the spin summation and recombining g.µ̃ = G, we get the equation in
terms of the physical electron Greens function

∆∗(k) =
1
β

∑
pωn

J(k − p)∆∗(p)̂g0(p, iωn)G(p, iωn). (64)

This is an important result of our formalism, it represents the leading order Gor’kov equation
for the t-J model. It is analogous to a refinement of Gor’kov’s equation [33], usually called the
Eliashberg equation [44], valid for strong electron–phonon coupling superconductivity. Our λ
expansion plays the role of the Migdal theorem [45] in that problem. The analogy with Migdal [45]
and Eliashberg’s [44] work is only superficial, since the strongly correlated problem does not share
the physics of the separation of the electronic and phonon time scales, underlying those results.

In Eq. (64) the physical electron Greens function G is taken from the O(λ2) theory if we neglect
he corrections from the gap, which vanishes above Tc anyway. We express the physical Greens
unction in terms of its spectral function A(p, ν)

G(p, iωn) =

∫
dν

A(p, ν)
iωn − ν

(65)

The frequency integral in Eq. (57) can be performed as
1
β

∑
ωn

ĝ0(p, iωn)G(p, iωn) =

∫
dν A(p, ν)

1 − f (ν) − f (ξp)
ν + ξp

. (66)

here f is the fermi distribution f (ν) = 1/(1 + expβν). Hence

∆∗(k) =

∑
p

J(k − p)∆∗(p)
∫

dν A(p, ν)
1 − f (ν) − f (ξp)

ν + ξp
. (67)

In summary this eigenvalue type equation for ∆∗(k), together with the spectral function A(p, ν)
determined from the O(λ2) Greens function in Eq. (56), gives the self-consistent gap near T . At
c

12
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ufficiently high temperatures, i.e. in the normal state T > Tc ∆∗ vanishes, so that A is independent
f ∆∗. In this case Eq. (67) reduces to a linear integral equation for ∆∗. We may then determine Tc
rom the condition that the largest eigenvalue crosses 1. For this purpose we only need the normal
tate electron spectral function of the strongly correlated metal.

. Estimate of Tc

.1. Equation for determining Tc

The condition for obtaining a d-wave superconducting state is given by setting T = T+
c in Eq. (67)

riting ∆∗(k) = ∆0(cos kx − cos ky), using the normal state spectral function for A and canceling an
verall factor ∆0(cos kx − cos ky). Following these steps we get

1 = J
∑
p

{
cos(px) − cos(py)

}2
∫

dν
1 − f (ν) − f (εp − µ0)

ν + εp − µ0
A(p, ν)

⏐⏐⏐⏐
Tc

. (68)

nstead of working with Eq. (68), it is convenient to make a useful simplification for the average
ver angles. Since Eq. (68) is largest when p⃗ is on the fermi surface, we factorize the two terms and
rite

1 = JΨ (µ0) Γ (69)

Γ =

∑
p

∫
dν

1 − f (ν) − f (εp − µ0)
ν + εp − µ0

A(p, ν)
⏐⏐⏐⏐
Tc

(70)

where Γ is a particle–particle type susceptibility. Here Ψ (µ0) is more correctly the weighted
average of

{
cos(px) − cos(py)

}2 with a weight function that is the integrand in Eq. (70). We simplify
it to the fermi surface averaged momentum space d-wavefunction

Ψ (µ0) =
1

n(µ0)

∑
p

{
cos(px) − cos(py)

}2
δ(εp − µ0) (71)

here n(ϵ) is the band density of states (DOS) per spin and per site, at energy ϵ,

n(ϵ) =
1
Ns

∑
p

δ(εp − ϵ). (72)

Using this simplification and performing the angular averaging over the energy surface εp⃗ = ϵ we
write the (particle–particle) susceptibility Γ (Eq. (70)) as

Γ =

∫
dϵ

∫
dν n(ϵ) A(ϵ, ν)

1 − f (ν) − f (ϵ − µ0)
ν + ϵ − µ0

⏐⏐⏐⏐
Tc

. (73)

where A(ϵ, ν) is the angle-averaged version of the spectral function A(p, ν). We estimate this
expression below for the extremely correlated fermi liquid, by using a simple model for the spectral
function A.

In Eq. (73) if we replace the spectral function A by the (fermi gas) non-interacting result
A0(ϵ, µ0) = δ(ν − ϵ + µ0), we obtain the Gor’kov–BCS mean-field theory, where the susceptibility
Γ reduces to

∫
dϵ n(ϵ) tanh 1

2 βc (ϵ−µ0)
2(ϵ−µ0)

. This is evaluated by expanding around the fermi energy, and

tilizing the low T formula
∫ W0
0

dϵ
ϵ
tanh 1

2βcϵ ∼ log
[

ζ0W0
kBTc

]
, where W0 is the half-bandwidth and

ζ0 = 1.13387 . . .. Equating Γ to 1/JΨ (µ0) gives the d-wave superconducting transition temperature
for the uncorrelated t-J model

kBT (un)
c ∼ 1.134 W0 e−

1
g , (74)

with the superconducting coupling constant

g = JΨ (µ0)n(µ0). (75)
13
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.2. Model spectral function

We next use a simple model spectral function to estimate these integrals. It has the great
dvantage that we can carry out most integrations analytically and get approximate but closed form
nalytical expressions for Tc , which provide useful insights. The model spectral function contains

the following essential features of strong correlations namely:

• A quasiparticle part with fermi liquid type parameters, where the quasiparticle weight Z goes
to 0 at half filling n = 1, and

• A wide background.

The model spectral function used is in the spirit of Landau’s fermi liquid theory [46–48] with
suitable modifications due to strong correlation effects [17]. We take the spectral function as

A(ϵ, ν) = Zδ(ν −
m
m∗

ϵ) + (1 − Z)
1

2W0
Θ(W0 − |ν|). (76)

Here Θ(x) =
1
2 (1+

x
|x| ),W0 the half-bandwidth m

m∗ is the renormalized effective mass of the fermions,
nd Z is the fermi liquid renormalization factor. The first term is the quasiparticle part with weight
, and second part represents the background modeled as an inverted square-well. Integration over
gives unity at each energy ϵ. Z is chosen to reflect the fact that we are dealing with a doped Mott–
ubbard insulator so it must vanish at n = 1. For providing a simple estimate we use Gutzwiller’s
esult [36,49]

Z = 1 − n. (77)

The effective mass is related to Z and the k-dependent Dyson self energy Σ through the standard
fermi liquid theory [46–48] formula

m
m∗

= Z × (1 +
∂Σ(k⃗, µ)

∂εk

⏐⏐⏐⏐
kF

). (78)

The Landau fermi liquid renormalization factor m
m∗ can be inferred from heat capacity experiments

rovided the bare density of states is assumed known.
Using Eq. (76) in Eq. (73) and decomposing the susceptibility Γ into a quasiparticle and

background part, the equation determining Tc is:(
ΓQP + ΓB

) ⏐⏐⏐⏐
T→Tc

=
1

JΨ (µ0)
(79)

ΓQP = Z
∫

dϵ n(ϵ)
1 − f (ϵ − µ0) − f ( m

m∗ (ϵ − µ0))
(ϵ − µ0)(1 +

m
m∗ )

(80)

ΓB =
(1 − Z)
2W0

∫
dϵ n(ϵ)

∫ W0

−W0

dν
1 − f (ϵ − µ0) − f (ν)

(ϵ − µ0) + ν
. (81)

Using the same approximations that lead to Eq. (74) the ΓQP can be evaluated as

ΓQP =
Zn(µ0)
1 +

m
m∗

∫ W0

0

dϵ
ϵ

(
tanh

ϵ

2kBT
− tanh

ϵ m/m∗

2kBT

)
, (82)

nd hence at low enough T the estimate

ΓQP ∼ n(µ0)
2Z

1 +
m
m∗

log

[
ζ0W0

√ m
m∗

kBT

]
. (83)

Unlike the quasiparticle part with this log T behavior at low T, the background part is nonsingular as
T → 0, since a double integral over the region of small ϵ−µ and ν is involved. It can be estimated
0
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y setting T = 0, ϵ − µ0 ∼ ϵ and replacing n(ϵ) ∼ n(µ0). With

ΓB ≡ n(µ0)γB, (84)

γB =
(1 − Z)
2W0

∫ W0

−W0

∫ W0

−W0

1
2
sign(ϵ) + sign(ν)

ϵ + ν
dϵ dν. (85)

ntegrating this expression we obtain

γB = (1 − Z) log 4. (86)

Combining Eqs. (79), (83), (86) we find

kBTc ∼ 1.134 W0 ×

√
m
m∗

× e
−

1
geff (87)

where the effective superconducting coupling:

geff =
2Z(

1 +
m
m∗

) {
Jeff Ψ (µ0)n(µ0)

}
(88)

and an effective exchange

Jeff =
J

1 − γB JΨ (µ0)n(µ0)
, (89)

where the denominator represents an enhancement due to the background spectral weight. In
comparing Eq. (87) with the uncorrelated result Eq. (74) several changes are visible. The bandwidth
prefactor is reduced by correlations due to the factor of

√ m
m∗ ≪ 1. This factor vanishes as n → 1

hereby diminishing superconducting Tc in the close proximity of the insulator. A similar but even
ore drastic effect arises from multiplying factor 2Z

(1+ m
m∗ ) in the coupling geff Eq. (88). This term

reflects the quasiparticle weight in the pairing process, and since Z vanishes near the insulating
state, it leads to an essential singularity in Tc as a function of hole density. Being situated in the
exponential, it kills superconductivity much more effectively than the bandwidth prefactor. Away
from the close proximity of the insulator other terms in geff become prominent, allowing for the
possibility of superconductivity. Amongst them is the replacement of the exchange energy by Jeff . In
density range where Ψ (µ0)n(µ0) is appreciable, this enhances Jeff over J due to the feedback nature
f Eq. (89), and has an important impact on determining the phase region with superconductivity.

.3. Numerical estimates of Tc

We turn to the task of estimating the order of magnitude of the Tc in this model. When we
ake typical values for cuprate systems: W0 ∼ 104 K (i.e ∼1 eV) and J ∼ 103 K (i.e. ∼0.1 eV),
he transition temperature of the uncorrelated model T (un)

c Eq. (74) is a few thousand K, at most
ensities. It remains robustly non-zero at half filling, since in this formula correlation effects are yet
o be built in and the Mott–Hubbard insulator is missing. For the correlated system, we estimate
c from Eq. (87) using similar values of model parameters. The terms arising from correlations in
q. (87) are guaranteed to suppress superconductivity near the insulating state, since Z → 0 and
he quasiparticle is lost. A more refined question is whether an intermediate density regime (δ > 0)
an support superconductivity. And if so, whether the temperature scales are robust enough to be
bservable. Within the context and confines of the simplified model spectral function considered,
e answer both questions positively here.

.3.1. Choice of model parameters
In order to estimate the order of magnitude of the Tc, its dependence on J and band parameters,

e choose parameters similar to those used in contemporary studies for the single layer High
c compound La2−xSrxCuO4. The hopping Hamiltonian −

∑
ij tijC̃

†
iσ C̃jσ , gives rise to band energy

ispersion ε(k⃗) = −2t(cos k + cos k )− 4t ′ cos k cos k − 2t ′′(cos 2k + cos 2k ) on a square lattice.
x y x y x y
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Fig. 1. The superconducting transition temperature for the correlated model Tc (Eq. (87)) (t ′/t = −0.159, t ′′/t =

.01, m
m∗ = Z). The scale of the maximum transition temperature is smaller by an order of magnitude from the

uncorrelated model. As the insulator is approached δ → 0, and Tc decreases drastically. This is easy to understand
ince the quasiparticle weight Z shrinks on approaching the insulating state, killing the coupling geff Eq. (88). When δ

oes beyond the peak (optimum) value, the effective superconducting coupling geff again falls off as seen in Fig. 2 and
n Fig. 5 due to the other factors in Eq. (88). When geff drops below ∼ 0.12, the resulting Tc is negligible.

hus the hopping amplitudes tij are equal to t when i, j are nearest neighbors, t ′ when i, j are second-
earest neighbors, and t ′′ when i, j are third-nearest neighbors. For this system we will use the
alues [14,50]

t = 0.45 eV, t ′/t = −0.16 ± 0.02, t ′′/t = .01. (90)

his parameter set is roughly consistent with the experimentally determined fermi surface of
a2−xSrxCuO4 [50], we comment below on considerations leading to a more precise choice. The tight
inding band extends from −W0 ≤ ϵ ≤ W0, where W0 = 4t , neglecting a small shift due to t ′. The
xchange energy is chosen to be

J/t = 0.3, or J/kB ∼ 1550 K, (91)

as determined from two magnon Raman experiments [51] on the parent insulating La2CuO4. Note
that the t-J model is obtainable from the Hubbard model by performing a large U/t super-exchange
xpansion, giving J =

4t2
U . Thus our choice of J corresponds to a strong coupling type magnitude of

/t ∼ 13.3 in the Hubbard model, placing it in a perturbatively inaccessible regime of that model.
We now discuss the enhancement of effective mass m

m∗ [52]. In the proximity of the Mott–
ubbard insulating state n → 1, an enhancement in m∗

m is expected on general grounds, reflecting
diminished thermal excitation energy scale due to band narrowing. For illustrating the role of this
arameter we use two complementary estimates

m
m∗

∼ 3.4 (1 − n), (a) (92)

m
m∗

= Z, (b) (93)

where estimate (a) gives a two-fold enhancement of m⋆

m at δ = .15, while estimate (b), obtained
y neglecting the k dependence of the self energy in Eq. (78), gives a seven-fold enhancement. The

formulas used are simple enough so that the effect of other estimates for m
m∗ should be easy for the

eader to gauge.

.3.2. Results
In Fig. 1 the superconducting transition temperature for d-wave symmetry is shown as a function

f the hole density δ = 1 − n where the band parameters are indicated in the caption. It shows
that T is maximum at δ ∼ 0.15 and falls off rapidly as one moves away from that density in either
c

16
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Fig. 2. The figure and inset use t ′/t = −0.159, t ′′/t = 0.01, and m
m∗ = Z . The effective superconducting coupling geff

Eq. (88)) for three Cooper pair symmetries: (i) (blue) d-wavefunction ⟨
{
cos(kx) − cos(ky)

}2
⟩FS , (ii) (brown) extended

s-wavefunction ⟨
{
cos(kx) + cos(ky)

}2
⟩FS , and (iii) (magenta) s + id wavefunction ⟨

{
cos2(kx) + cos2(ky)

}
⟩FS . For the d-

wavefunction, the drastic decrease of Tc on both sides of the peak values in Fig. 1 can be understood by referring

to the second y-axis, giving the temperature scale T appx
c = 104

× e
−

1
geff K. This scale provides an order of magnitude of

Tc at a given geff by assuming a prefactor 104 K. It illustrates the rapid reduction of Tc when geff <
∼ 0.12. The other two

ymmetries lead to much smaller couplings and are therefore ineffective. Inset: The band DOS at the fermi energy shows
n enhancement around the hole density δ = 0.15. (For interpretation of the references to color in this figure legend, the
eader is referred to the web version of this article.)

Fig. 3. The superconducting transition temperature for the correlated model Tc (Eq. (87)) for three parameter sets — (i)
red) t ′/t= −0.159, t ′′/t= 0.01 with δpeak = 0.15, (ii) (blue) t ′/t= −0.137, t ′′/t = .01 with δpeak = 0.13 and (iii) (purple)
′/t= −0.181, t ′′/t= 0.01 with δpeak = 0.17. The solid lines use m

m∗ = Z and the dashed lines m
m∗ = 3.4δ. Inset: Ψ (µ0) the

ermi surface averaged d-wavefunction ⟨
{
cos(kx) − cos(ky)

}2
⟩FS is shown for the three sets of band parameters. The peak

alues occur at the densities where Tc is highest. Their peak magnitude ∼ 3.2 indicates a strong constructive interference
ffect from k⃗ ∼ {±π, 0}, {0, ±π}, where |cos(kx) − cos(ky)| ∼ 2. (For interpretation of the references to color in this figure
egend, the reader is referred to the web version of this article.)

irection. The scale of Tc is a few hundred K, which is an order of magnitude lower than that of
he uncorrelated system. The small kink-like features to the right of the peak reflect structure in
he DOS shown as inset in Fig. 2. In Fig. 2 the effective superconducting coupling geff is shown for
hree different symmetries of the Cooper pairs: d-wave, extended s-wave, and s + id-wave. It is
lear that within this theory, only d-wave symmetry leads to robust superconductivity, the other
wo symmetries lead to effects too small to be observable. From Fig. 3 we see that the peak density
s shifted by varying the band hopping parameters. As the peak density moves towards small δ, its
eight falls rapidly. This is understandable as the effect of the quasiparticle weight Z in the formulas
qs. (87), (88). We also note that the use of different expressions for the effective mass in Eqs. (92),
93) change the width of the allowed regions somewhat, but are quite comparable.

The inset in Fig. 3 displays the d-wavefunction averages corresponding to the same sets of
arameters. It is interesting to note that the height of the peaks, Ψ ∼3.2, is close to their upper
max

17
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Fig. 4. The effective exchange Jeff from Eq. (89) for the three parameter sets — (i) (red) t ′/t= −0.159, t ′′/t= 0.01
ith δpeak = 0.15, (ii) (blue) t ′/t= −0.137, t ′′/t = .01 with δpeak=0.13 and (iii) (purple) t ′/t= −0.181, t ′′/t= 0.01 with

peak=0.17. Since we assumed J/t ∼ 0.3 (Eq. (89)), Jeff /t is considerably enhanced in the range of densities exhibiting
igh Tc . This enhancement in turn boosts up geff , via Eq. (88), and hence plays an important role in giving an observable
agnitude of Tc in Figs. 1 and 3. (For interpretation of the references to color in this figure legend, the reader is referred

o the web version of this article.)

ound 4, from a type of constructive interference that requires comment. Note first that the DOS can
e expressed as a line integral in the octant of the Brillouin zone n(µ0) =

2
π2

∫ kmax
0

dkx
|vy(k⃗)|

, where the

elocity vy(k⃗) = 2 sin(ky)(t + 2t ′ cos kx + 4t ′′ cos ky) is evaluated with ky → ky(kx, µ0) on the fermi
urface. Thus the region of small |vy

| dominates the integral. If vy vanishes on the fermi surface,
e get a (logarithmic van Hove) peak in the DOS. Now the average of Ψ (µ0) is largest, when k⃗ is
lose to {±π, 0} and {0, ±π}. Therefore if the fermi surface passes through {±π, 0} and {0, ±π}

or an ‘‘ideal density’’, then we simultaneously maximize the average of Ψ , and obtain a large DOS.
he condition for this is found by equating the band energy at {±π, 0} to the chemical potential

µ0 = 4t ′ − 4t ′′, thereby fixing the corresponding density δ. It follows that a given δ can be found
from several different sets of the parameters t ′, t ′′. The inset of Fig. 3 shows the average Ψ (µ0)
displays peaks, the middle one (red) coincides in location with the peak in the DOS in the inset of
Fig. 2.

In Fig. 4 we illustrate the role of the feedback enhancement of the exchange J due to the
background spectral function discussed in Eq. (89). For each set of parameters, there is a density
region where both the DOS at the fermi energy and the averaged d-wavefunction are enhanced,
and the confluence directly enhances Jeff . In turn this is reflected in the superconducting coupling
geff . In Fig. 5 we see how the confluence of enhancements in the DOS and in the d-wavefunction
Ψ (µ0), further boosts the superconducting coupling geff and offsets to some extent the suppression
due to a small magnitude of Z , as seen in Eq. (88). As a result of this competition Tc turns out to be
in the observable range. The additional y-axis in Fig. 5 translates the superconducting coupling geff
to an order of magnitude type transition temperature T appx

c = e−1/geff ×104 K . This scale helps us to
understand why Tc falls off so rapidly when δ increases beyond the peak value where the coupling
geff falls below ∼ 0.12, thereby rapidly suppressing Tc .

5. Conclusions

This work presents a new methodology for treating extremely correlated superconductors. The
exact equations of the normal and anomalous Greens functions in the superconductor are derived.
These are further expanded in powers of a control parameter λ related to the density of double
occupancy, and the second order equations are given in Eqs. (51), (52), (54), together with the
self consistency conditions Eqs. (25), (41). A further simplification is possible for T∼Tc where the
anomalous terms are small. This leads to a tractable condition for Tc given in Eq. (69), expressed
in terms of the electron spectral function. Further analysis uses a model spectral function Eq. (76),
18
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Fig. 5. The effective superconducting coupling geff (Eq. (88)) for the three curves in Fig. 3, with parameter sets — (i)
(red) t ′/t= −0.159, t ′′/t= 0.01 with δpeak = 0.15, (ii) (blue) t ′/t= −0.137, t ′′/t = .01 with δpeak = 0.13 and (iii) (purple)
′/t= −0.181, t ′′/t= 0.01 with δpeak = 0.17. The drastic decrease of Tc on both sides of the peak values in Fig. 3 can

e understood by referring to the second y-axis, giving the approximate temperature scale T appx
c = 104

× e
−

1
geff K. (For

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

which is simple enough to yield an explicit expression for Tc in Eq. (87). More elaborate calculations
should be feasible upon the availability of reliable spectral functions, when one may directly solve
Eq. (68).

Our calculation delineates the regime of parameters where superconductivity is possible in the
t-J model within the ECFL theory. This regime turns out to be quite constrained. The calculation
highlights the requirement of a substantial magnitude of the d-wavefunction average and the DOS
at the fermi energy. It shows that Tc is maximal at a density where n(µ0), the bare DOS is peaked,
and is co-located with the peak of the fermi surface average of the d-wavefunction Eq. (71) (inset
Fig. 3). The latter aspect is understandable, since the passing of the Fermi level energy dispersion
through the zone boundary points {±π, 0}, {0, ±π}, promotes a peak in the DOS, and also leads to
he maximization of ⟨(cos px − cos py)2⟩FS . The prediction of a correlation between the peak in Tc
ith a peak in the d-wavefunction average is testable, since the latter is amenable to measurement
sing angle resolved photoemission.
In the approximation used here, the maximum Tc is nominally unbounded in a narrow density

ange here due to the logarithmic singularity of the DOS. It is expected to be cutoff to a finite value
f O(102 K) due to a more exact integration over energies, when using a reliable spectral function,

in the place of the model used here. Such an integration would also supersede the Gor’kov-type
approximation of expanding around the fermi surface (

∫
dϵ n(ϵ) ∼ n(µ0)

∫
dϵ) employed here,

hereby flattening out the sharp peak into a smoother shape. Finally this mean-field description
f the superconductor is expected to be corrected by fluctuations of the phase, in a strictly two
imensional case, and by interlayer coupling, in the physically realistic case of a three dimensional
ystem of weakly coupled layers.
In conclusion this work contains the essential outline of a new and controlled formalism to

reat superconducting states of models with extremely strong correlations, such as the t-J model.
transparent calculation within a low order approximation is presented here. It demonstrates that

he exchange energy J can indeed provide the fundamental binding force between electrons forming
ooper pairs. It leads to superconductivity with Tc ’s of O(102 K), in a finite range of densities located

away from the insulator, as also experimentally found in cuprate superconductors.
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