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Method for reconstructing the self-energy from the spectral function
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A fundamental question about the nature of quantum materials such as high-Tc systems remains open to
date: it is unclear whether they are (some variety of) Fermi liquids, or (some variety of) non Fermi liquids.
A direct avenue to determine their nature is to study the (imaginary part of the) self-energy at low energies.
Here we present a method to extract this low-ω self-energy from experimentally derived spectral functions.
The method seems suited for implementation with high-quality angle-resolved photoemission data. It is based
on a helpful theorem proposed here, which assures us that the method has minimal (or vanishing) error at the
lowest energies. We provide numerical examples showing that a few popular model systems yield distinguishably
different low-energy self-energies.
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I. INTRODUCTION

In this work we address the basic problem of reconstruct-
ing the low-energy Im �(�kF , ω) from the spectral function
A(�k, ω) inferred from angle resolved photoemission experi-
ments (ARPES). We refer to this as the inversion problem
in this work. The ARPES probe of quantum materials [1]
is known to play a vital part in our understanding of the
important class of strongly correlated materials. The low-ω
dependence of this object for �k ∼ kF is of especial interest
in theoretical studies, since reliable high-precision measure-
ments, if available, would provide an essential direction in the
search for a suitable theory for systems with strong correla-
tions, and possibly also for superconducting states. Physically
the low-ω object is directly related to the decay rate of a
slightly excited particle near the ground state, and also can
be used to infer a significant contribution to the T dependence
of the resistivity of the system at low T .

An overarching question posed by numerous experimental
results on strongly correlated systems, is whether these can
be described using standard methods of condensed matter
physics, or if not, whether they demand substantial revisions
of the otherwise highly successful standard theory. The latter
is based on the density functional theory of Kohn et al. as a
starting point, and by treating the effects of interactions using
perturbative expansions in the spirit of Landau’s Fermi-liquid
theory. Its validity can be questioned if the interactions be-
come very strong, leading to much debate in the community.
To sharpen the debate one chooses the most sensitive class
of experimental results, and sees whether the predictions of
standard theory are violated, and if so to what extent. Much
emphasis so far has been on the temperature-dependent re-
sistivity, which indeed has surprising and unexpected aspects
in many strongly correlated systems. However, the theoretical
calculation of the resistivity has considerable intrinsic com-
plexity, being a higher-order correlation function involving
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two electrons and two holes. Therefore the evaluation of the
(formally exact) Kubo formula for resistivity can only be
done approximately, the difficulty being exacerbated when
the interaction scales are large. Additionally there are system-
dependent details at play, such as the different T dependences
at different densities. Altogether these factors seem to pre-
vent rigorous conclusions from being drawn on the question
we started with, in either direction. On the other hand, the
relatively simpler single electron and one hole spectral func-
tion contains crucial information about the low-energy and
low-temperature dependence of the lifetime of a particle ex-
cited above the ground state. Extracting or accessing the
most relevant pieces of information from the ARPES data
is, however, a nontrivial task. This goal has been achieved
at a certain level of accuracy, using an elaborate collation of
energy dependence of spectral data at fixed wave vectors as
described below. The purpose of this work is to introduce
a new and direct method for this task, using an exact but
rarely used formula for the self-energy in terms of the spectral
function Eq. (3), (4). We also show that this method becomes
increasingly accurate—even asymptotically exact—at lowest
energy. By applying this method to a quantum material studied
in its normal state, we could unravel essential details of its
low-energy behavior, and thus ascertain whether it is a Fermi
liquid or a quantum liquid of some other sort, and thereby
provide definitive answers to the initially posed question.

A. Current status of the inversion problem

At present a few works report such an inversion. Important
recent examples are given in Refs. [2,3]. The original effort
of Ref. [2] uses the direct relationship between the spectral
function as a function of the self-energy:

A(�k, ω) = −1

π

Im �(�k, ω)

[ω + μ− εk − Re�(�k, ω)]2 + [Im �(�k, ω)]2
,

(1)
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and therefore at a fixed ω the width of a peak �kw is
given by

h̄veff
k �kw ∼ 2Im �(�k, ω), (2)

where veff
k is a renormalized velocity, so that the left-hand

side may be roughly estimated from experiments. This in-
version problem of reconstructing Im �(�k, ω), requires the
collation of data from several constant energy sections of the
spectra function, termed the momentum distribution curves
(MDC). A second method is presented in Ref. [3], which
uses a novel momentum-energy resolved tunneling method,
and demonstrate its working for two-dimensional electron
systems embedded in a semiconductor. This important class
of materials appears to be ideally suited for that method.

B. A proposal for inversion

The present work discusses a different framework for ef-
fecting this inversion, and provides some examples of how
it can be used. In the following instead of the imaginary
part of the self-energy Im �(�k, ω), we discuss the equiva-
lent but more convenient positive definite spectral density
of the self-energy, obtained from ρ� (�k, ω) = − 1

π
Im �(�k, ω).

We begin with an exact but apparently infrequently used [4]
relation

ρ� (�k, ω) = A(�k, ω)

{��k (ω)}2 + {πA(�k, ω)}2
(3)

��k (ω) ≡ −
∫

dν
A(�k, ν)

ω − ν
, (4)

where A(�k, ω) is the ARPES-related spectral function, ��k (ω)
is the real part of the Green’s function Eq. (A15), and −

∫
represents a principal value integration (see Appendix A for
details). We see from Eqs. (3), (4) that ρ� (�k, ω) is a functional
of A(�k, ν). If the overall scale of A(�k, ω) is unknown, as is usu-
ally the situation in experiments, we can only hope to obtain
ρ� up to an overall constant. The nonlocality (in frequency)
of Eq. (4) presents the main obstacle in this route of inversion.
Although A(�k, ω) is experimentally available for a range of ω

near a peak [5], it seems from Eqs. (3), (4) that we need more.
The Hilbert transform term ��k (ω), requires a knowledge of
A(�k, ν) at all ν in order to determine ρ� rigorously. Any error
in the estimated ρ� (�k, ω) therefore arises only from errors
in evaluating ��k (ω) due to a limited (partial) knowledge of
A(�k, ω).

On closer inspection, we find that the situation is sensi-
tively dependent on the regions of �k, ω probed. We summarize
our observation about achieving highest accuracy in estimat-
ing ρ� as:

Theorem 1 (on highest accuracy inversion). As the energy
is lowered to zero, errors in the Hilbert transform term ��k (ω)
are of diminishing consequence to ρ� (�k, ω).

To understand the origin of this theorem, consider the fol-
lowing. If we allow for an error δ��k (ω) at a fixed �k in the
estimation of ��k (ω), the resulting fractional error in ρ� (�k, ω)

FIG. 1. The fractional error Eq. (5) (bottom magenta curve) and
its upper bound Eq. (6) (top blue curve) for the asymmetric Fermi-
liquid model Eq. (11) with parameters specified below in Eq. (15).
Here ω is in units of eV as per the model. We note that the bound
would also vanish at ω = 0 if we use a vanishing elastic scattering
energy η in Eq. (15).

to the first order is given by

1

ρ� (�k, ω)

∣∣∣∣δρ� (�k, ω)

δ��k (ω)

∣∣∣∣
= 2

√
ρ� (�k, ω)

A(�k, ω)

√
1 − π2A(�k, ω)ρ� (�k, ω) (5)

� 2

√
ρ� (�k, ω)

A(�k, ω)
. (6)

In Fig. 1 we illustrate the fractional error and its upper bound
given in Eqs. (5), (6) for the asymmetric Fermi-liquid model
Eq. (11) defined below. For �k ∼ �kF and ω ∼ 0, the spec-
tral function A(�k, ω) has a peak, and the self-energy term
ρ� (�k, ω) is expected to vanish at T = 0 in disorder-free
Fermi systems. The expression Eq. (5) can also be written

as 2|Re G(�k, ω)| ρ� (�k,ω)
A(�k,ω)

, which provides further understanding
of the vanishing at ω = 0, in terms of the expected vanish-
ing of Re G(�kF , ω ∼ 0). The cumulative effect is that the
fractional error and its upper bound Eq. (6) are least in the
low-energy regime. This regime is also the most interesting
one from a physical standpoint, since it defines the asymptotic
low-energy physics of the system, where the behavior of the
self-energy is an important characterization of the physics of
the system. Therefore the above theorem provides a strong
motivation to explore the approximate evaluation of Eq. (3),
as a way to probe fundamental aspects of interacting Fermi
systems.

Encouraged by the above discussion, we propose that this
method for extracting the electron self-energy deserves some
experimental effort. We can state our proposal in qualitative
terms as follows: at a fixed �k (chosen say as �kF ), the low-
energy behavior of ρ� (�kF , ω), can be found from a knowledge
of A(�kF , ω) in a range of energies sufficiently close to its
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FIG. 2. These figures are for the asymmetric Fermi-liquid model Eq. (11) with parameters given in Eq. (15). Left: The soft cutoff function
T (ω) in Eq. (9) is illustrated with parameters {2, 3} and �∗ = 1. Right: The initial ρ� (�kF , ω) + η

π
from Eqs. (37), (38) (dotted blue) is exactly

reproduced numerically (red), using the full energy window Hilbert transform to evaluate −
∫

dν A(�k,ν )
ω−ν

in Eq. (3). It also agrees with the analytical

calculation in Eq. (A12), showing the consistency of the starting point Eq. (3). A similar calculation performed away from �kF (as mentioned
in the beginning of Sec. II) works equally well.

peak from Eq. (3) supplemented with a suitable frequency
windowing of A(�kF , ω). By frequency windowing we mean
replacing A(�kF , ω) in Eq. (3) as

A(�kF , ω) → A′(�kF , ω) ≡ T (ω)A(�kF , ω), (7)

and T (ω) is a smooth symmetric function of ω, falling from
1 to zero smoothly beyond a suitable cutoff energy �∗. Ex-
amples of useful forms of T (ω) are provided below. This
procedure can also be carried out for arbitrary �k away from �kF

with A′(�k, ω) = T (ω − ω�k )A(�k, ω) where ωk is the location
of the peak in A(�k, ω).

Clearly the proposal is not completely rigorous. The possi-
bility of higher-order terms in δ��k becoming dominant must
be kept in mind while drawing conclusions from the above lin-
ear analysis based theorem. We provide numerical examples
below that address this aspect of the problem. The examples
displayed below suggest that in certain cases, the procedure
leads to a reasonable reconstruction in the low-energy regime
where it is increasingly accurate- in accordance with the the-
orem. In a variety of physically interesting examples, we start
with a self-energy and construct the spectral function from it.
We then use the spectral functions cutoff at some energy scale,
following the lines suggested in the proposal, from which we
reconstruct the self-energy. Comparing the reconstructed and
original self-energies gives us useful insights. In the examples
that are provided, it seems that the presence of a sharp peak in
A(�k, ω) is helpful, as the Theorem 1 suggests. The utilization
of the values of A(�k, ω) in a range of energies around the peak
discussed below, yields an excellent picture of the low-energy
behavior of the self-energy.

C. Cutoff functions

We suggested above the use of a windowed version of
A(�k, ω) as in Eq. (7). In choosing to cutoff the frequency
at a specific �∗, typically �∗ ∼ νW0, i.e., a few times the
width of the spectral peak W0, we must specify the cutoff

function T (ω). In taking the Hilbert transform, it seems useful
to consider alternate forms of the cutoff.

We tested a sharp cutoff function

THard(ω) = (�∗ − |ω|), (8)

where �∗ is the cutoff energy. We also used a cutoff function,
inspired by the Tukey window in Fourier transforms, that
seems more promising. This piecewise function determined
by the cutoff scale �∗ and two positive numbers ν− < ν+, in
terms of which we define

T (ω)|{ν−W0,ν+W0} = 1 for |ω| < ν−W0

= 1

2

(
1 + sin

π

2

{
1 + ν+ − 2|ω|/W0

ν+ − 1

})
for ν−W0 < |ω| < ν+W0

= 0 for ν+W0 � |ω|. (9)

This function is displayed in Fig. 2. The scale W0 is taken in
most figures as the width (FWHM) of the spectral function,
typical values of the ν numbers are ν− ∼ 3 and ν+ ∼ 6. Re-
sults for both windows are compared below in Fig. 4. While
they agree at the lowest energies, in accord with the theorem,
the comparison suggests that the window in Eq. (9) is some-
what better as we go away from ω = 0. Without making any
claim to its being optimal, we only use the window in Eq. (9)
for further results.

II. EXAMPLES OF SELF-ENERGY INVERSION
IN THREE MODEL SYSTEMS

In order to explore this problem of partial range recon-
struction, we study three self-energy models next. We also set
�k = �kF in this part of the work, this is the simplest case where
�k in Eq. (A9) and Eq. (A11) can be set at zero. Calculations
for �k �= �kF can be done in exactly the same way, by shifting the
peak in the cutoff function Eq. (9) from 0 to δ�k, the location
of the spectral function peak. We comment on this in Fig. 2.
Each model is given in terms of an explicit positive definite
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FIG. 3. These figures are for the asymmetric Fermi-liquid model Eq. (11) with parameters given in Eq. (15). Left: The spectral function
A(�kF , ω) and the Re G(�kF , ω). Right: The imaginary self energy ρ� (�k f , ω) and χ (�kF , ω) for the A-FL model Eq. (11), calculated from Eqs. (41),
(38), (48), using parameters given in Eq. (15). Here the spectral peak width W0 is ∼9 meV.

self-energy ρ� (�kF , ω) dependent on a few parameters, and
having a finite integral over ω.

The three illustrative models considered are expressed [see
Eq. (B1)] in terms of dimensionless (scaled) frequency ω̄ ≡
ω
�0

, a dimensionless temperature τ̄ = πkBT
�0

, a dimensionless
interaction strength parameter ε̄0 = ε0

�0
. In the case of the first

model we also use Ā = A
�0

, it is a dimensionless asymmetry
parameter. We also use the dimensionless version of ρ�

ρ̄� (�kF , ω̄) = 1

�0
ρ� (�kF , ω), (10)

where �0 is the large energy scale. The relationship be-
tween �0 and the spectral peak width W0 is determined by
uninteresting details of the model used. For example, chang-
ing the confining well from the Gaussian to another form
in Eqs. (11)–(14) would change that relation. Therefore we
choose �0 = 1eV and adjust other parameters so that the
experimentally observable width (FWHM) W0 of the peak
at ω ∼ 0 is about 10 meV. These peak widths seem to be
typical values for the scales for many high-Tc materials [1,2].
The three models, chosen for their proximity to interesting
physical cases as well as for analytical tractability in a few

cases, are defined by three choices of ρ̄�

(asymmetric FL) ρ̄� (�kF , ω̄) = ε0(τ̄ 2 + ω̄2)(1 − αω̄)e−ω̄2

(11)

(marginal-FL-a) ρ̄� (�kF , ω̄) = ε0Max[τ̄ , |ω̄|] e−ω̄2
(12)

(marginal-FL-b) ρ̄� (�kF , ω̄) = ε0(τ̄ + |ω̄|) e−ω̄2
(13)

(non-FL) ρ̄� (�kF , ω̄) = ε0
(
τ̄

3
2 + |ω̄| 3

2
)
e−ω̄2

. (14)

These models are a nonexhaustive subset of the models dis-
cussed in literature, and chosen to provide a fairly broad
diversity of behavior. The low-frequency behavior of these
models are of special interest, where the Gaussian term e−ω̄2

is essentially unity. This term is a confining well, chosen
to provide a fall off at high ω̄ needed for the integrability
of the spectral density. Other choices of the confining well
are possible but unlikely to make a difference at low-ω̄ 	 1,
which is the region of our main concern.

In Eq. (11) the chosen asymmetric FL function (A-FL in
the following) describes an asymmetric Fermi liquid, where
the first term (τ̄ 2 + ω̄2) represents a Fermi liquid (FL), while
the second term (1 − αω̄) generates a cubic asymmetric term

FIG. 4. These figures are for the asymmetric Fermi-liquid model Eq. (11) with parameters given in Eq. (15). The reconstructed self-energy
ρ� (�kF , ω) + η

π
(red curve) using on left a hard cutoff Eq. (8) and on right using the soft cutoff Eq. (9) compared with the exact value in the

dashed blue curves. The two parameters relating to the soft cutoff Eq. (9) on right are indicated in curly brackets. The two insets show the
exact spectral function in dashed blue and the cutoff included spectral function A′ of Eq. (7) in the red curves. Here W0 is ∼9 meV. On the left,
while the hard cutoff does give a shallow minimum near ω ∼ 0, it is seen to turn around and become convex rapidly. The soft cutoff remains
concave up to 3W0, and has a maximum (fractional) error of ∼6% at the maximum displayed energy ω = 3W0.
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FIG. 5. These figures are for the asymmetric Fermi-liquid model Eq. (11) with parameters given in Eq. (15). The reconstructed self-energy
ρ� (�kF , ω) + η

π
(red curves) using the soft cutoff Eq. (9) compared with the exact value in the dashed blue curves. The two parameters relating

to the soft cutoff Eq. (9) are indicated in curly brackets. The three insets show the exact spectral function in dashed blue and the cutoff included
spectral function A′ of Eq. (7) in the red curves. Here upper cutoff is twice the lower one. Increasing the magnitude of the cutoff is seen to
reduce the error. Here W0 is ∼9 meV.

in the self-energy. This model is a crude representation of
the solution of the t-J model in two dimensions using the
extremely correlated Fermi-liquid theory (ECFL) [7] at the
lowest temperatures, if the parameters are chosen appropri-
ately. The resistivity of this model is quadratic in T at the
lowest temperature, and crosses over to a T -linear behavior at
a very low crossover temperature [7]. This subtle crossover
behavior requires the addition of terms of higher order in
ω, and is buried in the T dependence of the coefficients.
These details are not necessary for the basic analysis here,
in this work we will provide a framework from which only
the lowest-order quadratic behavior, on display in Eq. (11),
might be tested in future experiments. The spectral function
can be calculated fully in terms of the Dawson function DF

Eq. (B11), these and other necessary details are collected in
Appendix B.

In Eqs. (12), (13) we consider two variants of the pop-
ular marginal Fermi liquid (M-FL in the following) model
self-energy [8]. As in other models considered, the added
exponential term is unity for |ω̄| 	 1. The M-FL phe-
nomenology builds in a T -linear resistivity in a natural
fashion. The model M-FL-b Eq. (13) is in the same spirit as
model M-FL-a Eq. (12), and leads to slightly different results
at the lowest energy.

In Eq. (14) the chosen non-FL function (N-FL in the fol-
lowing) describes a non-Fermi-liquid system with a power
law |ω| 3

2 , where the resistivity is expected to behave as T
3
2 .

While there appears to be no compelling argument for this
specific choice of the power law 3

2 used in our choice, we
use it as an archetype of a strongly non-Fermi liquid of the
type suggested in Ref. [9]. We adjust the parameters for these
models so that the spectral function has about the same width
W0 of ∼10 meV in all cases.

In summary, in the following we follow these steps:
(1) For each model we use Eqs. (20), (29) to construct χ ,

and A(�k, ω).
(2) We then multiply A with a window function T (ω) in

Eq. (9), which vanishes smoothly beyond a frequency scale.
This scale is chosen in most cases as �∗, a suitable multiple of
W0, the width (FWHM) of the spectral function. This process
represents the selection of a small energy window and yields
A′ as in Eq. (7).

(3) From A′ replacing A and Eqs. (31), (33), we construct
ρ� (�k, ω,�∗), which now depends on our choice of �∗. We
then compare with the parent value ρ� (�kF , ω), for |ω| � �∗.

As a check on the numerics and the formalism, we note that
the two self-energies must agree when �∗ →∞. We present
an example in Fig. 2 to demonstrate this agreement.

A. Asymmetric Fermi-liquid model

The parameters defined in Eq. (B1) are chosen for the
following figures are

ε0 = 1.8, α = 0.1; η = 0.02; τ = 0.02; αz = 1.74, (15)

where αz Eq. (A4) corresponds to a filling n = 0.85, leading to
a fairly low value of the quasiparticle weight Z = 0.203. The
energies are given in units of �0 chosen to be 1 eV for high-Tc

systems. The value of η used here corresponds to typical
laser ARPES experiments [10], while τ , the physical temper-
ature T = τ/π ∼ 74 K. The width (FWHM) of the spectral
function at these parameters is W0 is ∼9 meV. We present
figures showing the spectral function and self-energy for the
A-FL model in Fig. 3. We further demonstrate the validity
of the basic Eq. (3) for the A-FL model. In Fig. 2 we show
the exact reconstruction of the self-energy from the spectral
function using the Hilbert transform over all frequencies.

We present a comparison in Fig. 4 of the reconstruc-
tion schemes using two window functions: (i) A hard cutoff
T (ω) = (3W0 − |ω|) at an energy cutoff equaling thrice the
FWHM of the spectral peak W0 and (ii) the soft window given
in Eq. (9) with parameters {3W0, 6W0}. In the caption we we
comment further on the relative merits of the two schemes.
In the two figures Figs. 5, 6 we display the reconstructed
self-energy compared to the exact self-energy for different
sets of the cutoff window parameters, and comment on their
relative merits.

B. Marginal Fermi-liquid model

For the M-FL-a model, the parameters used are

ε0 = 1.8, η = 0.02, τ = 0.01; αz = 1 (16)

leading to a width W0 = 12meV, which is only slightly bigger
than W0 = 9 meV for the A-FL model. The spectral function
and the real part of the Green’s function are shown in Fig. 7,
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FIG. 6. These figures are for the asymmetric Fermi-liquid model Eq. (11) with parameters given in Eq. (15). The reconstructed self-energy
ρ� (�kF , ω) + η

π
(red curves) using the soft cutoff Eq. (9) compared with the exact value in the dashed blue curves. The two parameters relating

to the soft cutoff Eq. (9) are indicated in curly brackets. The three insets show the exact spectral function in dashed blue and the cutoff included
spectral function A′ of Eq. (7) in the red curves. Here upper cutoff is 3 times the lower one, and shows a fair improvement over the results of
Fig. 5 where the upper cutoff is only twice the lower one. Here W0 is ∼9 meV.

and the reconstructed self-energy with a few typical window
parameters also in Fig. 7. The reconstructed self-energy is
displayed in Fig. 8.

The functional form of ρ� in the M-FL-a model Eq. (12)
has a flat portion in its minima, which is reflected in the
lowest-energy behavior as seen in Fig. 8. The M-FL-b model
Eq. (13) on the other hand avoids this flat feature. For the
M-FL-b model, the parameters used are

ε0 = 1.8, η = 0.02, τ = 0.015; αz = 1 (17)

leading to a width W0 = 11 meV. We now show the spectral
function and the real part of G in Fig. 9 and the reconstructed
self-energy in Fig. 10 for the M-FL-b model given by Eq. (13),
with a few typical window parameters.

C. A non-Fermi-liquid model

For the N-FL model Eq. (14), the parameters used are

ε0 = 1.8, η = 0.02, τ = 0.02; αz = 1 (18)

leading to a width W0 = 10 meV. We next display the spectral
function and the real part of G in Fig. 11 and the reconstructed
self-energy Fig. 12 for the N-FL model given by Eq. (14), with
a few typical window parameters. We now show the recon-
structed self-energy with a few typical window parameters

III. COMMENTS AND CONCLUSIONS

The proposal for reconstructing the self-energy from the
spectral function made in this work in Sec. I B, was illustrated
above in Sec. II in a set of figures (Figs. 3–12) using three
typical models with different predictions. These figures show
that an experimental implementation of the proposal could
lead to interesting insights about the nature of quantum matter.

Different theoretical approaches to the strong correla-
tion problem, originally inspired by the high-Tc cuprates but
branching out to a much broader portfolio of materials in
recent years, lead to a variety of different self-energies; some
of them are discussed in this work. Fundamental questions
about the nature of these quantum materials remain open in
most cases; it is unclear whether they constitute some variety
of Fermi liquids, or some variety of non-Fermi liquids. While
the resistivity is often used to discriminate between these
states of matter, it is a much more complex probe to interpret
robustly. On the other hand a much more direct avenue to
answer the above basic question is to study the (imaginary part
of the) self-energy at low energies. At present it seems that
no decisive tests using experimental ARPES data has been
carried out in that direction. This is the motivation for the
present paper, where we present a method to extract the low-ω
self-energy from ARPES-derived spectral function. It is based

FIG. 7. These figures are for the marginal Fermi-liquid-a model Eq. (12) with parameters given in Eq. (16). (Left) The spectral function
A(�kF , ω) and the Re G(�kF , ω) and (right) the imaginary self-energy ρ� (�k f , ω) and χ (�kF , ω) for the M-FL-a model Eq. (12), calculated from
Eqs. (41), (38), (48). Here the spectral peak width W0 is ∼12 meV.
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FIG. 8. These figures are for the marginal Fermi-liquid-a model Eq. (12) with parameters given in Eq. (16). The reconstructed self-energy
ρ� (�kF , ω) + η

π
(red curves) using the soft cutoff Eq. (9) compared with the exact value in the dashed blue curves. The two parameters relating

to the soft cutoff Eq. (9) are indicated in curly brackets. The three insets show the exact spectral function in dashed blue and the cutoff included
spectral function A′ of Eq. (7) in the red curves. Here upper cutoff is 3 times the lower one. Here W0 is ∼12 meV.

on the helpful Theorem 1, which assures us that the inversion
method used has least error at low energies.

The proposal presented in Sec. I B is to use Eq. (3) and
a suitable windowing of the spectral function, analogous to
that in Eq. (9) to infer the imaginary self-energy from the
ARPES-derived spectral function. We provide several exam-
ples in Sec. II that show that the different model systems yield
distinguishably different low-energy self-energies.

We conclude with a few comments:
(1) The suggested inversion process can be used to

estimate the elastic scattering parameter η, from the T -
independent part of the derived self-energy as ω → 0. For
this purpose one can use the inversion data at a few (typically
two or three) distinct temperatures together with Eqs. (36),
(37) to deduce η.

(2) The observed peaks in the spectral function at �kF are
expected to have a T -dependent shift given in Eqs. (26), (49),
(51). The shift in Eq. (B18) contains the chemical potential
part that can be estimated from the thermopower. The remain-
der has two terms in it, but is expected to be dominated by the
term containing the asymmetry parameter α [see Eq. (11)].
This can be a useful way to estimate α from the low-energy
experiments.

(3) The role of noise in the spectral function warrants
mention; the Theorem 1 also applies to the noise. This offers
hope that at low energies, the errors due to noise are least.

(4) While we have focused on �k = �kF here, it might be
possible to explore departures from the Fermi surface if high-
quality spectral functions are obtainable from the intensities
over a wide range of energies. We are suggesting that �k,
chosen in the proximity of �kF , should suffice for estimating
the crucial frequency dependence ρ� (�k, ω) near �kF .

(5) The method described here requires the self-energy to
be diagonal in spin-space. It does not extend to arbitrary �k in a
superconducting state, where the self-energy is a 2 × 2 matrix
on account of the anomalous (i.e. pairing) part. However
an important exception is the nodal direction in 2-d d-wave
superconductor, where the off-diagonal matrix elements of
the self-energy vanish, and hence our inversion method is
applicable.

APPENDIX A: SUMMARY OF BASIC DEFINITIONS

In this section we reorganize the familiar properties of
the Green’s function [11–13] to define specific quantities
used in our analysis. We start with the standard expression
for the retarded Green’s function G−1(�k, ωc) = ωc + μ −
εk − �(�k, ωc), with ωc = ω + i0+ [11–13]. Emphasizing the
role of the spectral density of the self-energy ρ� (�k, ω) =
− 1

π
Im �(�k, ωc), we decompose

�(k, ωc) = (1 − αz )(ω + μ) + �∗(�k)

− iπρ� (�k, ω) + χ (�k, ω), (A1)

FIG. 9. These figures are for the marginal Fermi-liquid-b model Eq. (13) with parameters given in Eq. (17). (Left) The spectral function
A(�kF , ω) and the Re G(�kF , ω) and (right) the imaginary self-energy ρ� (�k f , ω) and χ (�kF , ω), calculated from Eqs. (41), (38), (48), using
parameters given in Eq. (17). Here the spectral peak width W0 is ∼11meV.
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FIG. 10. These figures are for the marginal Fermi-liquid-b model Eq. (13) with parameters given in Eq. (17). The reconstructed self-energy
ρ� (�kF , ω) + η

π
(red curves) using the soft cutoff Eq. (9) compared with the exact value in the dashed blue curves. The two parameters relating

to the soft cutoff Eq. (9) are indicated in curly brackets. The three insets show the exact spectral function in dashed blue and the cutoff included
spectral function A′ of Eq. (7) in the red curves. Here upper cutoff is 3 times the lower one. Here W0 is ∼11 meV. Note the difference in the
shape at low ω from that in Fig. 8 This version has a linear behavior down to the lowest energy.

where χ can be obtained from the Hilbert transform of
ρ� (�k, ω) as

χ (�k, ω) = −
∫

dν
ρ� (�k, ν)

ω − ν
. (A2)

By definition limω→∞ χ (�k, ω) → 0 (assuming an integrable
ρ�). Here �∗ is the static part of the self-energy, analogous
to the Hartree-Fock term, which remains finite as ω → ∞. It
cannot be deduced from ρ� (�k, ω), we see below that it can
be absorbed in the measurable shifts of the peaks as defined
below in Eqs. (26), (27). The constant αZ is given by

αz = 1, canonical (Hubbard-type) fermions (A3)

αz = 1

1 − 1
2 n

, Gutzwiller projected t-J-type fermions

(A4)

and reflects the basic nature of the fermions in various models
[14]. Using this decomposition we write

G−1(�k, ωc) = αz(ωc + μ) − ε�k − �∗(�k)

−χ (�k, ω) + iπρ� (�k, ω). (A5)

We rewrite this expression using the basic idea that at T =
0 on the Fermi surface G(�kF , ω) has a pole at ω = 0. Since

ρ� (�kF , 0) vanishes,

αz × μ|T =0 = ε�kF
+ (�∗(�kF ) + χ (�kF , 0))|T =0, (A6)

which can be used in Eq. (A5) to rewrite it as

G−1(�k, ωc) = ωcαz + �ω − �k + χ (�k, 0)

−χ (�k, ω) + iπρ� (�k, ω), (A7)

where the real functions �ω the energy shift, and �k the
momentum shift are give by

�ω = αz(μ − μ|T =0) + [�∗(�kF )|T =0 − �∗(�kF )]

+ [χ (�kF , 0)|T =0 − χ (kF , 0)] (A8)

�k = (ε�k − ε�kF
) + [�∗(�k) − �∗(�kF )]

+ [χ (�k, 0) − χ (�kF , 0)]. (A9)

By their definitions, �ω vanishes at T = 0, while �k vanishes
at �kF . At low T �ω is expected to be small and may be esti-
mated from the thermopower S using the approximate Kelvin

relation for thermopower SKelvin = −1
qe

( ∂μ(T )
∂T )|N,V , where qe is

the electron charge.
The momentum shift �k (at arbitrary T ) is of O(|�k − �kF |)

for �k near �kF . We now split G(ω + i0+) into its real and

FIG. 11. These figures are for the non-Fermi-liquid model Eq. (14) with parameters given in Eq. (18). (Left) The spectral function A(�kF , ω)
and the Re G(�kF , ω) and (right) the imaginary self energy ρ� (�k f , ω) and χ (�kF , ω), calculated from Eqs. (41), (38), (48), using parameters given
in Eq. (18). Here the spectral peak width W0 is ∼10 meV.
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FIG. 12. These figures are for the non-Fermi-liquid model Eq. (14) with parameters given in Eq. (18). The reconstructed self-energy
ρ� (�kF , ω) + η

π
(red curves) using the soft cutoff Eq. (9) compared with the exact value in the dashed blue curves. The two parameters relating

to the soft cutoff Eq. (9) are indicated in curly brackets. The three insets show the exact spectral function in dashed blue and the cutoff included
spectral function A′ of Eq. (7) in the red curves. Here upper cutoff is 3 times the lower one. Here W0 is ∼10 meV.

imaginary parts as

G(�k, ωc) = Re G(�k, ω) − iπA(�k, ω) (A10)

so that the spectral function A(�k, ω) = − 1
π

Im G(�k, ω). Using Eq. (A7) we get

A(�k, ω) = ρ� (�k, ω)

{αzω + �ω − �k + χ [�k, 0) − χ (�k, ω)]}2 + π2ρ2
� (�k, ω)

, (A11)

and

Re G(�k, ω) = {αzω + �ω − �k + χ [(�k, 0) − χ (�k, ω)]}
{αzω + �ω − �k + χ [(�k, 0) − χ (�k, ω)]}2 + π2ρ2

� (�k, ω)
. (A12)

We now recall that the real and imaginary parts of the
(causal) retarded Green’s function G(ω + i0+) are also related
by the Kramers-Kronig relation

Re G(�k, ω) = −
∫

dν
A(�k, ν)

ω − ν
, (A13)

so that a complete knowledge of A suffices to determine Re G.
Now moving in a slightly different direction, taking the

imaginary part of Eq. (A5) we get

ρ� (�k, ω) = 1

π
Im G−1(�k, ω). (A14)

Using Eq. (A10) this give ρ� in terms of A(�k, ω) and
ReG(�k, ω) as

ρ� (�k, ω) = A(�k, ω)

{Re G(�k, ω)}2 + {πA(�k, ω)}2
. (A15)

This equation asserts that if we know the spectral function
A(�k, ω) for all ω, we can retrieve ρ� (�k, ω), since the Re G can
be inferred through the Hilbert transform Eq. (A13). Relabel-
ing Re G as ��k (ω) gives Eq. (3).

APPENDIX B: DETAILS OF THE ASYMMETRIC
FERMI-LIQUID MODEL

1. Scaled variables and expressions for Hilbert transforms

Let us consider a FL-type model with a cubic asymmetry:
We denote

ω̄ = ω

�0
, τ̄ = πkBT

�0
, Ā = A

�0
, ε̄0 = ε0

�0
(B1)

ρ� (�kF , ω, T ) = ε0(τ̄ 2 + ω̄2)(1 − αω̄)e−ω̄2
. (B2)

We scale the self-energy with �0 so that

ρ̄� (�kF , ω̄, τ̄ ) = ε̄0
(
τ̄ 2 + ω̄2

)
(1 − αω̄)e−ω̄2

. (B3)

In this and also in other models we implicitly add an elastic
scattering term η/π to ρ� (�k, ω),

ρ� (�k, ω)|Total = ρ� (�k, ω) + η

π
, (B4)

as shown in Eq. (B15). This term arises from impurity scatter-
ing [15], and is found to be useful in distinguishing between
ARPES at different incident photon energies [10]. Its corre-
sponding real part arising from causality, is dropped since the
bandwidth for this term is very large, typically a few eV’s.
In practical terms adding η is equivalent to increasing the

physical temperature T to
√

T 2 + η

π3ε0
, usually this is a small

effect.
In summary the model has the following parameters:
(1) strength of self energy: ε0;
(2) reduced temperature: τ̄ ;
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(3) cubic asymmetry: α;
(4) large energy scale: �0;
(5) elastic scattering scale: η̄.
We rewrite Eq. (B3) as

ρ̄� (�kF , ω̄, τ̄ ) = ε̄0(τ̄ 2ρ0(ω̄) + ρ2(ω̄) − α[τ̄ 2ρ1(ω̄) + ρ3(ω̄)]),

(B5)

where

ρm(ω̄) = e−ω̄2 × ω̄m. (B6)

We write its Hilbert transform as

χ (�kF , ω, T ) = −
∫ ∞

−∞

ρ� (�kF , x, T )

ω − x
dx

= �0−
∫ ∞

−∞

ρ̄� (�kF , x̄, τ̄ )

ω̄ − x̄
dx̄. (B7)

By plugging in for ρ� we get

χ̄ (�kF , ω̄, τ̄ ) ≡ 1

�0
χ (�kF , ω, T )

= ε̄0(τ̄ 2χ0(ω̄) + χ2(ω̄) − α[τ̄ 2χ1(ω̄) + χ3(ω̄)]),

(B8)

where

χm(ω̄) = −
∫ ∞

−∞

ρm(x̄)

ω̄ − x̄
dx̄. (B9)

The evaluation of χm for even m follows from the identity

−
∫ ∞

−∞

e−αy2

x − y
dy = 2

√
πDF (

√
αx) with α > 0, (B10)

by differentiating under the integral sign with respect to α, and
where DF is the Dawson function

DF (x) = e−x2
∫ x

0
et2

dt . (B11)

For odd m we use the method of partial fractions to depress
the order m by one, and then use the above scheme for order
m − 1. In this way we find

χ0(x) = √
π2DF (x)

χ1(x) = √
π [2xDF (x) − 1]

χ2(x) = √
πx[2xDF (x) − 1]

χ3(x) = √
π

[
2x3DF (x) − x2 − 1

2

]
. (B12)

The Dawson function has a series expansion for small x

DF (x) ∼ x − 2
3 x3 + O(x5). (B13)

We read off Z from this as

1

Z
= αz − ∂ωχ (�kF , ω, T )

= αz − ε̄0(τ̄ 2χ ′
0(ω̄) + χ ′

2(ω̄) − α[τ̄ 2χ ′
1(ω̄) + χ ′

3(ω̄)])|ω̄→0

= αz + √
πε̄0(1 − 2τ̄ 2), (B14)

where the prime denotes a derivative in the second line. In
dimensionless (i.e., scaled) units with ρ̄� = �0ρ� we write

Ā(�kF , ω̄, τ̄ ) =
η̄

π
+ ρ̄� (�kF , ω̄, τ̄ )[

ω̄
Z (ω̄) − �ω̄(τ̄ )

]2 + [η̄ + πρ̄� (�kF , ω̄, τ̄ )]2
,

(B15)

where we have added an elastic scattering constant η̄ to the
Im�, and thereby a constant η̄

π
to ρ̄� here. It is important to

note that the total self-energy Eq. (B4) deduced by inverting
the A of Eq. (B15), will contain an added contribution of η

π
to

ρ� . This is commented on in Sec. III, and made specific in the
captions of figures Figs. 4, 5, 6, 8, 10, 12 in the paper.

Also note that

�ω̄(τ̄ ) = 1

�0
(μ(0) − μ(T )) + 1

�0
(�∗(�kF , T ) − �∗(�kF , 0))

+ (χ̄ (�kF , 0, τ̄ ) − χ̄ (�kF , 0, 0)). (B16)

We note the lowest-order ω̄ expansions

ρ̄� (�kF , ω) ∼ ε̄0(ω̄2 + τ̄ 2)(1 − αω̄)

χ̄ (ω̄, τ̄ ) ∼ 1
2α

√
πε̄0(1 + 2τ̄ 2)

−√
πε̄0(1 − 2τ̄ 2)ω̄ + O(ω̄2). (B17)

It follows that

�ω̄(τ̄ ) = 1

�0
[μ(0) − μ(T )] + 1

�0
[�∗(�kF , T ) − �∗(�kF , 0)]

+α(
√

πε̄0τ̄
2). (B18)

Therefore the asymmetry parameter α shows up in �ω̄ lin-
early. In some situations it might be reasonable to assume that
this term dominates over the others, and if this is prevails then
one can expect to extract α from the shift of the spectral peak
at �kF as a function of T .

2. Useful properties of the peaks very close to ω = 0

Here we simplify the above expressions in the neighbor-
hood of ω = 0. With

Z = 1

αz + √
πε̄0(1 − 2τ̄ 2)

(B19)

�0 = Z η̄ + Z ε̄0πτ̄ 2 (B20)

�2 = Z ε̄0π (B21)

we get

Ā(�kF , ω̄) ∼ Z

π

�0 + �2ω̄
2

(�0 + �2ω̄2)2 + (ω̄ − Z�ω̄)2
. (B22)

Further simplifying to a small shift Z�ω̄ 	 1

Ā(�kF , ω̄) ∼ Z

π

�0 + �2ω̄
2

(�0 + �2ω̄2)2 + ω̄2
(B23)

so that {Ā}max = Ā(�kF , 0) = Z
π�0

. We note that the scaled
width (FWHM) of the spectral peak used in the analysis is
given by

W̄0 = 2

√
− 1

2�2
2

+ 1

2�2
2

(
1 + 4�2

0�
2
2

) 1
2 . (B24)
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