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Motivated by recent experiments, we append long ranged
Coulomb interactions to dominant strong local correlations and
study the resulting t-/-Vc model for the 2-dimensional cuprate
materials. This model includes the effect of short ranged
Hubbard-Gutzwiller-Kanamori type correlations and long ranged
Coulomb interactions on tight binding electrons. We calculate
the {g, w} dependent charge density fluctuations in this model
using the extremely correlated Fermi liquid theory characterized
by quasiparticles with very small weight Z. We develop a novel
set of formulae to represent the dynamical charge susceptibility
and the dielectric function, using a version of the charge-current
continuity equation for a band system, valid for arbitrary g. Com-
bining these ingredients, we present results for the irreducible
dynamical charge susceptibility X,,(q, »), (longitudinal) dielec-
tric function (g, w), current susceptibility Zﬂ(a, ), conductivity
o(q, w), and the plasma frequency for any . We also present
calculations for the first moment of the structure function and
discuss a characteristic energy scale £2,(¢) which locates a peak
in ImX,,(q, »).
© 2022 The Author(s). Published by Elsevier Inc. This is an open
access article under the CCBY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The role of strong local correlations and their interplay with long ranged Coulomb interactions,
is an important problem in condensed matter physics. In the context of the metal insulator
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(Mott-Hubbard) transition of a Hubbard-Gutzwiller-Kanamori type model of strong correlations
with added long ranged Coulomb interactions, early work [1-3] emphasized that this combination
of the two types of interactions, quite generally leads to a metal with poor screening. These works
noted that strong local correlations enhance the effective mass of electrons near a Mott transition,
with m*/m~1/(1 — U/U.) at half filling n = 1 with U > t [4] and U, is the putative critical
interaction strength discussed in [2]. Closer to the considerations of this paper, away from n = 1
a reduction of the compressibility (xcomp = N—Vzg—ﬁ Eq. (E.5)) occurs for U > t in the Gutzwiller
theory [2,3]. As emphasized by Vollhardt [3], an enhancement of effective mass m*/m~ “l—n) is
offset by an even greater enhancement of an appropriate Landau Fermi liquid parameter. These
combine to give a net suppression of compressibility. In turn this suppresses the screening constant

gs, which is related to the compressibility by a sum-rule [5] (see Egs. (E.3)-(E.5)):
2= 4rq; dN
s agNs du

The screening length defined through A; = 27 /g, increases, and hence the metal has progressively
poorer screening properties as we move close to the insulator. More recent theoretical work [6,7]
has focussed on the dynamical aspects of screening, within the program of unifying band structure
methods with dynamically screened Coulomb interaction and short ranged correlations. The latter
are usually treated within the dynamical mean field theory [6,7].

An immediate motivation for the present work comes from a set of experiments using the
recently developed tool of momentum resolved electron energy loss spectroscopy (M-EELS) [8-
11]. This technique gives a direct readout of the structure function S(q, @) or equivalently the
dielectric function &(q, ), for a broad range of momentum transfer ¢ and energy transfer w. The
initial application of this technique has provided high resolution data on the structure function for
the archetypical strongly correlated cuprate superconducting material Biy 5511 9CaCu;0g.x (BSSCO),
for two samples with T, = 91K and T, = 50K respectively. In the normal state, the data looks
very different from what one might expect for a conventional weakly correlated Fermi liquid,
e.g., one describable by the random-phase approximation (RPA). Sharp features arising from long
lived quasiparticles in that theory are rounded off to broad peaks, and the spectrum has surprisingly
long frequency tails. Understanding the data seems to require reducing the quasiparticle domination
in charge response functions, as argued in Refs. [12,13].

In this work we extend the extremely correlated Fermi liquid theory (ECFL) [ 14], by adding the long
ranged component of the Coulomb interaction. We thus calculate the charge dynamics of the t-J-V¢
model Eq. (2), which is a generalization of the t-J] model obtained by adding to it a long-ranged
Coulomb interaction V. For this model we calculate the {q, w} dependent dielectric function {q, w}
and the charge and current susceptibilities.

The ECFL theory was developed to describe the very large U Hubbard model, or equivalently
the short ranged t-J interaction [14]. It therefore deals with the propagation and interaction
of Gutzwiller projected electrons, obeying non-canonical anticommutators Eq. (8), within a tight
binding model. The ECFL theory is characterized by a small but non-zero quasiparticle weight
Z <« 1 ][14], and is therefore suitable for describing the above experiments. This generalized
ECFL calculation provides a microscopic theory of charge fluctuations in a metal, with fragile
quasiparticles. In Fig. 1 the resulting single electron spectral function from ECFL in two dimensions is
displayed with typical values of the model parameters. The role of strong correlations in suppressing
the quasiparticle weight from the free electron value, i.e. Z;, <« 1 is seen here. The closely related
momentum distribution function in Fig. 2 illustrates this suppression, through the reduced (Migdal)
discontinuity at kr. The suppression of the compressibility in Refs. [2,3] mentioned above, is also
obtained in the ECFL theory, as illustrated in Fig. 3. The ECFL theory gives a set of results for the
wave vector dependent static susceptibility, the first frequency moment of the structure function,
and the plasma dispersion Figs. 4-6.

The theory of the interacting 2-d electron system presented here differs significantly from
established theories designed in the contexts of semiconductor inversion layers, surfaces of metals
and more recently for graphene [16-19]. In the current study, the dominant interaction is the short
ranged Coulomb repulsion on the scale of a single atom, i.e., the Gutzwiller-Hubbard correlation.
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Fig. 1. The (single) electronic spectral functions for the ECFL Green’s function at two temperatures: (a) T = 99 K and
(b) T = 297 K at n = 0.85, computed from system sizes N, = 2%, L, x L, = 64 x 64. The insets show the spectral
function at kr against w/t, over a wide energy scale. The Fermi wave vector is krap = 1.36, and the quasiparticle weight
at the Fermi wave vector Z, (abbreviated as Z) is very small compared to unity: Z = 0.06,0.09 for T = 99 K and
T = 297 K respectively. The reduced quasiparticle weight is also reflected in a small (Migdal) jump in the momentum
distribution function Fig. 2. The insets show that the small area under the quasiparticle peak at w ~ 0, (due to a tiny Z),
is compensated by broad features at very high excitation energies ~ 10t. In evaluating the spectral functions, an implicit
energy smearing of O(t/L,) is implicit. Analogous figures for the spectral function at other densities and temperatures
over an wider energy window for this theory can be found in [15] (Figs. (1,2)).
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Fig. 2. The momentum distribution function my for correlated electrons my = (AC',fTEkT) found from Eq. (A.12) in purple
(n = 0.80) and green (n = 0.85) over the Brillouin zone. For comparison the analogous function n; for the uncorrelated
Fermi gas in blue (n = 0.80) and red (n = 0.85). The Fermi momentum is indicated by the vertical dashed lines in
orange (n = 0.85) and grey (n = 0.80). The inset shows the location of the noninteracting Fermi surface for the two
densities. The system size used in the computation is N, = 24, L, x L, = 64 x 64. Here we used t =0.45,] = 0.17 eV,
t' = —0.2t and T = 21K. The theory satisfies the Luttinger-Ward theorem and hence the Fermi surface (FS) is unshifted
by interactions. The wave vector q traverses the octant of the Brillouin Zone, with corners I = (0, 0), M=(x, 0), and
X = (7, ) and the green lines locate the non-interacting Fermi surface. We note that the Fermi surface crossing of the
interacting theory is missing in the I" — M direction, it is roughly visible in the M — X direction and most clearly seen
in the X — I" direction. A sharp reduction of the quasiparticle weight Z., which equals the discontinuity in my, at T=0
by Migdal’s theorem, is evident from the flattening of the correlated distribution my in this figure. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. The compressibility Eq. (E.5) at T = 297K versus doping § = 1 — n, where blue curve is the correlated case
and red curve is the uncorrelated case. In the correlated case j—” is found numerically from the computed p(n) for
§ > 0.11. Correlations are seen to suppress the compressibility as § decreases towards the insulating limit. The green

curve is calculated numerically from the static uniform limit of the susceptibility qZLN limg_o ygzb(a, 0) (Eq. (64)). If an
e !Ns

exact calculation, going beyond the bubble approximation was possible, the corresponding green and blue curves would

coincide. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of

this article.)
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Fig. 4. (a) The wave vector dependence of (a) the ECFL static susceptibility ¥(g, 0) (Eq. (74)), for different paths in the
BZ and (b) the (noninteracting) band structure case (Eq. (45)). The density n = 0.85 and q is the relevant component of
G connecting the (high symmetry) points I" = (0,0),X = (7, 7), M = (7, 0) in the 2-d square lattice BZ. Correlations
are seen to suppress the magnitudes of the susceptibilities. The relative locations of the three curves for the correlated
system undergoes a surprising reshuffle relative to the band susceptibilities.

If one starts from weakly-interacting electrons within a perturbative scheme, it is very difficult
to build in the strong local correlations, since the perturbation parameter is the largest energy
scale! We start instead with non-canonical Gutzwiller projected electrons G, Egs. (2), (8), and then
introduce long ranged Coulomb interactions, giving the t-J-V: model. In this treatment the physics
of the Mott-Hubbard insulator at half filling is obtained naturally, in view of the inbuilt Gutzwiller
projection.

1.1. Highlights of new formulas

The calculations on this t-J-Vc model use the extremely correlated Fermi liquid (ECFL) theory [14]
for the t-J] model. The highly correlated single electron Green’s function of this theory G(k, w) is
computed using a systematic expansion in a parameter A € [0, 1], explained below in Section 2.1.
We use the results reported in our recent work to ©(A?) [15,20,21], in 2-d.
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This theory produces an electron liquid with a very small, but non-zero quasiparticle weight
at the Fermi momentum Z, - often abbreviated in this paper as Z. It therefore has a fair a-priori
possibility of reproducing the broad backgrounds seen in experiments. We also note that the
ECFL theory provides a quantitative set of results for resistivity of cuprates for the single layer
compounds [22] in fair agreement with a large body of data. It also provides a set of results for
the inelastic non-resonant Raman scattering in different channels for the t-J] model from the
fluctuations of the kinetic energy components [23], that give a fair account of Raman scattering
experiments [24,25].

In order to calculate the fluctuations of the charge density, one needs information beyond that
contained in G(k, w). We require the two particle response rather than the single particle Green's
functions. Generalizing the ECFL calculations in that direction is a non-trivial task. Therefore we are
obliged to make approximations using the correlated single particle Green’s functions.

This work extends the general formalism in two important directions described in the next
paragraph. These extensions enable the formulation of suitable approximations using the available
Green'’s functions G(k, w). We describe these two extensions, and record their location in this
paper. Some readers might find these extensions of potential use in problems other than the one
considered here. Other readers interested in the concrete applications made here, can use this
roadmap to skip certain sections and appendices.

The first formal result is Egs. (51), (55). This formula is valid for any density response function
that admits a high frequency moment expansion in powers of w? Egs. (F.4), (F.8). It expresses
the {q, w} dependent irreducible susceptibility in terms of (i) its static limit, (ii) the leading high
frequency moment and (iii) the complex self energy ¥ (q, ) for this object. This self energy ¥(q, »)
has not been discussed in literature, as far as we are aware. It is obtained following a Luttinger type
analysis of the susceptibility [26], by reorganizing the moment expansion formulas.

The next formal result is the derivation of an important pair of alternate formulas Egs. (33),
(44) for the dielectric function valid for all g, w. While Eq. (33) is a familiar expression in terms
of the density operator, Eq. (44) is new and involves the W operator, which is the divergence of
the lattice current operator as seen in Eqs. (10), (11). These formulas are modeled after analogous
formulas due to Noziéres in Ref. [5], valid for the (continuum) homogeneous electron gas. In the
latter context, Noziéres uses diagrammatic perturbation theory and regroups terms so that the
conservation of charge is reflected in the relationship between appropriate correlation functions
— thus finally leading to his twin formulas.

The two alternate formulas Eqgs. (30), (29) for the inverse dielectric constant are relatively more
straightforward, and follow from the continuity equation. These involve the reducible correlation
functions x,,, and provide the starting point for obtaining the Noziéres type formulas, which are
analogous relations for the irreducible susceptibility ¥,,. The connection between the reducible
ie. x,p, and irreducible ie. ¥,, susceptibilities is straightforward when the electrons are canon-
ical. The relationship is expressed using Feynman diagrams, which encode perturbation theory
compactly and elegantly, as shown in text books [5,27]. However for the t-/-V- model, we are
dealing with non-canonical electrons, and hence the identification and extraction of irreducible
pieces needs to be accomplished without the use of vertex functions, or of manipulating sums
of Feynman diagrams. The needed analysis is carried out in Section 4. The method employed by
us decomposes the charge source, i.e. an auxiliary external potential used to generate the Greens
functions into a part containing a Hartree type term from the remainder as described in Section 4
and Appendices C and D. As stated, this leads to the final formulas Egs. (33), (44), with a central
result being the identity Eq. (40), relating the (irreducible) charge and W-type correlations functions.
The W-type response functions involve the W-type vertex Egs. (11), (10), these contain the full
set of hopping parameters in the tight binding model, and crucially for our purposes, enable us to
address the g, w dependence of the charge response over the entire Brillouin zone (BZ). It is also
evident that by taking the long wavelength limit lim,_., we recover the homogeneous electron gas
relations originally written by Noziéres [5]

Combining the formal expressions Egs. (51), (55) for the charge and W-type susceptibilities
with the twin Noziéres type relations Eqs. (33), (44) enables us to make useful approximations
for the charge response. We use the ECFL single particle Green’s functions G to perform the explicit

5
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calculations, and thereby obtain two independent bubble susceptibilities Egs. (64), (65). These are
the basic computations from ECFL. Using them in Egs. (67), (68), we get two alternate estimates
of the irreducible charge susceptibility ipp(ﬁ, w), and there from the dielectric constant by using
Eq. (33). If we were to use exact (instead of bubble) susceptibilities, these two results would
coincide, by virtue of the exact result Eq. (40). Since the approximations for the bubble calculations
are not exact, these two estimates differ from each other in general. In fact these provide two
complementary approximations, valid in different regimes w — 0 and |w| > t (t is the hopping
parameter). We then combine expressions Eqgs. (51), (55), guided by considerations of validity at
low and high w as summarized in Appendix F and Appendix E. We finally arrive at alternate
approximations Eqs. (74), (75). These two approximations are overall similar in most features. They
only differ at very small g,  where quasiparticle excitations that are missing in Eq. (74), but are
present in Eq. (75), cause some differences. Another novel result presented here is the identification
of an important characteristic energy scale §2,(g). This scale locates a peak in Im X,,(¢, @) Egs. (57),
(61), and is also expressible as a specific moment of the Im S('W(?], w) in Eq. (86) and equation in
[28]. We present results for this scale and show that it is quite low at small q.

1.2. The plan of the paper

We define the t-J-V- model below in Section 2, and summarize the method used to calculate
the charge response. The calculation uses the ECFL theory to calculate the electron Green’s function
G to a certain approximation (termed as ©(A?)), which has been described in detail in our recent
publications [15,20,21]. To make this work self contained, we summarize the scheme and the
equations used to compute G in Appendix A.

In Appendix B we recall the formal definitions of the susceptibility and the structure function for
describing the charge response. Section 3 summarizes the definitions of charge x,, and “current-
type” susceptibilities xww, and their cross susceptibilities x,w, xw,, for electrons in a narrow band,
and their mutual relationship from the conservation law of charge.

In Appendix C we define the electronic Green’s function G, its equation of motion generated
conveniently by external potentials, which include a charge and a current source, and express
the susceptibilities in terms of variational derivatives of the Green’s functions, with respect to the
external potentials.

Instead we present the necessary formal results here, directly using the susceptibilities. The
strategy used is to redefine the external potential by absorbing a Hartree type term into it, as
described in Appendix D.

We define in Appendix D the irreducible susceptibilities %, in terms of the reducible ones. The
irreducible susceptibilities are calculated by taking functional derivatives of the Green’s function g.
The details of the formalism are provided in Appendix D. The dielectric function satisfies a linear
relationship Eq. (33) with it, in contrast to the non-linear relation with the reducible susceptibility
Eq. (30). In Appendix D we show that the conservation laws connect the screened, or irreducible
susceptibilities with results that parallel those for canonical electrons.

In Section 4 we express the susceptibilities in terms of their screened, or irreducible pieces
Xo.ps Xp.W» Xw,p> Xw,w- We find a useful and important pair of formulas Egs. (33), (44). These
relations, obtained for tight-binding non-canonical electrons, are completely analogous to the
results of Ref. [5], who worked with canonical electrons in the continuum, i.e., for the homogeneous
electron gas. In these exact formulas, the dielectric function at arbitrary (g, ) is expressed in
alternate forms involving two different pairs of correlation functions. These alternate forms work
better in complementary regions of @ and allow us to make useful approximations, as explored in
Appendix E.1 and in Appendix E.2.

The frequency sum-rules for the susceptibility play an important role in our theory and are
summarized in Appendix F. The limiting values of the dielectric constant at low and high w are
noted in Appendix E.

In Section 5 the formulae that approximates the dielectric function is presented and applications
of the methodology to the computation of the dielectric function is described. In Section 7 we
discuss the results and present some conclusions.

6
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2. The t-J-Vc model

The t-J-Vc Hamiltonian studied here is

H:Ht—i-HJ—i-Vc (2)
He = =3 tGGo —n Y m 3)
ijo i
1 - = nin;
H =5 Z Ji(Si8j = =) (4)
1 q2
Ve = = Vinin;, Vi 5
i% g
w1th the electromc charge de = —/e|, the density operatorn; = > EiLEia, and spin density operator

@ — Cis’, T is a Pauli matrix, and the Coulomb potential is denoted by Vj. The
1 2 oo’ 10 (7(7 y

hopping parameters —t; = 3- >_; e(i~T)g, are Fourier components of the band energy &, N; is the
number of sites in the crystaf. Here we have add the long ranged Coulomb term to the familiar t-J
model. The well studied t-J] model is obtained from the large U limit of the Hubbard model, by
performing an expansion in t /U, followed by the neglect of certain short ranged three body terms of
the order t2/U arise in this transformation [29]. We will study both 3 and 2 dimensional (layered)
strongly correlated electron systems, where the Fourier components of V are given in 3-d, assuming
a simple cubic cell of side ag by

1 4ng?

V() = —5——5 (3-d), (6)
Nsgeoo [qI*
and in 2-d by
- 1 2ng?
V(g)= —— —= (2-d). (7)
Nsages 14|
To simplify notation we will set i = 1 and the lattice constant ag = 1 in most part below.

Here &, is the static dielectric constant due to screening by mobile charges other than the ones
described by H, if any are present. Here the correlated Fermi destruction operator C; is found from
the plain (i.e. canonical or unprojected) operators ¢;, by sandwiching it between two Gutzwiller
projection operators Ci, = P;Ci,Ps. Let us note that these Fermions satisfy a non-canonical set of
anticommutation relations

(Co Gy = 8 (31 — 105G G ) » and
{Cirria C}r{,} = 0. (8)

The physical meaning of this sandwiching process is that the Fermi operators act within the
subspace where projector P; enforces single occupancy at each site. This model generalizes the well
studied t-J] model by adding the long ranged Coulomb interaction term, and we will study the effect
of the added term in determining the fluctuations of the charge density, the dielectric function and
related structure function. We initially keep the dimensionality of the electronic system general so
that the results apply to 3-dimensions, and later consider the case of 2-dimensional stacking of the
electronic system, for modeling cuprate superconductors.

The t-J-Vc model used here neglects multi-band aspects of the Coulomb interaction, and
focusses on the extremely correlated single band containing the Fermi surface (FS). It throws out
inter-band transition matrix elements of the Coulomb interaction and only retains intraband terms.
A rough account of the other bands is taken, by rescaling the Coulomb interaction by an infinite
frequency dielectric constant e, as in Eq. (5). This rescaling represents the cumulative effect of the
“fast” (i.e. high energy) electrons on the “slow” (low energy) correlated electrons described by our

7
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model. This type of reasoning suggests that as long as the excitation energies do not exceed the
inter-band energies, the single band model employed here should be quite reliable.

In applying the results of these calculations to real systems, it must be kept in mind that the
t-J]-Vc model is only a ‘low energy’ abstraction of the narrow band containing the Fermi energy,
which is further embedded in a continuum of bands extending to very high energies. Thus, in an
experimental situation, curtailing the frequency integration in Eq. (F.4) up to a cutoff frequency
2 ~ 1,2 eV is expected to capture the ‘low energy’ model, with strong correlations built into
the results. On the other hand by extending the integral to higher energies, one gets rid of the
correlations and the results should reveal the bare electron scales.

2.1. Comments on the novel features of our methodology

The solution presented here using the ECFL formalism has some unique features that need an
introduction. The main innovation consists of introducing a parameter A, lying between [0, 1] in
the theory. One simple way is to generalize Eq. (8) to

{Eia,-, Ej"(‘rj} = 81] (Saiaj - AU@@}}.E@-) s and
{Cioy. Gioy} = 0, (9)

so that A = 0 gives us standard Fermions, whereas A = 1 gives us the non-canonical Fermions
with Gutzwiller projection. As explained in [14] this procedure has a parallel in the expansion of
spin algebra in terms of Bosons using the parameter % which plays a role similar to that of A.
Another and equivalent method of introducing X is through the Schwinger-Tomonaga equations
of motion [14]. Collecting terms of a given order in A for the self energy type objects provides a
systematic solution of the exact Schwinger-Tomonaga equations for the Greens functions of the
t-] or the t-J-Vc model. More physically we may consider A as representing a fraction of double
occupancy, with A = 1 corresponding to their complete elimination.

The theory leads to a novel form of the Greens functions in terms of a pair of self energies, as
given in Appendix A. For a more complete description the reader may consult [14].

3. Reducible susceptibilities and conservation laws

In this section we outline the relationship between two reducible (dynamical) susceptibilities
Xpp and xww for interacting electrons on a lattice, which follows from the conservation of charge.
The basic definition of the susceptibility x4p for any pair of operators is given in Egs. (B.1), (B.8), the
local operators py = ge ), Cmo Cmo correspond to the charge density of electrons at site m and W to
the divergence of the lattice current defined in Eqs. (10), (11). These susceptibilities and their easily
derived relationship is valid at all (¢, w), and is then generalized to an almost identical relationship
between irreducible susceptibilities below. This generalization is technically non-trivial, and is one
of the main formal results of this work. Since it is likely to be of interest to specialists, we have
separated out the derivation to appendices, and keep the main text relatively free of these details.

The charge conservation laws follow from the basic observation that both H; and V¢ in the
Hamiltonian commute with the local charge density o, thereby only H; governs its equation of
motion. We find the commutator of p,; can be expressed by an exact relation involving a Hermitian
operator W,

[Ha pm] = _in7 where Wm = iqe Z tmn (E;gfncr - E]:]l—o'EmO') . (10)

no

Defining its Fourier component W; through

1 .
Wy = — Zetq.rm WZI’
N; 7
Wi = ige ) (67 — ¢14q) Glo Gz Wi = Wi (11)
ko

8
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the conservation law for charge can be rewritten as
[H, pz] = —iWj. (12)

We may think of the W-variable as the lattice counterpart of the divergence of the current 6]
from the following considerations. While Eq. (12) is valid for arbitrary g, in the long wavelength
limit ¢ — 0, we note that

lim Wy — —iqJ;, (13)
q—>
where the electrical current operator ja = Ged y (68;{) EgggﬁJrag. Hence Eq. (12) becomes the
familiar continuity equation

(1H. 31 +Jg) | g = 0 (14)

With this remark it is clear that Eq. (12) can be taken as the condition for conservation of charge
at arbitrary wavelengths.
This leads us to consider in addition to the charge susceptibility, the three W-susceptibilities

xww(d, T) = XW;JW,;](T);
XpW(ZL T) = X,O;]W,ﬁ(r);
XW,o(av 7:) = XW&,O_&(T)' (]5)

Note here that the location of W in the subscript determines the sign of the attached wave vector.

For completeness we note that the optical conductivity is written in terms of a current-
susceptibility (see Eq. (E.15)). The unscreened current—current susceptibility can be written in the
same fashion as Eq. (15)

x0(G. T) = Xy (7). (16)
Using Eq. (13) we can relate this to xww for small ¢

For [glao < 1, xww(d, ) = 1d1°xy(G, 7). (17)

The screened current-current susceptibility satisfies an analogous relation discussed later in
Eq. (E.14).

In Eq. (C.13) and related equations we use the same symbol to represent the real space versions
of the susceptibilities. It should be straightforward to distinguish between the two usages from
their contexts. Let us first note the relationships between these and the charge susceptibility. From
Eq. (B.8) we note that xpp(fz, 1) = (T, p5(7)p—3(0)) and therefore on taking successive t-derivatives
we get

d

Epr(av T)= (_i)XWp(a, 7) (18)

where we used the vanishing of the equal time commutator [p4, p—q]. Taking a further derivative
we find

d R S
EXWp(Qs 7) = S(t [W5, o—g]) — xwin,0(4, T)
= —iNex(§)8() + ixww (g, 7), (19)

and taking ¢ along the x axis

. 2¢? ~ =
«(G) = N > (et —#0) (G- (20)
ko

For general non-parabolic bands

lim (@) = [d1°7 (21)
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where the variable 7 (equal to the stress tensor per site Nis(r"") in [30]), is given by

q2 dZSE ~T ~
T== — ) (C! G, 22
Ns%:(dkf)<kﬂ o) (22)
It can be seen that 7 is related to the f-sumrule for the optical conductivity
* dw
— Reo(w)=T. (23)
—00

When parabolic bands & = k?/(2 m) are used, we find at all g the simple result

2
T= (%) , (24)

where n = N/N; is the electron density [31]. Combining Eqs. (18), (19), we find

d? . . .
ﬁpr(qv 7) = —=8(7)Nskc(q) + xww(q, T), (25)
Multiplying both sides by e/*** and integrating over t as in Eq. (B.8) we find
S 1 - =
pr(q’ i£2,) = E (NSK(q) — xww(q, I-Qv)) . (26)

The large 2 behavior is determined by the first term, since xww vanishes there, and leads to the
important plasma sum-rule discussed below in Egs. (E.6), (E.8), (E.9), (E.11), (E.12).
Analogous relations can be derived for real frequencies using the definitions in Eq. (B.1). We
write Eq. (18) and Eq. (19) directly in w space as
(@)Xpp(4, ©) = ixw,(d, ©) = =ix,w(q, ®) (27)
(@)xwp(q, ®) = iNsk(q) — ixww(q, ®) (28)

where « is defined in Eq. (20). It is clear that these relations in w can be obtained from Eq. (26) by
analytically continuing the Matsubara frequency i£2, — w + i0". Combining these we get

- 1 - -
X,op(q7 w) = _E (NsK(Q) — xww(q, a))) . (29)

which is analytically continued version of Eq. (26) for real frequencies.
We note the relationship between the reducible susceptibility x,, and the dielectric function
&(q, )

1 V@, G, (30)
&(q, o) 9z
This is easily established [5] from linear response theory. From Eq. (29) we note that we can
compute £(g, @) directly from x,,(¢, ), or alternately from xww/(q, ). When done exactly, these
alternate formulas must of course coincide, but they offer important possibilities for approximations
that we shall pursue below.

4. Noziéres type expressions for £(q, ») using two irreducible susceptibilities

We turn to the irreducible susceptibilities %,, and Xww, which are more convenient since they
already contain to a large extent the effects of the long ranged part of the Coulomb interaction. In
the electron gas problem these susceptibilities can be rigorously defined diagrammatically by using
screened vertex functions [5]. We can easily generalize the treatment in Noziéres to conventional
electrons in a tight binding model. This corresponds to Eq. (2) without the H; and with conventional
electrons replacing the Gutzwiller projected electron operators Cj,. With Gutzwiller projection the
entire calculation is non-trivial since the definition of vertex functions is beset with technical

10
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difficulties described elsewhere [14,32]. In Appendix D we present a workaround, avoiding the
use of vertex functions entirely and instead using the relationship between correlation functions
directly. The final relationships between the two sets of susceptibilities, valid for a tight binding
band of non-canonical electrons at arbitrary g, », are exactly the same as that for conventional
electrons.

We denote the pair of subscripts {o, W} by a symbol u (or v), and introduce the irreducible sus-
ceptibilities F{M(ﬁ, ). Rules for calculating the reducible and irreducible susceptibilities from taking
functional derivatives of the Green’s functions are provided in the Appendix C and Appendix D. The
relationships between the irreducible and the reducible susceptibilities are compactly given by (see
Eq. (D.9))

~ 1 .
Xuv(q) = X;w(q) - qu(Q)Xup(Q)Xpu(Q)o (31)
e
This can be solved for all the components and displays the screened nature of the resulting
susceptibilities. The density-density response y,, is simplest since all terms on the right have the
same subscripts. Gathering terms x,,(q) on the left, we find
Xoo(q)

' o | 32
Xop(Q) 14+ éV(q)pr(q’ ) N

Using Eq. (30), dielectric function is given in terms of the irreducible susceptibility by

- 1 .~

eq)=¢e(q0)=1+ qu(q)xpp(q, o), (33)
e

with the Coulomb potential given by Egs. (6), (7). Proceeding similarly we find the other three

susceptibilities in terms of their screened counterparts. With g = (g, w) the relationships between

the four susceptibilities are given by

~ Xop(Q)
pr(Q)— £(q) (34)
_ ’)?pW(QJ
xonta) = 22 (35)
_ )?Wp(Q)
xwpla) = 228, (36)
(@) = Fow(@ — ~ 9 F (@) Towl@) (37)
ww ww 2e(q) Wp ow(q).

It is worth noting the connection between these results and the equations presented by Noziéres [5]

for the homogeneous electron gas — denoted by a prefix “N". The vertex W (see Eq. (10)) replaces
the (longitudinal) current vertex (—i)%’k in Ref. [5], who chooses g along the z (or 3) axis and denotes
% by “3”. Our pair of operators map as {p — 4, W — 3} to those of Noziéres. Our susceptibilities
X,y AT ﬁ x S4,p of Noziéres. Our dielectric function in Eq. (33) corresponds to his Eq. (N-6.170),
our Egs. (32), (35), (36), (37) correspond to Eq. (N-6.168).

We next study the charge conservation laws for the screened susceptibilities ¥,,, combining the
conservation relations Egs. (27), (28) for the unscreened susceptibilities and the relations (Egs. (32),

(35), (36), (37)). Now using X,, = X, X € and Eq. (35) we write

(@)Xpp(d, @) = iXwp(d, ©) = =iX,w(d, o). (38)
For the next step we rearrange Eq. (29) as

Nk () = xww (G, @) — (@*)Xpp (@, @),

and substitute the screening equations Eq. (31), Eq. (35), and Eq. (36) for the right hand side. This
yields

Nsk(@) = Xww (@, @) — (@*)Xpp (G, @)
11
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V(@)

+ CIT ((w)z)(pp(aa w)%pp(aa ) — %Wp(aa w)XpW(ay U))) . (39)
e
We now use the conservation laws Eq. (27) (w)x,, = —ix,w, and Eq. (38) (®)X,, = iXw,. This
shows that the second term in Eq. (39) vanishes identically! We thus find the exact result
~ o 1 . . -
Xop(d, ) = Pl (Xww (@, @) — Ne(q)) , (40)

as the screened version of Eq. (29). At large |w| > t, since Xww(q, @) — 0, we find the important
asymptotic behavior for the real part

.~ o NsK(ZI)
1 = - . 41
lim (g, @) 2 (41)

For any generic ¢ we must obtain a finite static limit of %,,, which requires an exact cancellation
between the two terms in the bracket, i.e.

xww(d, 0) = Nske(q), (42)
and therefore can alternately write

~ Nok(@) (n o -

Xoo(@: ©) = ——=— (Xww(d. @)/ Xww(g, 0) — 1), (43)

Combining Eq. (40) we get an expression for (g, ), alternate to Eq. (33)
o 1 oy (o o
&g, 0) =1+ WV(Q) (Xww (@, @) — Ne(q)) - (44)
e

The expressions Egs. (33), (44) are the twin Noziéres formulas referred to in the introduction. The
formal derivation shows that if the two expressions are evaluated exactly, then they must coincide.
Approximations are not guaranteed to retain their equivalence. In certain classes of approximate
calculations they do agree. For example the standard random phase approximation (RPA) uses the
non-interacting Green'’s functions G, and the vertex is the bare one. The two susceptibilities are
found from the bubble diagrams [5]

fk
X0, i2,) = —q2 Y _ Go(k)Go(k + q) —2qu —k (45)
ko 8k+q v
X (@ 192,) = —¢ Zco (k)Go(k + q)(ej, — eM)
-2 fk+q = = 2
= 24, Z ~ie, — (¢ & — 8k+é) (46)

o
[ k+q —

In this case the validity of Eq. (43) can be shown by multiplying Eq. (45) by (i£2,)?, followed by the
use partial fractions. This process reduces it to Eq. (46) plus a term equivalent to qugr(q).

In the case of canonical electrons, we can define vertex functions suitably, and make ap-
proximations for the vertex as well as the Green’s functions in a consistent way [5,33] so that
the Ward-Takahashi identities are satisfied. Such approximations guarantee the equivalence of
the approximate versions of Egs. (33), (44). The RPA described above is an example of such an
approximation, this scheme trivially satisfies the Ward-Takahashi identities.

5. Formulas for the approximate dielectric function

The main problem of interest in this work is the t-J-V model. Here the short ranged Coulomb
interactions lead to a Mott-Hubbard type insulating state at half filling, and doping such a state with
holes leads to a metallic state of a very unusual nature, characterized with a small quasiparticle
weight. Adding long ranged Coulomb interactions to this state poses a considerable difficulty.

12



B.S. Shastry and M. Arciniaga Annals of Physics 442 (2022) 168924

While we are able to obtain a fairly sophisticated single electron Green’s function G from the
ECFL theory [14], the two particle response functions are currently unreliable. This is a difficult
task even for the simpler case of canonical electrons, and has led to a variety of beyond-RPA
type approximations [34]. For Gutzwiller projected electrons, it is indeed a formidable task. In
this situation, the availability of the two alternate formulas Eqs. (33), (44) is very helpful. We can
compute the susceptibilities ¥,,(q, ») and Yww (3, w) at all {g, w}, using only the above G within a
bubble scheme GG as described below in Egs. (64), (65). Being approximate, these two estimates
differ in general, but provide complementary perspective on the dielectric response at various
g, w. By comparing these estimates with known (exact) limiting behavior of the susceptibility
detailed in Appendix E, we can ascertain their respective regimes of validity. This provides us
with the possibility of combining the two formulas, to obtain an approximate answer whose broad
characteristics are known beforehand.

5.1. Formula for irreducible susceptibility in terms of a self-energy ¥(q, »)

We begin with a novel representation for the susceptibility using the freedom to define suitable
generalized self-energies of Green’s functions, as discussed in [35-37]. We start from the high
frequency moment expansion Eq. (F.8), in inverse powers of w? as discussed in Appendix F.2. This
series can be formally rewritten in a continued fraction representation following Mori [36,37] as

1 - . /‘31@)

_— . = 47

%meqm »? —o1(3) — 290G, o) “7)
Z‘)((O)((_j, w) = ) (48)

0? — (@) — 23, »)

where 8, = _‘T)E‘;U is the negative of the first moment of frequency Egs. (F.10), (F.14), and 2)((”1)(6, )
with m =0, 1, ... represent the successive “self-energies”. They are characterized by the property
that for @ > t they behave as E)(("’)(a, w) ~ ﬂ’;—{z and thus vanish. The coefficients oy, B
are functions of g and can be found in principle, in terms of the frequency moments. It is more
convenient for our purpose to rewrite Eq. (47) in by eliminating «; in favor of the static limit of
X, and using B; = —5)%”. This leads to

1 . . q2N; w? 1
——x(mm=<~eq — =t =
i Xo0(@,0)  @M(G) @)

We can simplify the notation by defining a new self-energy type function

-1
(@, 0) — (. 0))) : (49)

1
P — )5 0)5
(g, w) = ?[)(T(fj) (Ex (g,0)— 27(q, w)) ) (50)
with @(1)(q) detailed in Egs. (F.10), (F.12). The irreducible susceptibility is now given by
1 - . q>N; w? R !
——x(mm=<~eq —=m= — Y ) . (51)
q(%Ns p pr(Q»O) w(l)(Q)

This self-energy ¥ can be found from ¥,,(q, »), if the latter is known, by inversion of Eq. (51), and
can be expressed formally in terms of the higher moments @%*+(q) using Eq. (F.8) [35-37]. The
self energy vanishes in the static limit by construction

‘1’(317 a))|w4>0: 0, (52)

and has a finite high frequency limit (from the first term in Eq. (50)).
We note that from the Lehmann representation of X,,(g, ») that the ¥™ in complex w are
analytic everywhere except the real axis. This implies that all singularities are located on the real

13
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axis, and hence these can be further represented in the form

1/°° 0 Im =(9(g, v)

200G w)=—— 53
P CRO) N e (53)

T

where n = 0%. Using the fact that Z‘)((O)(ﬁ, 0) and X,,(q, 0) are real, it follows from Eq. (51) that

Im¥(G, ©) = ~@NIm 7, (G, ). (54)

Using the analyticity of ¥ in the upper half complex w plane, together with Eq. (52), we obtain an
expression for ¥ in terms of the imaginary part of the inverse susceptibility

W (G, ) = (@N) (; [ m %, @) s Y @) ”)> (55)

o) —V‘H’) v o)

Here the second term is expected to be finite due to the odd-ness in frequency of Im pr (g, v). It
follows from Eq. (54) that Im ¥(q, ) is odd in w while Eq. (55) says that Re ¥(q, w) is even in w.
In summary the susceptibility X,,(q, v) is determined in Eq. (51) by the self energy ¥ (¢, )
satisfying Eq. (52) and Eq. (55), together with two functions of g only: (a) the static susceptibility
X,,/,(q, 0) and (b) the moment &()(g) (with dimensions of frequency). The latter is calculable for all
g in terms of equal time correlations from Eq. (F.12).
Separating ¥ = ¥’ + i¥”, we can write the complex susceptibility Eq. (51) conveniently as

1 ovd P4 _ 1 22 2 N -
2N, Xop(q, @) = (5“)@{9 (q, ) — 0} —i¥ (q,w)> , (56)
and hence
5 BROIFACED)
——Im¥,,(q, ®) = == . (57)
@Ns [@D(@¥"(q, @)1 + {234, ®) — 0}
In these expressions the characteristic energy scale £2 is given by
2z ~yay (= "z
29q, 0) = 0 (q) d—ny(q) - ¥'(q, 0) (58)
- Xpp(0,0)
= NM'%, y(0)=1, (59)
pr(q7 0)

and we made use of the exact result Eq. (E.1) to express the static limit of the susceptibilit
terms of the thermodynamic variable 9. Recall that the compressibility xcomp = 2n1(0)c% o),
where n(0) is the density of states per site per spin, and hence this representation also satisfies the
compressibility sum-rule Eq. (E.1).

From Eq. (57) we see that Im )Tpp(ﬁ, w) is expected to have peaks. The peak frequency is termed
as £2,(q), and identified with wy, the positive root of

wp = %G, wo). ie. 2)(3) = wo. (60)
The root is approximately located at the energy scale £2(g, 0), i.e.
. . du
2,(q) ~ £2(4, 0) = |/ &N(q) *V(Q) (61)

We display alternate versions of this expression in Eqs. (83), (86). The width of the peak is given
by

1@ = |3V @¥ (G, 2,(@). (62)

As we explicitly see later, the approximation Eq. (61) for £2 ( ) at low @, is larger than the exact
peak frequency wyg in Eq. (60) by a factor of ~2, the dlscrepancy arising from the substantial breadth

14
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of the peak, I';, > £2,. In terms of these variable we can approximately write

~(1) 2
V(@ q)

——Im , = = . 63
Xoo@ )~ e @) — (©63)
The representation Eq. (51) also exactly satisfies the known high @ behavior Eq. (F.8), and

therefore reproduces the correct plasma frequency Eq. (E.7). It should also be clear that with obvious

changes to the variables, the above formulas Eqs. (51), (56) can be useful for other physical situations
such as the homogeneous electron gas etc.

1
q2N;

5.2. Approximate formulas for the irreducible susceptibility X,,(q, v)

It is very convenient to calculate the susceptibility starting from formulas Eq. (51). The input
variables in Egs. (51), (56) are found from the ECFL theory, using suitable approximations described
next. We make extensive use of the bubble approximation, where in taking the derivative with
respect to the external potential in Eq. (D.7), the G is assumed to depend on this potential only
through the explicit terms as in Eq. (D.5), and the implicit dependence via the other factors are
thrown out. For ¥,, we find an approximate expression from this bubble approximation

X, ——qug g(k + q), (64)

and evaluating ¥y within the bubble approximation

X (G, w) = —q? Zg G(k + q)(ex — extq)- (65)

ko

Using the spectral representation Eq. (A.13) for G the latter reduces to

Ko (@, @) = 242 Y (ex — £ryq)’
k

y / SO0 p a0 (o)
Vv 2

— V1 —w i0t

where f f dv. The density response XB“"(q, w) is found by dropping the factor (g — sk+q)2 in
this formula. The spectral functions in our model (see Fig. 1) consist of a quasiparticle part with a
much reduced weight Z « 1, and an extended background part. The indicated integrations can be
performed numerically.

Our two starting points are susceptibilities found from these bubble estimates and Eq. (43)

X, ©) = X554, ) (67)
~ 7 NS ~Bub (2 Bul
Xs(0. ) = :)Eq) (ww (@, @)/ X (@, 0) = 1) (68)

The estimate ¥4 provides a reasonable estimate in the static limit for the susceptibility. The
magnitude of the compressibility, found by taking the ¢ — 0 limit, is much smaller than the band
value, as seen in Fig. 3. It is comparable for most densities to that found from thermodynamical
evaluation of g—z (see Fig. 3). At finite q its shape is compared to that of the band susceptibility apart
from some interchanges of magnitudes between different directions (see Fig. 4). The imaginary part
of ¥4 shows a quasiparticle contribution of the type x” \ql for very small w < |q|vrZ. For larger
w, it has a broad contribution from the background spectral functions, but does not give the first
moment of frequency, and is therefore not satisfactory.

For Xz we verify that X (q, 0) agrees closely with Ns«(q), calculated independently using
a single Green’s function g frorn Eq. (20), at all g (see Fig. 5). The estimate ¥p is expected to
be satisfactory at finite (high) frequencies since it is constructed to satisfy the first moment of
frequency in the high w limit. However at low w it is does not capture the quasiparticle contribution

discussed above. Further the static limit — found from the O(w?) limiting behavior of X“f‘}“ﬁ,(q, w) —
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Fig. 5. The dimensionless functions [q%:c(f]) from Eq. (20) and ZN XMB,“',\l,’(q 0) from Eq. (65) plotted over the Brillouin zone

are approximately identical for a system at n = 0.85 and T = 297 K. The curves are coincident near |g| ~ 0, but separate
out at higher |g|. In an ideal exact calculation (going beyond the bubble approximation), these two curves are expected
to coincide identically at all |g|. The mismatch is a measure of the error made in the bubble approximation employed
(using the correlated Greens functions).

does not display the behavior expected for an incompressible system discussed above. Thus the two
estimates are successful in almost non-overlapping regimes of frequency.

Before proceeding we note that the two expressions Eqs. (67), (68) lead to two different self
energies

. 2 N. 2 N. 2
Up(G, @)+ o = e e (69)
@  xa@,0)  Xad )
3(q, — = o —
a@  x6(d.0)  Xs(d, @)

The first frequency moment wé )(q) in the second equation Eq. (70) is in fact exact, i.e. a)m(q) =

@1(@), as explained above. The corresponding frequency & wA (q) is not correct, and we show that it
is possible to avoid using it altogether.
We next construct two approximations to the irreducible susceptibility

X4, ) and X{1(G, w). (71)
When the context is clear we drop the subscript and use the simplified notation
700G, 0) < 7, w). (72)

Consider the approximate susceptibility ¥ combining the two susceptibilities ¥4, X5 in the form

1 1 1 )
x"(@, 0) = {N — — =+ = } ) (73)
XA(q’ 0) XB(qs 0) XB(q7 (l))
We can rewrite this using Eq. (70) in the form
N;q? w? - -
(l)(q ) = q2 {aaie — == — ¥(q, w)} . (74)
N | %@ 0) ~ a0

Since W(g, 0) = 0, we see that ¥)(g, w) has the correct static limit, and since ¥(q, ) vanishes
at high o, the approximate ¥")(g, ) also has the correct plasma frequency, while respecting
the strong local correlations. It therefore serves as a reasonable first approximation over the
entire frequency domain. A feature that is missing from %) in Eq. (74), is the quasi-particle
contribution. This was present in Eq. (67), but was left out in Eq. (74) since we threw out all
the frequency dependence of 4. We can incorporate this contribution, again approximately, by
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making a correction to ¥ taken from W,. Inspection shows that for small g, w the quasiparticle
feature in 4 arises from a contribution Im ¥, o ﬁ It is analogous to the familiar correction
that arises in the Lindhard function from quasiparticles [5,38,39]. This quasiparticle contribution
leads to |Im ¥,(q, w)| > |Im ¥3(q, w)| for small enough w at a fixed g, while for larger |w| we find
[Im ¥3(q, )| > |Im ¥p(q, w)|. To further refine the approximation, we keep this observation in
mind and add the incremental §¥gp(g, w) containing the quasiparticle damping to s,

~(”)(" )_N 2 qug a)z tI/(" ) S, (" ) B (75)
e F O - C R )

In order to determine the appropriate correction term §¥op(g, ) in the above expression, we argue
as follows. Since Im §¥gp should add the damping due to quasiparticles, with w > 0 we choose

Im §Wop(G, @) + Im ¥5(q, ) = Max{Im ¥(q, w), Im ¥5(q, o)} (76)

This construct isolates the excess damping present in ¥(q, w) over and above that in ¥s(q, w),
due to quasiparticles at low w. In slightly more technical terms Im §¥op(g, w) vanishes outside the
region |[Im ¥,(q, w)| > |[Im ¥,(q, ®)|. For @ < 0 a similar argument can be used keeping in mind
the odd-ness of Im¥’s in w, we use Min instead of Max in Eq. (76). The real part of §¥gp can be
calculated using the Kramers-Kronig relation, i.e. by taking the real part in Eq. (55)

w_lf" gy MO¥er(@ v)

00 v

-l o0
Re §¥op(q, ®) = —P—/ dv , (77)
T —00

w—V T
whereby we guarantee that §Wgp(g, 0) = 0.

On further separating the complex self-energies, these two approximate susceptibilities Eqs. (74),
(75) lead to expressions analogous to Eq. (56), with the same static susceptibility Eq. (59) but slightly
different characteristic frequencies §2 in Eq. (58).

With these approximations ¥)(4, ), X"(q, ), the 2-d dielectric function can be written in the
form

2
2nd; gy

(= _
(g, w) = —— (g, )
|qlagNsq2ex
& t ~um=
=1+ = =X (g o), (78)
Iqlao (qus
where the dimensionless Coulomb constant is defined by
27 q?
8= —". (79)
€00 Aot

With the 2-d lattice constant ap = 3.81 A, t = 0.45eV and &, = 1.76, we get g. ~ 30.0. For the
material BSCCO used in [9,10] the authors estimate dielectric constant g4, ~ 4.5, giving g. ~ 11.5,
with the same t. Since the basic parameter t can vary somewhat depending on the theory, we
present results for typical values g, = 10, 50, 100 in the following.

5.3. Related variables irreducible susceptibility Im % ,,, optical conductivity Re &, current susceptibility
Im 71]
We next record a useful relation between a triad of variables defined below, that follows from

conservation of charge. These variables are the dimensionless conductivity variable Re 5(q, @) is
related to the physical (i.e. dimensional) conductivity through (see Eq. (E.17))

- h .
Reo(q, w) = - —Red(q, w), (80)
dzCo

where g is the separation between two copper oxygen planes in the cuprates. Detailed results from
the ECFL theory on the resistivity, optical conductivity and inelastic Raman cross sections have been
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recently published by us in [15,20,21,23], over a wide set of parameters, but corresponding to the

G = 0 limit only. These are extended to finite g here. Let us first note the relationships between the

three sets of variables Re 5(q, »), Im ¥}(¢, @) and Im ¥, ,(q, @). Combining Egs. (E.14), (40) we find
- ~ - o

For [glap < 1, Im xy(q, ®) = Wlm Xpp(d, @), (81)

which is a form of the charge conservation law. Combining further with Eq. (E.17)) we get the
important relation valid in the regime |q|ag < 1:

- 1 (Im ¥y(q, ) ® (Im¥p,(4, @)
ReG(d.w)= — (— L2 ) = — [ 222222, (82)
[ quS |q| quS

As mentioned above the electron diffraction experiments reported in [9,11,11] measure Im X,,(q, )
at essentially arbitrary g. We point out below that the other two variables in Eq. (82) are also
measurable, at least if we make suitable assumptions regarding the approximate correlation
between Raman scattering intensities and the current susceptibility Im ¥j(q, @), at sufficiently
low q. After accounting for explicit ¢ dependent terms arising from the conservation laws, if the
remaining ¢ dependence is assumed to be mild, then Eq. (82) acts as a constraint on Im ¥,,(¢, )
for small non-zero ¢ as well. We discuss this relation extensively below in Section 6.7 with regard to
the theoretical calculations, and comment about the ¢ dependent peaks in e of this triad of variables.

5.4. Characteristic frequency scale $2,(q) revisited

This turn-around occurs at the peak frequency $2,(q) defined in Eq. (61). The magnitude of the
turn-around frequency $2,(q), typically a small fraction of ¢ can, depending upon the choice of the
hopping parameter t, be very small. We can estimate this further as follows. Using Eqs. (58), (61)
together with the expression for the first moment @(V(q) in Eqs. (F.12), (F.14) and (F.15) we express
£2,(q) explicitly as a function of g. At small g this simplifies further to

. S L [T du
lim 2,(4) = || | = —, 83
5513 »(q) = 1q| ¢ dn (83)

where the velocity /qlz‘é—’; is determined by the ratio of 7 Eq. (F.16) that shrinks as the density

n — 1, and the compréssibility Fig. 3. We comment further on this turn-around in Sec. 6.7.

Given the interesting role played by this energy scale £2,(q), a natural question is whether
it has a more direct origin and interpretation. For this purpose we construct a positive definite
spectral-shape function ¢(q, @) from the complex susceptibility X,,(q, ) as

- 1 Im %,,(q, )
9(q. )= =—— [ - : (84)
pr(q’ 0) Tw
Using a dispersion relation for fpp(a, ) Eq. (F.7), we verify the normalization condition
o0
/ dw ¢(q, w) = 1, (85)
—00

and also the even-ness ¢(g, —w) = ¢(q, w). The second frequency moment of this spectral-shape
function is given by

o0
f dw w® ¢(q, 0) = 25(@), (86)
—00
where we used Egs. (59), (F.7), (F.8) and (F.10) to relate the result of the integration to the expression
in Eq. (61). Thus £2,(q) provides a characterization of the dynamics of X,,(q, ®). As noted above,
our theory identifies this energy as the peak frequency, or equivalently the turn-around scale for
Im X,,(, ®) (see Sec. 6.7).
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In experiments a reasonable estimate of .QP(Z]) might be obtained by an integration over a finite
frequency window in Eq. (86), if ¢(q, w) falls off rapidly with « [28]. From Eq. (83), Eq. (86) and
equation in [28], we see that this energy scale results from a ratio of two diminishing scales,
the bandwidth reduction and the compressibility reduction, both due of the Gutzwiller-Hubbard
correlations.

6. Calculations, results and discussion

We first summarize the parameters used in our calculations. We calculate the Green’s functions
using the set of formulas summarized in Appendix A Egs. (A.3)-(A.10), employing the set of band
and model parameters

t =045eV, t' =-0.20t, ] =0.17¢t, . (87)
The system sizes used in most of the presented calculations are
N, = 2", L, x L, = 64 x 64 (correlated model) (88)

where N,, is the number of @ points in the frequency grid and Ly, L, are the dimensions of the 2-d
lattice. For calculations of the reference uncorrelated model, we use bigger spatial grids L, x L, =
128 x 128. We present results at a few representative temperatures, and focus on two densities
n = 0.80 and n = 0.85, corresponding to the well studied over-doped regime and optimally doped
cases in the family of cuprate superconductors. We now present the results from this formalism,
and provide some discussion of these.

6.1. Basic results from ECFL on spectral function, momentum distribution and compressibility

We begin by illustrating the basic results of the ECFL theory for A(E, w) the single electron
spectral function, and m; the momentum distribution function, which display the strong redistri-
bution of spectral weight from a Fermi gas due to correlations. This is followed by showing the
compressibility within ECFL. The compressibility is reduced considerably from the Fermi gas due to
Gutzwiller type correlations, as argued originally in [1,3].

e Fig. 1 shows the electronic spectral function A(R w) obtained by solving for the ECFL Green's
function by methods that are elaborated upon in Appendix (A) . The quasiparticle weight
Zy; (abbreviated as Z is seen to be very small Z = 0.06,0.09 for T = 99 Kand T = 297
K respectively. The area sum-rule for the lower Hubbard band spectral function reads as:
f dwA(k,w) = 1 — I, it is satisfied by depleting the quasiparticle peak, and smearing it
over a wide background. This redistribution of weight accounts for the broad and featureless
background seen in the spectral functions, it is a reflection of the strong local correlations. The
insets show the spectral function at kr against w/t, over a wide energy scale. They show that
the small area under the quasiparticle peak at @ ~ 0, due to a tiny Z;,, is compensated by broad
features at very high excitation energies ~ 10t. Analogous figures for the spectral function at
other densities and temperatures over an wider energy window for this theory can be found
in [15] (Figs. (1, 2)) The spectral width depends sensitively on T. This thermal sensitivity is a
characteristic of the ECFL theory, where the effective Fermi temperature is much suppressed
from the band value. o

e In Fig. 2 we display the momentum distribution function m; = (C,fT Ciy) found from Eq. (A.12),
together with the analogous ny for uncorrelated electrons. The reduced quasiparticle weight is
also reflected in a small (Migdal) jump [2,5,38] in the momentum distribution function my. The
ECFL theory satisfies the Luttinger-Ward theorem and hence the Fermi surface (FS) is unshifted
by interactions. In this figure a drastic reduction of the quasiparticle weight Z, is evident from
the flattening of the correlated distribution m; in this figure. Certain weighted averages of my
are required for computing the function ék(a) (Eq. (20)), or upon using Eq. (F.12), the first

moment @(V)(g)/t. These are tabulated in Table 1.
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Table 1
The averages used in Eq. (F.14) to calculate «(q) in Fig. 6. The flattened distribution function
my in Fig. 2 leads the much smaller values of these angular averages for the correlated metal.

n Uncorrelated Correlated

0.80 (€S Ky)ave 0.188847 0.056881
(cos ky cos ky ) ave 0.032757 0.00661296

0.85 (cos ky)ave 0.190954 0.0400778
(cos ky cos ky ) ave 0.018181 —0.0079378

e In Fig. 3 we plot the compressibility using the thermodynamic result Eq. (E.5), as a function
of hole doping § = 1 — n. Correlations are seen to suppress the compressibility as § decreases
towards the insulating limit, relative to the compressibility of the free Fermi gas. We also
show the static uniform limit of the susceptibility 2 limq_>0 Zg;‘}’(q, 0) (Eq. (64)). If an exact
calculation, going beyond the bubble approxnmation were possible, the two curves would
coincide, thanks to the sumrule Eq. (E.1). We see that the discrepancy is quite small at low |g].

6.2. Static susceptibility and the first moment & V(q) or x(q)

e In Fig. 4 we display the wave vector dependence of the static charge susceptibility ¥,,(q, 0)
and compare with the bare (uncorrelated) static susceptibility using Eq. (45). Correlations are
seen to suppress the magnitudes of the susceptibilities as expected. Somewhat unexpectedly,
the relative locations of the three curves for the correlated system, corresponding to different
direction in the k-space undergoes a reshuffle relative to the band susceptibilities. At small q,
the I' — M and M — X curves are inverted, and the I — X also flips.

e In Fig. 5, we compare the dimensionless functions tlzl((_’) from Eq. (20) and @N %“Z}“ﬁ,(q, 0)

from Eq. (65) plotted over the Brillouin zone. In Eq. (42) we noted that the 1dent1ty of these
objects is required in an exact theory. Fig. 5 verifies that the present calculation satisfies this
identity exactly at small q, and fairly well over the entire zone.

e In Fig. 6 we display _k(q) Eq. (20), which is equivalent to the first moment @((g)/t, and

also the 2-d plasmon spectrum(Eqs (7), (E.7) and (E.12)). The plasmon displays the expected
acoustic \/E behavior at low g of 2-dimensional plasmons. This feature is followed by a broad
continuum at an energy scale w, ~ 1.50t, which is considerably lower than the energy scale
without interactions.

6.3. Irreducible susceptibility Im¥,,(q, @)

o We next display in Fig. 7 results for the two successive approximations to the irreducible
susceptibility X in Eq. (74) and ¥V in Eq. (75). These are constructed using three building
blocks (i) the static susceptibility Xa(q, 0) (ii) the plasma frequency @ and (iii) the self
energy ¥(q, o). The first two are common, while the third, i.e. the self energy, distinguishes
between the two approximations; ¥V uses the self energy ¥5(4, ) while X uses self energy
(g, 0)+8Wop(q, w). Panel (a) shows the imaginary part of these two self energies. From these
objects we compute its real part using the causality condition Eq. (77). The real parts of these
three susceptibilities are shown in panel (b,e,f). In comparing panels (c) and (e) we clearly
see the linear in w regime near the origin due to the quasiparticle contribution, which in turn
creates the double minimum in the real part seen in panels (b) and (f).

e In Fig. 8 panel (a) we display Im ¥, (multiplied by a scale factor @(V)(g)) at different g as
functions of w. We observe that these collapse to a single curve over the Brillouin zone, when
multiplied by &"(§) (Eq. (F.4) and in Fig. (6.b). The other self energy, Im{Wp+6¥yp} at different
q differ in the low w region, due to the presence of the quasi-particle contributions, but do
collapse to a single curve at higher frequencies, as seen in panel (b)
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— free: n=0.85 — correlated: n=0.85 — FS: n=0.85
--- free: n=0.80 --- correlated: n=0.80 --- FS: n=0.80 5
X
6
5
&
g4
Z
g3
¥ 2
1
0

Fig. 6. (a) The function [q%/c(?;) (Eq. (20)), or upon using Eq. (F.12), the first moment @((g)/t over the BZ (indicated in

the inset) at T = 297K. WEe used Eq. (F.14), at two densities n = 0.85 (solid curves) and n = 0.8 (dashed curves) for the
uncorrelated (red) and correlated (blue) systems. Recall from Egs. (F.10), (F.12), that &")(g) can in be inferred in principle
from experiments by e.g. using Egs. (F.7), (F.8). (b) The plasmon dispersion w,(q) in 2-d from Egs. (E.12), (E.7), (7) for
the same parameters, and &,, = 4.5 (i.e. g.~11.5), for the uncorrelated (red) and correlated (blue) systems. In the latter

o1 . . . . :
the characteristic w, oc [q|2 behavior of 2-dimensional plasmons, is followed by a broad continuum at an energy scale
wp ~ 1.50t, which is considerably lower than the energy scale without interactions. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

e In Fig. 9 we compare two approximations for the imaginary part of the irreducible (screened)
susceptibilities Im ¥) (solid red line) and Im ¥ (blue dashed lines), i.e., Egs. (74), (75). As
expected the quasiparticle contribution at low frequencies is roughly linear in w. If we neglect
that regime, the two approximations lead to similar results, as seen for w > 0.40t. The inset
shows that the corresponding non-interacting complex susceptibility (see Eq. (45)) for the
same parameters, extends to much higher frequencies w/t, and have different vertical scales
and shapes.

e In Fig. 10 we show the g, w variation of the imaginary part of the irreducible susceptibility
Im ¥V Eq. (75). We show the density and temperature evolutions of the screened sus-
ceptibility approximations ¥’ (dashed) and ¥ (solid) over the ranges n = 0.8,0.85 and
T =99, 198, 297 K in the direction I" — X (see Fig. 10). In all cases we observe that the high
o fall off of Im ¥ is ~ ﬁ while the curves turn-around at low frequencies to vanish as w — 0.
The significant features from the Im %" (in Eq. (74)) are qualitatively similar. Each curve
exhibits a ¢ dependent peak at an energy £2,(q) from Eq. (61). The peak shifts towards lower
energies as ¢ is reduced, and for a fixed q the intensity drops rapidly with a modest increase
of T. The peak energy is a (measurable) characteristic energy scale, and discussed further in
Figs. 15 and 16. We also note the approximately ~ ﬁ falloff of this function beyond the
peak frequency. This falloff is similar to that seen in experiments [9-11], and we correlate
this behavior with that seen in optical conductivity and the current-current susceptibility in
Fig. 15. We discuss the connection with a related feature observed Raman scattering below in
Section 6.6.

6.4. Dielectric function &(q, w)

e In Fig. 11 we display the approximate dielectric functions, computed from Egs. (78), (79), in the
form of —Imﬁ at two different values of the Coulomb coupling g.. The effective Coulomb
coupling constant g. Eq. (79) involves a combination of material parameters t, ag, €. In the
BSCCO material used in the experiments of [9,10], using t ~ 0.45 eV, ap~ 3.81A and £,,~4.5,
we find g.~ 11.5, while using t ~ 0.16 eV gives g. ~32.0. We provide results for a few typical
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Fig. 7. The different panels illustrate the complex self energies ¥ (g, ), relevant for the two successive approximations to
¥ at a typical density n = 0.85 and temperature T = 297 K. The susceptibilities ¥ in Eq. (74) and X"V in Eq. (75) are
constructed using the self energies Wy(q, ») and ¥(q, ®)+38Wop(q, ) respectively. In panel (a) at § = {7 /8, 7 /8} we show
¥, (red-dotted) and ¥y (blue-dotted), as well as the imaginary part of the third self energy W5 + §¥op (green-dotted).
For w > 0 the latter is obtained by taking the larger of Im¥, and Im¥g, while for v < 0 we use the oddness of Im¥ to
flip the curve. The imaginary part of (g, w) + 8Wgp(q, w) captures the quasiparticle part contained in ImWs(q, w) at low
w, but otherwise is the same as Im®;. The real parts are calculated using the causality relation Eq. (77). The real parts of
these three susceptibilities are shown in panel (b). Panels (c) and (d) show the real and imaginary parts of ¥ at a few
typical values of §. Similar plots for W5 + §Wop are shown in panels (e) and (f). In comparing panels (c) and (e), we see
the linear in w regime near the origin due to the quasiparticle contribution, which in turn creates the double minimum

in the real part seen in panels (b) and (f).
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Flg 8. (a) The imaginary part of the self energy ¥s(q, w) (Eq. (70) and in Fig. 7) relevant to ¥, at different values of
G =(q,q) (in I' — X direction) are seen to collapse to a smgle curve, when scaled by the first moment @ (q) (Eq. (F4)
and in Fig. 6.(b)). (b For W(q, )+ 8¥gp(g, @) relevant to ¥V, the imaginary part of this self-energy also coincides, but
only at high frequencies beyond the energy scale of the quasiparticle excitations.
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Fig. 9. A comparison between the (a) imaginary and (b) real parts of the irreducible susceptibilities ¥’ in red (using
¥s(4, ) in Eq. (74)), and ¥ in dotted-blue (using ¥z + 8Wop in Eq. (75)). Note that a quasiparticle (linear in w)
contribution is visible in (a) at low frequencies. If we neglect that regime, the two approximations lead to similar results
for w > 0.40t. The inset shows that the corresponding non-interacting complex susceptibility given in Eq. (45) for the
same parameters extend to much higher frequencies w/t, and have different vertical scales and shapes.
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Fig. 10. The §, w variation of the imaginary part of the irreducible susceptibility Im X" Eq. (75). The significant features
from the Im X" (in Eq. (74)) are qualitatively similar, and hence omitted. The figures are at densities n = 0.8, 0.85 at
temperatures T = 99, 198, 297K in the I' — X direction where § = (q, q). Other directions in the BZ give similar results
for small |g|, as one might expect. Each curve exhibits a g dependent peak at an energy £2,(4) ~ £2(¢, 0) from Eq. (61).
The peak shifts towards lower energies as q is reduced, and for a fixed q the intensity drops rapidly with a modest
increase of T. The peak energy is a (measurable) characteristic energy scale, and discussed further in Fig. 16.
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Fig. 11. The dielectric functions e(q, w) and their inverse from Eq. (78) for a system at n = 0.85 and T = 297 K, with
4= (q q) along I" — X. The insets show the corresponding curves for the RPA approxunatlon (obtained by using Eq. (45)
for ¥ in Eq. (78)) with the same hopping parameters. In obtaining ¢""")(g, w) from % in Eq. (78), we require the effective
Coulomb coupling constant g. Eq. (79) involving a combination of material parameters t, dg, £~. In the BSCCO material
used in the experiments of [9,10], using t ~ 0.45 eV, ap~ 3.81 A and ,,~4.5, we find g.~ 11.5, while using t ~ 0.16 eV
gives g. ~32.0. We provide results for a few typical values of this parameter, since the basic parameters vary for different
materials. Here panel (a), (c) is the imaginary part while panel (b), (d) is the real part for g.= 10, 50 respectively. The
curves Re ") do not vanish in this range at g.= 10 (panel(b)), while they do so when g. = 50 (panel(d)). This is unlike
plasmon in weakly interacting electron gas for both g. as seen in the insets. In the latter, as discussed in textbooks
Ref. [39], a zero crossing of Re &(q, w) determines the plasmon frequency, which is also visible as a peak in Im %

values of this parameter, since the basic parameters vary for different materials. The variable

—Im—=— g(q is directly measured in (inelastic) electron loss type experiments in typical metallic
systems. The significance of this variable is that any peaks signify plasmons. We also show

the calculated Re &(g, @), which is also used to identify plasmons through its zero crossing in
certain optical experiments. From this figure we note that unlike in the RPA calculation [10,39]

for uncorrelated materials, Re{¢} crosses the zero line only for large g..
e In Figs. 12 and 13, we show the imaginary part of inverse dielectric function (Eq. (78)) at

n = 0.85 and T = 297 K over the ranges q = 7 /16, /8, 37 /16 with ¢ = {q, q}. We also
illustrate the dependence on g using g. = 10, 50, 100. We note that when g, is large, the peaks
are broadened out considerably and pushed out to higher energies, as compared to smaller g..
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Fig. 12. Imaginary part of inverse dielectric function (Eq. (78)) at n = 0.85 and T = 297 K with § = {q, q} at representative

values of the Coulomb coupling g. Eq. (79). The peaks in the I" — M direction are similar at low §. The variation with
q at given g, is shown in Fig. 13.
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Fig. 13. The ¢ = {q, q} variation of imaginary part of inverse dielectric function (Eq. (78)) at n = 0.85 and T = 297 K at

representative values of the Coulomb coupling g. Eq. (79). As g. increases, we note a shift of peaks to higher frequencies
as well as a broadening.

6.5. Reducible susceptibility x,,(q, ®)

e In Fig. 14 we show the reducible susceptibility Im x,,. From Eq. (B.6) we note that Im y,,
is the most directly accessible (i.e. raw) object in inelastic electron scattering experiments,
and therefore of considerable interest. It is related to —Im {1/¢} plotted in Figs. 11-13 via the

2
relation Im x,, = —3—‘: Im {1/¢} from Eq. (30). The peaks are located at the same frequencies,
q

since the factor connecting them is independent of w. We note that its connection with the
irreducible susceptibility,

Im 7/)/)(71, o)

Im pr(a, ) = V-~ o V-~ o )
{1+ éRe pr(CI» )2 + {é[m pr(q’ w)}?

(89)

involves an w and (Coulomb constant) g. (Eq. (79)) dependent denominator. This term causes
the peaks of Im x,, to be shifted upwards substantially with respect to those of Imx,,. The
shift is also strongly dependent on the Coulomb constant g. Eq. (79), as seen in Fig. 13. The
peaks in the reducible susceptibility Fig. 14 or of Figs. 11-13 are at w~ t while those of the
irreducible susceptibility in Fig. 10 are at about w~ 0.15¢t at similar wave vectors. Here we
also note a decrease in magnitude of the peak height as ¢ — 0. This is a direct consequence
of the conservation of charge, and serves as a constraint on experiments.
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Fig. 14. The reducible (i.e. unscreened) susceptibility Im x,, (Eq. (32)) at n = 0.85 and T = 297 K. We note from Eq. (B.6)

that

this is the most directly accessible object in experiments. Panels (a,b,c) show wavevectors g = {q, q} and panels (d,e,f)

show wavevectors ¢ = {g, 0} at three values of q, using representative values of the Coulomb coupling g. Eq. (79). Results
using ¥V are similar apart from the region of smallest w, and omitted for brevity. In all panels the peak magnitudes
decrease as ¢ — 0, as a consequence of the conservation of charge. We observe that as g. increases, the peaks in Im yx,,
are broadened and pushed to higher energies, as also seen in Fig. 13.

6.6.

The theoretical calculation of either approximation to the screened susceptibility ¥,, does not
depend on g., while the unscreened y,, (inferred from Eq. (32) or Eq. (89)) does so. This implies
that uncertainties in the theory or in g, are magnified in x,,. In this sense we might say that
Xop is the raw theoretical variable.

It is amusing to note that experiments face a converse of the theoretical problem. The
measured scattering intensity yields the reducible susceptibility pr(a, w), and the extraction
of the screened susceptibility X, p(a, w) requires amongst other assumptions, an estimate of the
material dependent Coulomb coupling g. (from Eqgs. (78), (79)). This observation motivates our
exploration of a varying the values of g.. In Fig. 14 we observe that when g, is large, the peaks
in Im x,, are broadened out considerably and pushed out to higher energies.

The variables Im,,, Re & and Im

e In Fig. 15 we display these closely related triad of variables, Im X,,(q, ), Re(q, w) and

Im Xj(4, w), which are related through Eq. (82). Panels (a,d) display the density suscep-
tibility Im }},’})(?},w) (Egs. (75), (72)), panels (b,e) display the dimensionless conductivity
Red (Egs. (80), (E.13) and (E.17)), and panels (c,f) display the current susceptibility ImX}
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Fig. 15. Three variables Imil(?’/’))('q', o), Red(q, ) and Im¥)(g, ), closely interrelated through Eq. (82), each exhibiting
peaks as functions of w, are compared at T = 297K, and n =0.85 and n =0.80. The wavevector § = (q, q) lies along
I' — X. This computation used L, x L, = 128 x 128. Panels (a,d) display the density susceptibility Im x!)(g, ») (Egs. (75),
(72)), panels (b,e) display the dimensionless conductivity Re & (Eqs. (80), (E.13), (E.17)), and panels (c,f) display the current
susceptibility ImYxj; (Egs. (E.14), (81)) with the displayed prefactors. Temporarily ignoring constants t, N, g, the variable
in panel (b) is obtained from the variable in panel (a) by multiplying with w/q?, and the variable in panel (c) is obtained
from that in panel (b) by multiplying with w. Similar considerations hold for panels (d,e,f). The flattening of the curves
for Im ¥ for all g beyond the peak imply that Im Xop falls off as 1 /w? in that region. Such a feature was already noted
in current experiments [9-11]. The solid black lines for § = 0 in panels (b,e) and (c,f) are separately computed using the

current vertex as defined by Eq. (2) of Ref. [23].

(Egs. (E.14), (81)) with the displayed prefactors. Temporarily ignoring constants t, N;, q., the

variable in panel (b) is obtained from the variable in panel (a) by multiplying with /g%, and

the variable in panel (c) is obtained from that in panel (b) by multiplying with w. Similar

considerations hold for panels (d,e,f). The multiplicative factor changes the low w behavior of
the three variables, and it also affects the location of the peak frequencies are slightly shifted
from the theoretical £2,(q) Eq. (61). We explore this shift more closely in the following section.
The evolution of the theoretically calculated ImY is quite complex at low ¢, w. On the other
hand the theoretical conductivity Re& and the current-current susceptibility ImXj evolve
relatively more smoothly with . From this observation we expect that these curves might
serve as guides for interpolation in .

The above observation suggests that Raman scattering experiments and optical conductivity
experiments, which probe small ¢, could be useful. Assuming smoothness in g, these experi-
ments can be perhaps useful in constraining the inelastic electron scattering data. Firstly we
note that non-resonant inelastic Raman scattering data in the B, geometry (e.g. see Fig. 6
of [25]) shows a close correspondence with optical experiments [24,25]. Assuming this relation
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Fig. 16. The characteristic energy scale £2(4, ) Eq. (58) in units of t. Here £2(") is found from the peak frequency using
Eq. (75). Here n = 0.85 and T = 297 K and ¢ = (q, q). The peaks in Im Z,,,,(a, w) are found from Eq. (60), or approximately
at the energy £2,(q) ~ £2(q, 0), i.e. the @ = 0 intercept in the above curves. The intercepts therefore represent the peak
energy scale observed in Fig. 10.

one can obtain a rough estimate of %) from Raman measurements [24,25,40]. The flattening
of the theoretical curves for Im ; for all g beyond the peak, also seen in Raman data of [25]
at low g, imply that Im,, falls off as 1/w? beyond any features. This is consistent with the
observations in current experiments [9-11], at essentially any g.

Another interesting variable is the (independently measurable) optical conductivity at ¢ = 0,
which in turns evolves continuously from transport measurements at @ = 0. The present
theoretical calculations show a smooth evolution with ¢ above the peak at £2,(q) [41].
Therefore a systematic comparison at a set of g of the Re (g, ) deduced from Im%(q, ») (by
multiplying with w/lalz), with the optical conductivity Re 6(0, w) could be most helpful. One
advantage is that the deduced Re o (g, ) is expected to be more stable than ImY,, against
low w excitations or noise, and hence more stable.

6.7. The energy scale £2,(q) and peak frequencies in Im X,,, Re & and Im ¥

e In Fig. 16 we display the energy scale £2(¢, w) Eq. (58) in units of t using Eq. (75). The peaks
in Im ¥,,(q, ), denoted by $2,(4) (Eq. (61)), are roughly given by 2,(4) ~ $2(g, 0) i.e. the
w = 0 intercept in the above curves. The intercepts therefore represent the peak energy scale
observed in Fig. 10. Experimentally £2,(q) can be inferred from a turn-around feature observed
in the plots of Im ¥,,(q, »), and potentially also in experiments. An explicit expression for the
important energy scale Qp(a) in the limit of small g is given in Section 5.4 and Eq. (83). In those
sections we also provide an alternate and direct argument that leads to this scale, starting from
the normalized spectral function of density fluctuations ¢(q, ) Eq. (84).

o In Fig. 17 we show the approximate theoretical peak energy scale £2,(q) (Egs. (61), (86)) and
the width of the peaks Fp(a) (Eq. (62)). These two scales are enough to reconstruct the peak in
the irreducible susceptibility Im ¥ ,, using Eq. (63), at least roughly. This plot indicates a peak
structure for small g. For higher g the breadth exceeds the peak frequency, as seen explicitly
in Figs. 10 and 15.

o In Fig. 18, we show the approximate theoretical peak frequency $2,(¢) (red) Egs. (61), (86) and
the exact peak frequencies extracted numerically from Fig. 15 for ImX,, (blue), Re & (green)
and Im ¥ (purple), with ¢ = 7{q, g}. At the lowest § = {r /64, 7 /64}, for n = 0.85 and T=297
K the exact peak energy (blue) is ~ 0.027t, i.e. about a half of the approximate result (red).
With t = 0.45 eV this gives a peak energy ~12 meV, which seems to be at the threshold of
currently available resolution.
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Fig. 17. The approximate theoretical peak energy scale £2,(q) (Egs. (61), (86)) (obtained by setting £2(g, @ — 0)) and the
width of the peaks I,(q) (Eq. (62)). These two scales are enough to reconstruct the peak in the irreducible susceptibility

Im ¥, using Eq. (63). This plot indicates a peak structure for small g. For higher q the breadth exceeds the peak frequency,

as seen explicitly in Figs. 10, 15. 2, are I}, are calculated using & (0 = a) , the thermodynamic variable g—” (Fig. 3).

Additionally I}, uses ¥ = ¥ + §¥qp, where the self energy is defined from the susceptibility X,, in Egs. (56), (58), (59).
These computations use Ly x L, = 128 x 128, n =0.85, T =297 K and ¢ = (q, q) along I — X.

7. Conclusions and discussion

We have presented results from our calculation of the dynamics of electron fluctuations in the
t-J]-Vc model of Eq. (2). We see that the small quasiparticle weight in the normal state gives rise
to a broad background in the electron spectral weight Fig. 1. This in turn leads to a smearing of
sharp features in the dynamical correlations, as we see in Fig. 9. The small Z, also reflects in the
flattening of the momentum distribution, as seen in Fig. 2.

The plasmon energy w,(q) can be extracted in several distinct ways. We have discussed two
methods already, from the peaks in —Im( =), or from the zeros of Re &(q, ) as seen in Figs. 11
and 12. There is yet another possibility, namely from a measurement of the first frequency moment
of the structure function S(q, w) as in Eqs. (F.10), (F.12). Here the frequency integration must be
large enough to contain all the weight from the primary band containing the Fermi level, but small
enough to exclude interband effects. This balance is familiar from studies of optical conductivity in
cuprates [42], where satisfying the various versions of the f-sumrule involves parallel issues.

The results for Im¥,,(q, w) presented in Fig. 10 display a slow fall off for > $2, over a
substantial range. This behavior is similar to the fall off seen experimentally [10,11]. From Eq. (82)
this implies that the current susceptibility Im (¢, ) should flatten out in the same w range. This
is indeed seen in Fig. 15 in panels (a,c). We should note that in the panels (b,d) of this figure, the
conductivity shows a related sluggish fall off with w, consistent with Eq. (82).

In the region |w| < £2,(q), our calculations show that the quasiparticle contribution to
Im ¥,,(q, ) leads to a linear in w behavior, as seen in the contrast between the two plots in Fig. 9,
and in all the low ¢ plots of in Fig. 10. A low magnitude of Z,, as in the ECFL theory makes the
linear regime small, but remain non-zero, and hence worth looking for in data.

Finally we believe that extracting systematically the energy scale £2,(g) for a range of small g
values is an important task for future experimental studies. In addition to tracking the peaks of
the imaginary parts of the various susceptibilities noted in Eq. (82), as well as Fig. 15 and related
figures, approximately evaluating the formula for the first frequency moment Eq. (86) and equation
in [28] using data could provide a useful alternative. It is possibly a difficult task if the $2,(q)
is not sufficiently larger than the experimental resolution, and if other sources such as phonons
contribute strongly to the scattering intensity. Such a study would provide insight into the nature
of the metallic state in the cuprates.
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Fig. 18. The approximate theoretical peak frequency £2,(¢) (red) Egs. (61), (86) and the exact peak frequencies extracted
from Fig. 15 for Im,,, (blue), Re & (green) and Im Xj; (purple), with § = 7 {q, g}. This computation used LyxL, = 128x 128.
The lowest frequency is at ¢ = 7 /64 and found to be 0.031t, 0.027t, 0.052t, 0.046t for panels (a,b,c,d) respectively. If we
choose t = 0.45 eV, the lowest values of the peak energies lie between 12 meV and 21 meV. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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Appendix A. Summary of ECFL Green’s function G

The ©O(A?) approximation of the ECFL equations determining the Green’s function for the t-
J model has been discussed earlier in our papers Refs. [14,15,20,21], so we provide a very short
summary of the equations used. In the ECFL theory, the one-electron Green'’s function G is found
using the Schwinger method [14], and expressed as a product of an auxiliary Green'’s function g and
a “caparison” function fi:

G(k) = g(k) x pi(k) (A1)

where k = (E, iwy), and wy = (2k + 1)mkgT is the Fermionic Matsubara frequency and subscript k
is an integer. The auxiliary g(k) is a Fermi-liquid type Green’s function. The Schwinger equation of
motion for the physical Green’s function can be symbolically written as [14,15,20,21]

(&' =& —awn).g=81-2) (A2)

where X represents a functional derivative and Y; describes a Hartree-type energy. Here X is an
expansion parameter and set equal to unity after retaining all second order terms. The non-canonical
nature of the Gutzwiller projected operators leads to the term (1 — Ay ) on the right hand side, this
would be just 1 for canonical electrons. The decomposition in Eq. (A.1) circumvents this problem
since g is constructed so as to satisfy a canonical equation [14].

To second order (in A) the ECFL equations [15,20,21] are found to be

(k) =1— Ag v (k) (A3)

n
EET‘ — rp(k) (A4)
where p is the chemical potential and ¢;, is the bare band energy Eq. (F.13) and (k) is the second
self-energy. The self-energy ¢(k) factors out as ¢(k) = X(k)—i—éél//(k) where y (k) is another function
defined below, €. = €; — ug/2, where ug is a Lagrange multiplier. Both g and u, are determined
by constraining t’i‘ne number of electrons defined respectively using G and g on Eq. (A.11). The two
self-energies functions v and x expanded formally in A to second order approximation O(1?) are
Y = Yo + A+ ---and x = ) + Axy + - - - The expression for these self-energies in the
expansion are

g (k) =i+ p— e+ A

1 1 o
Yo =0, k)=~ 3" (e;, + 51,;,,-3> (p)e"”” (A5)

p
where we used the abbreviation

3= % Y (A6)
k

k.o

with N the number of lattice sites, and

1
Y0 = =5 D (& + € +Ji ;) EPIE@EP +a— 1) (A7)
5 pq

1 !/ ’ ’
xm(k) = N Z (t'f, t € 'Hﬁ—é) <€ﬁ+a—ﬁ "HE—ﬁ)
pq

x g(p)g(q)g(p +q — k) (A.8)

where J; is the Fourier transform of J;. With A — 1, the expressions for the O(A?) ECFL equations
are

ik) =1 — g + (k) (A9)
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. n
g (k) = iwe +p — e + 26~ x01(k) (A.10)
— xm(k) — €5 (k) .

We can determine the two chemical potentials g and ug by satisfying the following number sum
rules

1 )
N > gkye " = = = — § "G(k) )ei@k0” (A.11)
N
k

where n is the particle density. The momentum distribution function mj, is found from g using

(€l = Zg (k. ico )" (A12)
la)k
We find the spectral function A(E, w) = —1/xImG(k) by analytically continuing (i.e., iw, —

w + in) and by solving Eq. (A.1) and Egs. (A.5)-(A.11) iteratively. We also note the useful spectral
representation expressing G in terms of A:

a(k, iwn)zfoo dy AV (A13)

o dop—v

Appendix B. Susceptibilities and the structure function

Our focus is on the charge susceptibility and the related structure function, and hence we
first summarize some standard results [5,38,39,44]. Let us define the susceptibility of any pair of
operators A, B as

xap(w + 1) = i/ dt e =" ([A(t), B(0)]) (B.1)
0

where n = 0% is a positive infinitesimal, A(t) = e Ae~™ and the brackets denote the usual thermal
average. Its causal nature allows us to write a spectral representation

. -l o0 X// (U)
o +in) =~ [ v ZD (82)
TJ) oo W—V+In
By integration over t we find the usual expression for the structure function
00 dt zwt
Sap(w) = (A(t)B(0)), (B.3)
271
and
1 xap(w)
Sap(w) = — A ——. (B.4)
7 1—ebe

In order to obtain the charge density structure function S,,(q, @), we must calculate the charge
susceptibility y,, defined from Eq. (B.1) as

A=p; :quc Giygor and B=p_g = Al (B.5)

ko

where g = —|e| is the electron charge. Spp(ﬁ, w) is a very important object since it is obtained
directly from experimentally determined electron scattering intensity, with energy transfer hw and
momentum transfer hg. From this object, the reducible susceptibility x 5 p(a, w) can be obtained
using the fact that it is an odd function of w. Hence

X;),p(i w) =7 (Spp(a7 w) - Spp(aa _w)) . (BG)
32



B.S. Shastry and M. Arciniaga Annals of Physics 442 (2022) 168924

In real space we write the local charge density p,, at site m as
1 a7
— — q-T'm
m = Qellm, and pm = N Eq e pg, (B.7)

where N; is the number of lattice sites. For our calculations it is more convenient to evaluate the
imaginary time object and its Fourier transform

. 1 (7
Xas() = (TACIBO), and xui2,) = 5 / dre ™" (1), (83)
-B
where 2, = Zvand v = 0,+1, £2,.... We can use analytic continuation if2, — o + i0" to
obtain the physical susceptibility xss(w + in) Eq. (B.1) from Eq. (B.8).

Appendix C. Reducible susceptibility y from G

We next turn to calculation of the susceptibilities from the electronic Green’s functions. For this
purpose we need to calculate the Green'’s functions in the presence of external potentials, and taking
the derivatives we can find the susceptibilities. Although this procedure might be familiar to most
readers, we summarize the steps below for completeness. In order to calculate the Green’s functions
for this model, we add an imaginary time 7 dependent external potential (or source term) A to
the definition of thermal averages. The expectation of an arbitrary observable Q(zy, ...), composed
e.g. of a product of several (imaginary) time ordered Heisenberg picture operators, is written in the
notation

(Q(t1,...))) = Tr Pg T, {e™Q(x1, .. .)}. (€.1)

Here T, is the time-ordering operator, an external potential term A = foﬂ dt A(t), and Py =
e PH/Tr (e=PHT,e~*) is the Boltzmann weight factor including A. Here A(t) is a sum of two
terms, Ay (7) involving a density-spin dependent external potential V, and A4,,(t) involving external
potentials u,(7), vy(7) coupling to the charge and the W variables of Eqs. (10), (11). These are given
by

Ap(t) = D> VI ()C (1)Cigy(T)
A7) =Y (WUn(T)on(T) + vm(T)Wi(T)) - (C2)

At the end of the calculations, the external potentials V, u, v are switched off, so that the average
in Eq. (C.1) reduces to the standard thermal average. We can find the equation of motion for the
electron Green'’s function

Gioyioy (7, T') = —=((Cios ()T (7)) (C3)

by standard methods described in literature. In particular by using the identity valid for any operator
Q and external potential taken to be v; for illustration:

_ , é
TrPp T, {e Q= Wi(1)} = ((Qi() ((Wj(z))) — m((@-(f/))) (C4)
1
we can reduce higher order Green’s functions to functional derivatives of the lower order ones. A
straightforward calculation using the method described in [ 14] gives the exact functional differential
equation satisfied by G. Let us define

Voioy (1. T) = 0107((C (T)Cigy (7))
D(,iaj(i, T) = a,-aj%, (C5)
8V (1)

33



B.S. Shastry and M. Arciniaga Annals of Physics 442 (2022) 168924

the non-interacting Green's function Gq including all the external potentials:
1 (rl(r
GO!(TL)(T 8U80i0j (IL - arl-) + tijso,-aj 51] !
— Qelti8 — iqe(vi — vj)ty, (C6)
the standard Hartree type Y variables from [14]

Yla,joj = tu)’o,aj(l Ti) Z]Ma,aj (k, ©)
+ 8jj Z Vi{{m(m))) (C7)
]
and the X type functional derivative terms

. 1
Xiojjo; = —tijDoyo;(1) + 51‘15 Z_’ikpaiaj(k’ Ti)
k

1)
— qeSij Vii——. C8
qe0ijj Xl: ,[(Sul(fi) ( )

In the equations Egs. (C.6)-(C.8) a factor of §(r; — ;) right-multiplying all the terms has been
suppressed for brevity. We find the exact equation for G in a compact form by using a repeated
spin index summation notation as:

(GEW(, Yioiio;— Xioijo; )Gjoif oy (Tis Tf)

= 5(7:1- - tf)(sif(‘smrrf - V(Yj(rf(iv ti))' (C'g)

The expressions for Y in Eq. (C.7) and X in Eq. (C.8) reduce to the corresponding equations for
the pure t-J model in [15,20,21], if we drop the Coulomb terms in the last lines, i.e. V; — 0, and
also drop the source terms with u and v in the last line of Eq. (C.6). Following standard practice for
Coulomb interactions [5], an implicit neutralizing background term cancels the divergence of the
q = 0 component of the last Hartree-type term in Y in Eq. (C.7).

In terms of the Green’s function, the expectation value of the density and the W-variables are
found as

(om(T) = D vpi, f; m)Gyo iv, fT7) (C.10)
ifo
(Wan(D) = Y ywli. 1 m)Goolit, fr) (C11)
ifo
where we introduced the bare vertices for the charge p and the divergence of current W:
Vo(i,fim) = qedimdym = —ﬁ(r)c&lﬁf
yw (i, f: m) = iqety (8im — 8r.m) = —ﬁmc&;ﬂraf (C.12)

Using Eq. (C.4) we write down the four relevant susceptibilities in real space:

pr(itiifj) 5u]( Zyp (I, m; l)g(r(r(lfzymf )
(itjt;) = ‘SZ (L, m; i)Goo (lri, mz,™)
Ti]Ti oo\ T, T

Xww TJTj 5v](1']) Yw i
. 8

Xowl(iTjT) = (o) Zyp (I, m; )Gy (I, mz;")
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xXwplityg) = Zyw (I, m; D)oo (I7i, me;") (C.13)

Suj(
To compress the notation we mtroduce Greek symbols u, v taking two values, with u = {p, W},
with p denoting charge and W denoting the W-variable (divergence of current). The two bare
vertices y, and yw in Eq. (C.12) can now be represented by y,, and the external potentials by
w,, wWith w,(it;) = ui(7;) and ww (it;) = vi(t;). The four relations in Eq. (C.13) can then be compactly
written as

8

Sw,(j7;)

X (iTgTy) = — > ull. m: D)oo (I, ma;t), (C.14)
Imo

Appendix D. Irreducible susceptibility % from g

In order to treat the most important effect of long-ranged Coulomb interactions, we must first
account for screening. In the case of the electron gas this is achieved by introducing screened
vertices and their Feynman diagram definitions in the enlightening discussion in Noziéres book [5]
and useful summaries in [27,33]. The projected electrons lack Feynman diagrams and require
an alternate treatment. More fundamentally the non-canonical nature of the projected electrons
creates an obstacle for defining reasonable vertex operators [14], which tend to free vertices at
high frequencies. This situation prevents us from borrowing Noziéres treatment of screening, and
an adaptation is necessary. For this purpose a more general discussion is provided here, working
directly with the susceptibilities instead of the vertices.

The main qualitative idea behind our treatment of screening, is to eliminate the long-ranged
Hartree-type Coulomb term in the self energy Y appearing on the last line of Eq. (C.7). This term
is absorbed into the redefined external potential term g.ii; in the non-interacting Green’s function
Eq. (C.6). We define a screened external potential

Qelli(T) = qetti( +ZV11 n(T))). (D.1)

The Green'’s function is unchanged since we merely shifted the location of the Hartree-type term
in Eq. (C.9). We may now regard the Green’s function as a functional of #i; rather than u;. With this
modification, we can use a chain rule for taking derivatives

5 5u]7:] 8
Sui(ff)_tSU(n 2/ Tsu(m) siy(1y)

- (Su(fz Zf dzj VUXﬂprJslfz) (13)' (D2)

Here the partial derivative is taken at fixed values of ii;, where i # j.

5i(7y) ( i)
In order to take the derlvatlves = in Eq. (C.13), we should note that a variation of v; also induces
a variation in ii;, which depend on 1t through the second term in Eq. (D.1). We can account for this
dependence by defining a screened set of potentials {v;}, which are independent of u;.
The derivatives with respect to v; are relatable to the derivatives with respect to o; and ii; through
the chain rule:

1) 8ti(t 1)
ORETTRSY [ im0
Svi(ti) 51}1 ) Svi(t (tj)

)

= - = dt; Viix W(]'L',n') (D.3)
Sui(m) g2 Z/ 7 ERReWN T (T;)

The second term captures the non-local variation of the #; by changing v; that is evident in
Eq. (D.1). Therefore for computing the susceptibilities in Eq. (C.13) and Eq. (C.14), we can replace
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the derivatives with respect to the independent sets of external potentials {u;, v;} by another
independent set of potentials {ui;, v} related by Eq. (D.3).
Combining Eq. (D.2) and Eq. (D.3) we write

) ) 1 A )
— = — = dz; Viixpw (T, iti) ———. (D.4)
Swy(it) — Swy(in) ¢ X]:fo PR T siy()

To summarize the above discussion, the Green’s functions of the theory, while Eq. (C.9) is
unchanged, Eqgs. (C.6)-(C.8) are now functionals of the variables i;, v;,

G&;i;c,j = Sij‘smﬁj (”’ - afi) + tij5<fi(f] 8V

— Qelli — iqe(V; — Uj)tjj, (D.5)

Yiagrrj = tyynlrrj(l'[l 1] Z]:k)’a,a](kfl

0j0j

Xiai}’aj = tu a,aj 1_} § JiD 0joj le

—de UZ zl (D.6)

I(Tl

where the derivative % in the last term, can be eliminated using Eq. (D.2). The Hartree type

approximations made below throws out this last term completely, and hence we skip the details.
We now denote the set of four screened susceptibilities ¥, in the form of Eq. (C.14)

%ﬂu(itiaj""j)

Tsw (J‘E Zylt (I, m; l)gn(r(lflvmf ) (D.7)
v J Imo

where w,, is either ii or v. Using the chain rules Eq. (D.4) we find the important result connecting
the unscreened and screened susceptibilities

Xuv(ifisj.’:j) = )A(Iuv(ifisjfj)
qg Z/ dtn lmXHp(ltls mfm)va(meth) (D.8)

Upon switching off the external potentials we recover translation invariance, and on taking the
Fourier transform of this equation, we find an algebraic equation at each q = {q, i£2}

~ |

X/w(q) = X;w(Q) - qizv(q)X//,p(q)va(q)' (DQ)
e

This can be solved for all the components and displays the screened nature of the resulting

susceptibilities. The density-density response y,, is simplest since all terms on the right have the

same subscripts. Gathering terms x,,(q) on the left, we find

Xoo(4)
Xop(Q) = , (D.10)
o &(q)
where dielectric function is given (exactly) by
- 1 .~
e(q)=¢e(qo)=1+ q—ZV(q)xpp(q, w), (D.11)
e

with the Coulomb potential given by Egs. (6), (7). Proceeding similarly we find the other three
susceptibilities in terms of their screened counterparts as

XpW(q)
(q)

Xxow(q) = (D.12)

36



B.S. Shastry and M. Arciniaga Annals of Physics 442 (2022) 168924

Xwp(q) = xW%q()q) (D.13)
- V(g
som(@) = Tow@ — —L50 (@) Towl@). (D.14)
q2e(q)

Appendix E. Low and high » limits of (g, )

E.1. Low w: Static screening and compressibility

At low frequencies w — 0 and in the long-wavelength limit |G| < 1, the screened susceptibility
X,p defined in Eq. (C.14) equals the thermodynamic derivative

dn
lim lin lim X, (4 @) = qﬁaNs. (E.1)
In view of the connection with the compressibility Eq. (E.5), this is often called the compressibility
sum-rule. To see this we note that a space independent —q.ii is additive to the chemical potential p
in Eq. (D.6), and since the nominally divergent Hartree term is removed in defining # the uniform
limit is safely taken. This gives the compressibility sum-rule, i.e., the screening limit of the dielectric
constant [1,3,5]

dn
lim lim &(g, ) = 1+ V(G)Ns— (E.2)
q—0»w—0 du
Thus in 3-d and 2-d we get the exact result:
2 4w q? dn
e > 1+ L (3-d)with ¢ = — 222 (E3)
Idl €oo At
27q?% dn
e > 1+ (d)withg = 7% (E.4)
lql Eoo du
Using the thermodynamic relation for compressibility xcomp
1 dn
Xcomp = ﬁ@» (E.5)

the screening length A; = 27 /q; can thus be related to the compressibility xcomp.
Strongly correlated systems near half filling display a reduced compressibility, and are therefore
expected to show very poor screening, i.e., As > 1 (we set the lattice constant ay = 1).

E.2. High w: Plasmon dispersion in &(q)

In the limit @ > t the behavior of the dielectric function is easily read off from Eq. (44).
Neglecting £ XWW(" ) compared to unity, we get

ww (4.0)
2=
10}
lim &(q, w) = ”(f) . (E.6)
>t w
In both 3-d and 2-d, the plasma frequency is given in terms of x by
- N
@3(@) = S V(@K (q). (E7)
0
In 3-d the plasma frequency can be written using Eq. (20) and Eq. (6) as
. 87q* 1 ~ o~
WA@) = ——5— Y (¢4 — &)(C Ciyao)- (E8)

=12
500|q| Ns ko
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In the long wavelength limit we find

.. 4mnq® 1 ey~ ~ 47
lim (@) = —< — ky(cl ¢ =T, E9
lim (@ = —— kZ‘( a2 (G Gio) = (E9)

-2
where we used Eq. (222) in the last line. For quadratic dispersion &, = |k| /(2 m), we get the familiar
expression w? = 4”%1". The f-sumrule Eq. (23) is expressible in terms of the plasma frequency as

p me
> dw £c0 5
—Reo(w) = —w;(0). (E.10)
0 T 4
In 2-d using Eq. (20) and Eq. (7) we obtain the acoustic plasmon energy
S 47q? 1
2 e
WX@) = —=— > (5 — (€ Crrgo) (E11)
€0olql Ns 4= -
- . 2ng* 1 ey~ ~ 27
: 2 _ e ~ = %k t “r
lim @)@ = lal x 76 5 > (GG G) = 1l x = (E12)

For quadratic dispersion this reduces to a)ﬁ = |q| x % This implies that the plasmon mode, found
as the zero of the dielectric function is gapless in 2-d with a dispersion w, o ,/q, as opposed to the
usual gapless mode in 3-d.

Let us note that the effect of Gutzwiller type short range correlations is seen most directly in
expressions for 7 in Eq. (F.16) and in Fig. 6. We discuss in Appendix F.2 the connection of this result
with the first frequency sum rule for the electron structure function.

E.3. The resistivity formula

We note that the formula in Eq. (44) also gives the correct resistivity formula used in studies
of the t-J] model. Let us first examine the 3-dimensional case with a cubic unit cell, and assume
that the electric field polarization is longitudinal, i.e. the current is along q. From the usual relation

between the induced current and the polarlzatlon jmd =P, and P = (D E ) combined with the
constitutive relations de — oF and D = ¢E we obtain o(q) = ;5 (q) — 1) and on using Eq. (44)
- i 1
0(q, 0) = —5— | k(@) — = Xww(q) (E.13)
{2 N
In the uniform limit ¢ — 0 we note from Egq. (13) that W; — —ié.jq and W_; — iaj,q; therefore
o ~ 1 R
For |q|a0 < ]7 Xﬂ(q7 (l)) = WXWW(CIV (l)). (E'14)

This is the screened analog of Eq. (17). In the limit ¢ = 0, there is no distinction between longitudinal
and transverse response, and hence using Eq. (22) we get the conductivity accessible in optical

experiments
( Z( dkz) (i, Cio) —iﬂ(w)>,

i 1
= (T— —Sxﬂ(a))) (E.15)

with @ = w + i0T. Let us note an important consequence of Eq. (E.13):

o(w)

- 1 ~
Re s = —Im , W), E.16
o(q, ®) N, Xy(q, ) (E.16)
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thus relating the dissipative part of conductivity with Im 3(]](6, w)/w. In Eq. (E.16) we have sup-
pressed an implicit prefactor ai which needs modification for quasi 2-dimensional system such as
the cuprate materials analyzec? in [15,21,22]. Here the theory proceeds by assuming that the unit
cell is body centered tetragonal instead of cubic. Here ay is replaced by cy, the separation between
two copper oxide layers in the simple case of single layer cuprates, so that cg >> ao. The different
layers are assumed to be decoupled as far as electron hopping is concerned, while their polarizations
add up. We then obtain an appropriate generalization of Eq. (E.16)

_ e (_h o
Reo(q, w) = coh (qngs Im x;(q, a))) , (E17)
where the object in parentheses is O(1) and dimensionless. We note that Eq. (E.15) is almost
identical to the standard formula for the optical conductivity o (w) obtained from the Kubo formula
for Hubbard model or t-] model type systems without the long ranged Coulomb interaction, e.g. see
Eq. (A1-A5) in [45]. The only change is that the screened current susceptibility Xj replaces the
unscreened xj. This object can be obtained from Eq. (37) in the limit of small g. Physically the tilde
means that the calculation of the current-current correlators must discard direct contributions from
the Coulomb potential. The f-sumrule for the conductivity [ % Reo(w) = T given in Eq. (23),
follows by first writing the Kramers-Kronig relation

Imo(w) = %/"0 dvRea(v), (E.18)

00 w—v

taking the limit @ > 0, and finally comparing the expression with the coefficient of 1/w in
Eq. (E.15).

Appendix F. Structure function frequency moments

The recent momentum dependent electron energy loss experiments (M-EELS) [9-11] probe
charge response inferred from the inelastic momentum resolved scattering of electrons from
the surface of the high T, superconductor Bi2212 Bi,Sr,CaCu;0g.. Making various simplifying
assumptions that are argued for in the important work of Mills [8], the experiment gives a readout
of the structure function

- © dt .
Spold. ) = / e gt -(0) =

1 x,,(d, )
,/”’7’ (F.1)
7 1—ePo

over a substantial portion of the g, w region with remarkably high precision. The energy resolution
Aw ~ 2meV. Here ¢ is taken to be 2-dimensional. These works present direct information about
Xpp» i fact using the odd-ness of X/’jp we can extract this object by combining energy loss and
energy gain data:
X,/,,p(a, w) =7 (Spp(av w) - Spp(as _w)) (F.Z)
The work of [9-11] presents data for the X;,/p(a)) as well as the inferred screened susceptibility
Xpp-

F.1. High frequency moments: reducible susceptibility

Using the familiar analyticity of x,,(q, @) in the upper half of the complex w plane, we can write
a spectral representation

1 [ Xpp(@ )
4, w)=—— dy =22 F.3
Koli.o) =7 [ v TR (F3)

We note that x,;’,)(?z, v) is odd in w and hence as w > 0 we get a moment expansion with even
terms [46]

lim pr(ﬁ, w) = _qus (F.4)

>0

o (E G)(g
( Eq)er iq)+m>’
w w
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where the frequency moments «'¥+1)(g) are given by

. 1 ® dw ..
(2+1) 5y — 2 E5
o) = [ o) (E5)
or upon using Eq. (F.2)
o 2 (™ -
@ (G) = / dww?18(q, w). (F.6)
qus —0

F.2. High frequency moments: irreducible susceptibility

In the presence of long-ranged Coulomb interactions it is necessary [5] to distinguish between
reducible susceptibility (or polarization) x,, and the irreducible susceptibility (or polarization) .
The irreducible susceptibility ,, can be shown to satisfy a spectral representation

1 X5 v)
Xop(Q, @) = —— dv =22~ E.7
Told.o) =7 [ av TR (F7)

This is completely analogous to Eq. (F.3), and using a moment expansion analogous to Eq. (F.4)
we get

aV(@  @?@Q)
li — —@*N ~ . F.8
lim Xop(G, ©) = —; s( o Tt ) (F8)

In order to determine the moments @?*+1)(g), we recast Eq. (32) in the form
~ - Xpo(G: @)
Tonld ) = — L&)
- 7pr(q7 )
We next plug into this expression the high frequency expansion Eq. (F.4) giving an infinite series in
L. Comparing with Eq. (F.8), the moments &%*+1(q) can be determined in terms of w¥*1(q). For
our purpose we only need the first moment:

a1(@) = o'V(q). (F.10)

We make extensive use of the first moment w!")(§) below, let us note that it is in frequency units
and provides a very important scale in the problem. We now relate this frequency to «(q). From
Eq. (33) we note that

(F.9)

oD(g >B3)(a
lim &(d, @) — 1 — V()N (w @ @ iq) 4o ) , (F.11)
>0 w w
Comparing the leading term with the expression in Egs. (E.6), (E.7), we get
~(1),=> aoh N
a(q) = q—zx(q), (F.12)
e

where we temporarily reintroduced the lattice constant ay and h to emphasize that @ is in
frequency units, while « is the square of a frequency [31].

Using Eq. (E.7), the first moment also determines the plasmon energy as a)p(q) /NS V(@) (q).

Proceeding further we can express «(q) in 2-d explicitly in terms of qjhe band hopping parameters
and the averages over the momentum distribution function (Ck C) of the type (cosky)qe =
N Zk cos kX(Ck Ck) Using Eq. (20) and the band dispersion parameters t, t’ representing the nearest
and next nearest neighbor hops on the square lattice:

ex = —2t(cos ky + cos k,) — 4t’ cos ky cos ky. (F.13)
We find
&M(G) = 8t(cos ky)ae(2 — €OS gy — COS qy) + 16t(cos ky cos ky)que(1 — €OS Gy COS qy). (F.14)
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For small g we find

. ~(1)= 2T
lim aM(q) — [g° . (F.15)
q—0 e
where we utilized Eq. (21), and
T = q2 (4t{cos ky)ave + 8t'(cOS ky COS ky) ave) (F.16)

We see from Eq. (23) that 7 determines the total weight of the optical conductivity. The relevant
averages of the cosines are tabulated in Table 1, where we see the enormous reduction from
uncorrelated values brought about by the strong correlations.

For completeness we note that our notation for the reducible x,, and irreducible ¥,, polariza-
tions can be mapped into that used in [9-11] by setting

Xop = —X

Xop = —11

£ — £/8n. (F.17)
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