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Abstract. We establish scaling equations for the two-dimensional x-y model with weak 
frustration using the electrostatic analogy of Kosterlitz and Thouless. In the limit of small 
disorder we find a shift in the critical temperature 

T,(x) - T,(O) = - ( J x / k s )  (2d - ni2 h 2 x )  

and the exponents are unchanged from the pure values. 

1. Introduction 

Villain (1977) initiated the study of the two-dimensional x-y model with (quenched) 
frustrated disorder, as an interesting example of a system with a continuous symmetry 
which exhibits discrete (Ising-like) two-level systems. The Ising-like variables arise as 
manifestations of frustration and are characterised by half-integral vortices (textural 
singularities), a relationship which appears to be of a general character (Alexander and 
Lubensky 1979). The model is also interesting when viewed as a gauge theory with a Z2 
gauge field symmetry in addition to the U(1) matter symmetry (Fradkin et aZ1978). 

Villain investigated the ground state of the system and suggested that the 
Kosterlitz-Thouless (1973: KT) transition of the pure model may be destroyed by an 
arbitrarily small amount of disorder for the case of a random distribution of frustrated 
cells. For the case of randomly distributed negative bonds, however, Shastry (1979) 
gave an intuitive argument that the KT transition would be stable against weak disorder 
since the disorder provides an effective fugacity to control the number of vortex-like 
combinations of two-level systems. A similar conclusion may be reached by using the 
Harris criterion (Harris 1974) which is satisfied by a big margin in the x-y model since 
the specific heat exponent in the pure case &+ - C O  (Imry 1979). Jose (1979) reached a 
similar conclusion by examining the two-spin correlation function, using the techniques 
developed by JosC et a1 (1977) for the pure case. He also examined the case of strong 
disorder where the correlations decay exponentially rather than as power laws. His 
approach, however, does not give a result for the shift in T, from the pure value. This 
shift is of considerable interest and is widely studied in Ising-like systems where some 
exact results are known (Au-Yang et a1 1976). 
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In this work we calculate the behaviour of Tc(x) for small x, using a generalisation of 
the elegant scaling argument of Kosterlitz and Thouless, which was shown by Young 
(1978) to be equivalent to the more conventional renormalisation group argument of 
Kosterlitz (1974). Our work uses the electrostatic analogy which reduces the problem 
to that of a two-component (neutral) Coulomb gas in two dimensions with polarisable 
dipoles at randomly distributed sites. The theory uses the simplification arising from 
low (vortex) density and low concentration assumptions (we restrict attention to the 
lowest powers ofx,  the disorder variable), and is limited in the sense that the correlation 
functions are not tractable. Thus our study complements that of Jose (1979) and also 
that of Fradkin et a1 (1978), whose work shows that we may expect a reduction in the 
magnitude of the correlation function due to weak disorder. We hope to generalise our 
techniques to study the case of dilution, which is of considerable experimental interest 
in the context of phase transitions in granular (2d) superconductors. 

The paper is organised as follows. In § 2 we outline the Coulomb gas analogy which 
was given by Villain (1977) and discuss the reduction of the problem to an effective 
vortex gas with polarisable dipoles. We set up the recursion relations in analogy with the 
pure case (Young 1978) and the dipoles are takeninto account through a ‘shape function’. 
In § 3 we discuss the nature of the shape function and in § 4 we obtain the T,(x) to the 
lowest order in x by adjusting the initial conditions such that the scaling trajectory passes 
through the fixed point. The stability of the pure fixed point is pointed out. In § 5 we 
discuss our results. Appendix 1 summarises the duality argument leading to the Coulomb 
gas. Appendix 2 contains a novel relationship between the E(R)  as defined by KT and a 
wavevector-dependent E~ which is exploited to give a reasonable shape function. 

2. Recursion relations for the dipole screened Coulomb gas 

2.1 The effective Coulomb Hamiltonian 

The system we consider is a two-dimensional classical x-y model in which the exchange 
constants are random variables with allowed values +J or - J .  We may conveniently 
write the Hamiltonian as 

where L is the (square) lattice of Npoints, and the njjare integer valued random variables 
attached to the 2N bonds with a probability distribution 

Clearly bonds with n = (l), 0 have (anti)ferromagnetic interactions. The disorder is 
assumed to be quenched, i.e. the set {n,} is assigned initially in accordance with the 
distribution law (2.2) and the average over these taken after computing log 2, where 2, 
the partition function, may be written as 
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Here n,,, represents a product over each nearest-neighbour bond (singly) and the 
‘action’ is given by 

exp(A,) = exp{- K[1 - cos(@, - 0, - n,,n)]> (2.4) 

where K = JikBT. We assume asimplificationof equation (2.4) which was first introduced 
by Villain (1975): 

This approximation reproduces the small-angle expansion of the cosine function in 
equation (2.4) and restores the 2nperiodicity, thereby leading to vortices in addition to 
the harmonic spin waves. A partial trace over the continuous degrees of freedom can be 
performed (Villain 1977, Jose 1979) and after a duality transformation the partition 
function factors out into a (non-singular) spin wave part and a Coulomb part. For 
completion the argument is summarised in Appendix 1 and we obtain the Coulomb part 
(Villain 1977) 

where 

H,  = - 

p, = m, + v42, q2 = nJ, p~ = q 2 ( y  + i In 2). (2.8) 

In equations (2.7) and (2.8) a0 is the lattice constant, y is Euler’s constant, the sum il 
runs over the dual lattice (again a square lattice) and them, are integers attached to each 
(dual) lattice point. The variables v, are fixed by the distribution of the J in the original 
lattice (or equivalently the nil) and can be written as v, = nEasr + nNorth - nWest - nSourh,  

where nEast etc are the bond variables in the appropriate direction in a plaquette sur- 
rounding the dual lattice point i. Thus 2 2 ,  ? 1 , 0  are the allowed values of the quantum 
numbers v,. The lattice point is frustrated in the sense of Toulouse (1977) if v, = 5 1 and 
non-frustrated if v, = i 2  or 0. We may recognise equations (2.6)-(2.8) as the problem 
of a Coulomb gas in two dimensions with a short-distance cut-off uo. The charges p, (in 
units of q = (JLJ)~) are half-odd integer or integer, depending on whether the site i is 
frustrated or otherwise. The assembly is neutral and a chemical potential tends to 
suppress the creation of free vortices. The problem reduces to precisely the Coulomb 
gas considered by KT if the v are set equal to zero. 

In the disordered problem our analysis follows that of Villain (1977) closely. Firstly 
we note that it is sufficient to confine ourselves to states having the smallest possible 
values of charge since these represent the best compromise between energy and entropy 
(Kosterlitz and Thouless 1974). Thus we may set p, = t 1, or 0 for i E R ,  where R is the 
set of unfrustrated lattice points and Fis  the frustrated set ( R  U F = L) .  (Thus the sites 
having trivial disorder corresponding to two antiferromagnetic bonds and hence v, = 
i 2  have been ‘gauged away’ by setting m, = 71 on these sites.) On the frustrated set F 
we have v, = t 1 and hence p, = m, +- a. On these we restrict ourselves to m, = t 1, so 
that ,U, = it. Furthermore, it is easy to verify that Cv, = 0 by construction, and hence 
22 v, = 0 and C m, = 0 together imply I: p, = 0. Thus we may regard p, as the fundamental 
set of variables with values i 1 or 0 on R and 54 on F .  This procedure was introduced by 
Villain (1977) and has the advantage of removing trivial disorder at the very outset. 
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The ground state of the model corresponds to setting pi = 0 on all unfrustrated sites 
(R) .  The p, on the frustrated set ( F )  may be 24 and hence the ground state energy is 
higher than in the pure case. It can be seen that the ground state has a macroscopic 
degeneracy which is especially clear in the weak disorder limit x 1. In this case the 
distribution of the frustrated plaquettes is very simple: we have 

N f  = 4xN + 0(x2) 

where Nf is the number of frustrated cells. These occur in pairs (since flipping the sign 
of one bond in the x-y model frustrates the two squares which share the bond) and we 
may further regard the distribution of the pairs as random to O(x).  A given pair will 
clearly be neutral in the ground state in order to prevent a build-up of charge locally. 
Thus the ground state consists of Ni/2 ‘dipoles’, each having the possible orientations 
(&+, 74) and neglecting the dipole-dipole interaction, the ground state degeneracy is 
2Nf’2, Considerations of dipole-dipole interactions would change the picture and pre- 
sumably lead to a ‘dipolar spin glass’ (Vannimenus 1980, private communication) but 
we shall not pursue this further. 

At elevated temperatures one would create (thermal) vortices in neutral pairs on the 
non-frustrated sites, as in the pure case. However, in the disordered case we may also 
create a ‘mertex’ configuration by considering a dipole and flipping one of the two 
charges, giving rise to a net charge of t l .  We may visualise the mertex configurations 
as vortices which are constrained to lie on the lattice F‘, where each point in F‘ is the 
mid-point of a dipolar pair in the F lattice. (Clearly the number of lattice points in 
F‘ = Nf/2 = 2xN + O(x2).) Charge neutrality requires compensating this configuration 
by creating another vortex (or mertex) with charge 7 1. In the subsequent work we will 
be interested in taking the continuum limit, and in this limit the distinction between a 
mertex and a vortex is artificial. We now show that mertex-like configurations may be 
absorbed into vortex-like excitations provided the fugacity is redefined suitably. The 
argument is exact in the continuum limit and is most directly seen in the trivial case of 
two excitations. We consider the Hamiltonian (2.7) in the subspace of two excitations 
(we have subtracted the ground state energy shift). The (canonical) partition function 
is 

In the continuum limit, we have (since the number of lattice points is (1 - 2x)N in R and 
2xN in F‘) 

Inserting into equation (2.9) we find 

(2.10) 

(2.11) 
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where 

zo(x) = exp(-/3h) + 2x + o(x*) (2.12) 

This is precisely the result obtained by taking the continuum limit for vortices with an 
effective fugacity given by equation (2.12). Proceeding similarly one can see that the 
replacement (2.12) takes care of the mertices to all orders. 

To  summarise, we have seen that the low lying excitations of equation (2.7) for the 
case of weak disorder may be viewed as vortex-antivortex pairs with an effective (x 
dependent) fugacity (equation (2.12)). The interaction between the vortex pairs is no 
longer purely Coulomb since the dipoles form a polarisable medium and partially screen 
the interactions. (The conscientious reader may object that the mertex configurations 
occur on the same sites where the dipoles are located and hence one must introduce 
'exclusion' effects; however, it is readily seen that this effect is irrelevant provided we 
work to the lowest order in x.) 

The polarisability of the dipoles leads to a bulk dielectric constant which is readily 
estimated as follows (Shastry 1979). We have 2xN dipoles of which a half ( x N )  lie along 
the E-W direction and the other half (xN) along the N-S direction on the average. On 
applying an external electric field Eo, the induced polarisation is (A = +&ao) 

Hence the dielectric constant 

ED = 1 + X/3q2x + o(x2). 

(2.14) 

(2.15) 

In the above equations, we have neglected local field corrections since these would 
contribute to O(x2) only. We observe that equation (2.15) results if we relax the con- 
straint that the 2xN elementary dipoles only align in the E-W or N-S direction, and 
allow these to orient in all directions in the plane, provided we assign to each dipole a 
polarisability LY =&/3q2ai. This assumption is used in 8 3 to simplify the problem. 

2.2. Recursion relations 
In this section we set up the recursion relations for the Coulomb gas with dipolar 
screening in the spirit of the Kosterlitz-Thouless theory. Following KT, we define a 
scale-dependent dielectric function E(r) which may be defined in terms of the force 
experienced by a test charge pair kept at a distance r in the medium 

Fmedium = Fvacuum/&(r)* (2.16) 
(Implicit in the definition is an averaging of the force over all orientations and positions 
in the medium with the distance r kept fixed.) Following KT we define an effective 
interaction energy between a test pair of charges 2 q  as 

(2.17) 
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where peff = - (kB7‘) In z&). This energy is the integral over the force in equation (2.16) 
and acts as a Boltzmann weight for a pair. The ‘iterated mean-field theory’ of KT is based 
upon the use of Ueff(r) in place of In r in equation (2.11) and the assumption that this 
replacement incorporates the major effects of z4), Z(6) etc. Following Kosterlitz and 
Thouless, we now establish a differential equation for E ( r )  by enlarging the length scale 
from r to r + dr. On changing the separation of the test pair from r to r + dr, we have 
additional polarisable (vortex-antivortex) pairs to screen the test pair since the vortex 
pairs are distributed at various length scales. Hence we may equate de(r)/4n to the 
polarisability times the density of all the additional polarisable entities which are brought 
into play by the increase in the test pair separation. We therefore write 

de(r) = 4ndn(r) i (qr)2 p + (474 dnD(r)a (2.18) 

where dn(r) is the density of vortex-antivortex pairs with a separation lying between r 
and r + dr; the factor hp(qr)* is the polarisability of the pairs and the last term is the 
correction term due to the dipoles, with LY the polarisability of each dipole and dnD(r) 
the density of dipoles contained within r and r + dr. The first term in equation (2.18) is 
expressed back in terms of &(r) using 

(2.19) 

which follows from equation (2.11) on using Ueff in place of In r .  In the second term, we 
define 

dn(r) = (2m driad) exp[ -/3Uef4r)] 

(2.20) 

where g(r )  is a dipolar ‘shape function’ which will be elaborated upon in the following. 
Using a =@q2a8 we get 

dE(r) = q2p42?(dr/a;) exp(-/3Ueff(r)) + (n&%) (dg(r)/dr) dr. (2.21) 

We next go over to a logarithmic length scale and define 

1 = ln(r/ao), K = pI, K(l)  = K/E(l). 

It is expedient to define a scale dependent fugacity (Young 1978) 

\ JO 

in terms of which equation (2.21) becomes 

-- dK(‘) - 4dy2(1) + dx(dV/dl) 
dl 

(2.22) 

(2.23) 

(2.24) 

with 

Differentiating (2.23) with respect to 1, we get 

dy(l)/dl = [2 - nK(Z)] ~ ( l ) .  (2.26) 
Thus we have replaced the integro-differential equation (2.21) by a pair of coupled 
differential equations which are precisely those of Kosterlitz (1974) in the absence of 
the term involving V(l)  in equation (2.24). 
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The terms involving g ( r )  and q ( r )  can be understood in terms of the dipolar system 
as follows. If we neglect the vortices completely (set zg(x) + 0) the calculation sketched 
above reduces to that of the computation of the scale-dependent E for a system of 
dipoles. Thus integrating equation (2.21) we get 

(2.27) 

whereg(0) = 0. For r-+ m, ED( w )  must reduce to the bulk screening constant calculated 
in equation (2.15) and hence g( m) = 1. Thus g ( r )  represents the build-up of the response 
of the dipolar system as the test pair separation is varied and is normalised to unity at 
r = m. It is at first sight surprising that one should be considering a scale dependence of 
ED at all, since there is no real dispersion (such as a distribution of vortex pairs etc) for 
the dipoles. The reason why we are forced to consider & D ( r )  is that the dipoles are 
separated by a mean distance 

a, = ad(2x)l’2 (2.28) 

which tends to infinity as x + 0. Thus for small x the test pair has to be at least O(a,) 
apart before the dipolar screening can be effective, resulting in g ( r )  = 0 for r s a,. It is 
this scale dependence that we substantiate and estimate in the following section. 

The disorder thus modifies the Kosterlitz recursion relations in two ways: (a)  the 
initial condition on fugacity y ( 0 )  depends on x (through equation (2.12)) and (b) the 
dependence on q(l) in equation (2.24). As I +  CO, q’(1) + 0 and hence the fixed point 
of the equations is the same as for the pure case (K’ = 2/n, y’ = 0). In § 4 we calculate 
the shift in T, as a result of the disorder. 

3. Dipolar shape function 

We place the 2xNdipoles on a lattice {ri} with lattice parameter a, (equation (2.28)) and 
place a test charge pair i Q at Ro i R/2. Each dipole has a polarisability and 
to the lowest order inx, we may disregard the dipole-dipole interactions. The interaction 
energy of the system is known for elementary electrostatics 

The electric field may be approximated by the field due to the external charges 

where ri, = ri - Ro i R/2 and n is a unit vector. Equation (3.2) cannot be used as it 
stands in the problem at hand since the denominators may vanish and lead to spurious 
singularities. The underlying lattice provides a cut-off ‘ao’ which is the distance of 
minimum approach, and we replace equation (3.2) by 

The induced polarisation (Pi) = aEi must also be found using equation (3.3). We must 
also make sure that linear response theory is valid for computing Pi ,  since Ei  becomes 
very small for rit = 0 and I(Pi>l is bounded by $quo. The ratio alEil,,,/&zo is -(nK/2), 



938 B Sriram Shastry 

and hence for T = T, we may neglect this complication. Therefore using equation (3.3) 
in equation (3.1) we find 

uint = 2Q2[ln lR Ilao - f ( R ,  Roll (3.4) 
where 

We may define the average offover the IocationRo and the orientations of R :  

f(lR I) = ( f ( R ,  Ro)). (3 * 6) 
Clearly, the average over Ro may be restricted to a unit cell since the function is periodic 
in&. The dipolar dielectric function may be obtained from equations (2.16), (3.4) and 
(3.6) as 

ED = [ l  - R(d/dR)f(R)]-’x 1 + R(d/dR)f(R). (3.7) 
The last equality in equation (3.7) followssince we expectf(R) - O(x). We now examine 
f in  the extreme limits of small R and large R. 

R e a,. In this case we isolate the unit cell in equation (3.5) which contains Ro and 
write 

f(R) =fo(R> +fl(R) (3.8) 
where 

(3.10) 

Equation (3.9) contains potentially large terms since the denominators can become 
small. We may estimate equation (3.9) by confining our attention to Ro 2 tRi2 ,  and 
obtain the leading behaviour as 

(3.11) 

where C is O(1). For R > ao, f(R) is a very slowly varying function and hence does not 
contribute to the dielectric function (3.7). 

The termsfi(R) can be estimated by neglecting the average over Ro and we find 
fl(R) = (2ax/a$ (Ria,)* C’ (3.12) 

where C’ is O(1). 

R % a,. In this limit we may replace the summation in equation (3.5) by an integration 
(since the lattice constant is a,). Thus 

2 + (2x) d2ri/a8 
i 



Two-dimensional frustrated x-y model 939 

and 

By scaling ri = / R  Iy and shifting, 

(3.13) 

(3.14) 

The regions y =r 0 and y -c. -R/IR I contribute equally to the leading behaviour of equa- 
tion (3.9) and we get 

(3.15) 

It is clear from equations (3.15) and (3.7) that asymptotically 

&D(Rsa,) = 1 + (8~t~aiai). (3.16) 

This result is of course precisely what we expected from equation (2.15) in this limit. It 
is clear from equations (3.7), (3.12) and (3.15) that the dipolar shape function 

g(R) = C(R/a,,,)' ( R  a 3  
= 1  ( R  S a,,,). 

(3.17) 

For R 3 a, these are always cells in which the denominators become small (O(a0)) but 
these can be handled in a manner analogous tofo(R) in equation (3.9). Therefore within 
the accuracy of our estimates we conclude that the dipolar shape function can be 
represented reasonably by an interpolation formula 

c = O(1). (Ria,)" 
g(R)  C + (R/a,)" (3.18) 

We expect n = 2, but we shall see in § 4 that the leading behaviour of Tc(x) is independent 
of C and n,  and hence we may content ourselves with the above crude estimate. In 
Appendix 2 we suggest a more appropriate form for g(R) by using a novel relationship 
between the dielectric function in momentum space and &(R). This, however, leads to 
the same behaviour as equation (3.18) for the leading behaviour of Tc(x) .  The interpo- 
lation formula (3.18) captures the essential physics of the situation, which is that a,, the 
lattice constant, sets the scale for the function, and therefore for R 3 a, a substantial 
number of dipoles are available for screening the test pair, whereas for R +am one has 
essentially ED = 1. 

Finally, we define 

Zo = In(a,/ao) = ln[1/(2~)l'~] (3.19) 

so that 

(3.20) 
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4. Behaviour of Tc(x)  

The recursion relations (2.24) and (2.26) have the same fixed point as the pure case 
(since ~ ’ ( l )  + 0): 

K* = 21n y *  = 0. (4.1) 

K(l)  = 2/n + 4t(l). (4.2) 

dtldl = -4~cy~(l)  - x V ’ ( l )  (4.3) 

dyldl = -47~t(l) ~ ( l ) .  (4.4) 

Linearising about this, we define 

The linearised recursion relations are 

Multiplying these equations by 2t and 2y respectively, and on taking the difference, we 
find 

d (? - y2) = -2xtq’. (4.5) 

On the critical trajectory, t ( w )  = 0 = y ( m )  and hence integrating (4.5) from 0 to w we 
get 

ty0)  - yyo) = 2xL (4.6) 

L = [ dlq’(Z) t( l) .  (4.7) 

For the pure case, x = 0 and ?(O) - ~ ’ ( 0 )  = 0 on the critical trajectory. The RHS of 
equation (4.6) is positive and shows that the initial conditions must be modified to reach 
the critical point and hence leads to the shift in T,. In view of the explicit factor 2x in the 
RHS of equation (4.6) we expect that the leading behaviour can be obtained by setting 
t = P(l ) ,  i.e. the solution in the pure case 

We have solved equation (4.3) for a model vmodel(l) = e(l - lo), where lo = ln(lA&), 
and have verified that the above replacement is sufficient provided x < exp(-Ph),  
whereas forx % exp( - P h )  the results are different. For thex-y model the first inequality 
applies and hence we may use the approximation with confidence. Thus from equations 
(4.7), (4.8) and (3.15) we have on integrating by parts 

(4.9) 

In the limit x + m , lo + to, and hence we may extract the leading behaviour of equation 
(4.9) by setting the lower limit as lo. Calling I = Io(1 + a) we get 

.=-j 1 “  d o  1 
(4n)lo (d4nlo + 1 + 0 ) ~ [ 1  + Cexp(-aI,yz)] 

For large lo, we find 

(4.10) 
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Combining equations (4.2), (4.7) and (4.11) we find 
. ,̂  

(J/&(x) - 2 i ~ )  = 4(y2(0) + x i 2 ~ 1 ~ ) ~ ” .  (4.12) 

For small x we may expand the squere root in equation (4.12) and hence 

J / ~ c ( x )  = 2 / ~  + 4y(O) + ~ / d o ( O ) .  (4.13) 

Using equations (2.12) and (3.14) we finally obtain 

The first two terms are known from the work of Kosterlitz (1974). The last two terms in 
equation (4.14) represent the corrections due to disorder which leads to a decrease in T, 
as expected. The logarithmic term is, however, unusual and not found in Ising-like 
systems in the lowest order. 

The recursion relations have the same nature as those for the pure case, and in 
particular the rate at which one moves away from the fixed point is identical. The 
exponents are therefore unchanged by weak disorder. 

5. Discussion 

The main result of this work is equation (4.14), which shows a different character from 
the results of Ising-like systems with defects. In the latter case, the quenched and 
annealed disorder yield an identical linear depression of T, to the lowest order, but 
higher-order terms may contain non-analytic x dependences (Harris 1974). In higher 
orders, the exact results of Au-Yang et a1 (1976) for an Ising model with a periodic 
distribution of defects in 2d show non-analytic terms such as x2 In x. The frustrated 
x-y model is thus unusual in that non-analytic contributions such as xiln x make their 
appearance in the lowest order. 

If we naively assume that all the Coulomb interactions are screened by the bulk 
dielectric constant (2.15), the screening can be incorporated into a shift of the initial 
conditions in the recursion relations and a trivial calculation shows that the last term in 
equation (4.14) is to be replaced by -n?x, which is clearIy more effective in reducing T,. 
The logarithmic dependence on x stems from the fact that the vortex pair separation has 
to be greater than ad(2x)l’* before they can benefit from dipolar screening. 

We should clarify that the results of this work do not necessarily have a direct bearing 
on the conjectured instability of the KT transition due to Villain. His conjecture is 
specifically for the case of a random distribution of frustrated cells rather than of 
antiferromagnetic bonds, and in that case the mean distance between half-integral 
charges becomes large ( a a d ( ~ ) ” ~ )  as compared to the present work (ao). 

The fact that the exponents do not change in the limit of small x is expected from the 
criterion of Harris, as mentioned in the Introduction?. We should note, however, that 
a recent study (Shastry and Bruno 1981) of the effect of more general bond disorder 
than that studied in this work indicates that the criterion must be used with considerable 
care for the 2d x-y model. 
t We should also mention that Dhar has recently analysed the same problem using a real space ‘block charge’ 
technique and obtains somewhat different results. His technique is very different in detail and it is not clear 
as to what approximation is responsible for the differences. 
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Appendix 1: Duality and the Coulomb gas 

We write equation (2.5) as a Fourier series 

exp(AV) = exp[i(Oi - Oj - nnV) m ~ ]  exp[-m$/2K - ln(2nK)l’T. (A l .  1) 
m,, = 0 ,  5 1 , .  . . 

Multiplying out the expansions for the A in equation (2.3), we integrate over 0,. Each 
ei occurs in four terms and on using 

we get a constraint at each site of the form mN + mw = mE + ms, where mN, mw, mE and 
ms are the Fourier expansion integers on bonds to the North, West, East and South of 
the site i. The constraint is recognised as a lattice version of potential flow and may be 
satisfied by going over to the dual lattice and defining at each lattice point an integer 
variable. We write 

(A1.2) 

(A1.3) 

where the primed variables refer to the dual lattice. These equations clearly satisfy the 
constraints on the original lattice automatically. We may now express the partition 
function as a sum over the integers m’ and after some elementary manipulations we find 

mN = mhw - mhE, 

mw = -mhw + mkw, 

ms = m h  - m6E 

mE = -mhE + m$E 

where we have introduced a new set of variables { vi} defined over the dual lattice in terms 
of the n as 

vi nE + nN - I tW - I t S .  (Al.5) 

Equation (A1.4) may be regarded as a Gaussian model for interfacial roughening in the 
absence of the vvariables (e.g. see Chui and Weeks 1976). In order to evaluate equation 
(A1 -4) we introduce the Poisson summation formula 

at each site. This leads to 

(A1.6) 

(A1.7) 

The integral over the q is trivial since we have a gaussian form. Retaining the second 
cumulant of the q we get 

(A1.8) 
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where pi = mi + ui/2, ZSw is the spin wave part (equation (A1.7) with mi = 0 = vi) and 
the Green function is 

dk exp[ik * (ri - rj)] G(ij) = K-'(qiQlj) = 4 ( 2 ~ ) ~  2 - COS k, - COS k, (Al.9) 

The Green function diverges for all i and j  due to the long-wavelength behaviour of the 
denominator. This may be regularised in the usual way by adding a small positive number 
to the denominator and defining 

d2k 1 - exp[ik (ri - rj)] G(ij) = 1 - s ( 2 ~ ) ~  E + 2 - COS k, - COS k,' 
- 

(Al.  10) 

(Al.  11) 

The exponential in equation (A1.8) may be written as 

- 2 d K  C, y j~ jG&(O)  + ~ x * K  Z pip, C(ij). 
i j 'I 

In the limit E + 0 ,  GE(0) --f i- w and hence we get a zero contribution to the partition 
function unless 2 pi = 0. Thus the neutrality constraint is forced by the long-wavelength 
behaviour of G(ij). In the limit E+ 0, the reduced Green function-d(ij) is well behaved 
and has the asymptotic behaviour (Spitzer 1964) 

(A1.12) 

where +ln(rdao) = - ( y  + fln 2 ) ,  y being Euler's constant. Using equation (Al . l l ) ,  
equation (A1.8) becomes 

where 

(A1.13) 

(Al.  14) 

Defining q = (d)'" and = d ln(adro), equation (Al. 14) reduces to equation (2.6).  

Appendix 2 

We establish an exact relationship between a Kosterlitz-Thouless-like dielectric function 
E(R) and a more conventional dispersive dielectric function for a homogeneous 
medium. If we place a test charge pair rt0 in a medium (at -+R/2) characterised by a 
dielectric function E ~ ,  the interaction energy (3.1) may be written as 

(A2.1) 
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where ,ort is the external charge density (-29 Q sin(q R/2) and the angular bracket 
represents a sum over all q .  By taking the derivative of equation (A2.1) with respect to 
R and on using equation (2.16) we find the relationship 

If we assume further that c9 is isotropic, this equation reduces to 

1 

(A2.2) 

(A2.3) 

where J 1  is the Bessel function of first order. This equation shows that E(R = m) is c9=0 
and hence is the bulk value. 

We can exploit the relation (A2.3) to obtain a reasonable approximation for the 
dipolar shape function as follows. The dipolar system has a non-dispersive 
(wavevector-independent) dielectric constant for most wavevectors of interest except 
for very high q, when the lattice makes itself felt. Hence a reasonable choice is 

(A2.4) 

Substituting equation (A2.4) into equation (A2.3), we find after an elementary 
calculation 

(A2.5) 

and therefore I)(/) = 1 - Jo (exp(l - l o ) ) .  For r << a,, g(R)  - 4R2/a$ and for r S a,, 
g = 1. Thus equation (A2.5) has all the desired properties (see equation (3.17)) and we 
believe it is a reasonable guess. 

We now show that equation (A2.5) leads to the same &(x) as equation (4.13). From 
equations (4.7), (4.8) and (A2.5) we have 

E9 = 1 + n/?q*xe(l - Iqla,). 

g(R) = 1 - Jo(r/a,) 

lo dl[l - JO (exp(l - l o ) ) ]  dl[l - J O  (exp(l - lo ) )  
(A2.6) 

The first integral vanishes faster than 1/10 as lo-+ m and may be omitted. In the second 
integral we separate the two terms in the numerator and get 

Ll",, - - ro+Z 
4n  

Clearly 

(A2.7) 

(A2.8) 

As z + 00, IJO(z) 1 - l/zl" and hence the integral converges. Therefore the leading 
behaviour of L is 1/(4n) lo, which coincides with equation (4.11) and hence leads to 
equation (4.14). 
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