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Abstract. Nonlinear difference equations are derived for a model of Peierls dimerisation 
and non-integral charges proposed by Su, Schrieffer and Heeger. The dimerised state is 
shown to satisfy these exactly. A continuum model is obtained from the discrete model 
by approximating the fermion spectrum and imposing a cut-off to retain the correct number 
of degrees of freedom. The continuum model with periodic boundary conditions is solved 
exactly for an arbitrary number of solitonic excitations. The possibility of recovering 
solutions of the discrete model are discussed, using the solution to study completeness 
properties. 

1. Introduction 

There has been considerable interest recently in the properties of linear chain Peierls 
systems. In the context of polyacetylene it has been proposed (Su et a1 1979, 1980, 
Rice 1979) that the low-lying excitations of interest in the system are topological 
solitons which interpolate between distinctly dimerised ground states. In the context 
of relativistic field theories, similar excitations have been found with fractional charges 
(for a review see Jackiw and Schrieffer 1981). 

The work of Su et a1 (1979,1980) is based on a numerical solution of finite sized 
discrete chains. Subsequently Takayama et a1 (1980) and Brazovski (1980) studied 
a continuum version of the model and succeeded in solving the latter problem 
analytically in the presence of a single soliton. A generalisation to the case of many 
solitons has appeared recently? (Horovitz 1981) which uses an analogy with the 
quantum sine-Gordon field theory. 

In the present work we obtain exact nonlinear difference equations for the fermion 
amplitudes. These are shown to be satisfied by the Peierls dimerised state. We have 
not seen a demonstration of this widely accepted result in the literature and hence 
have provided one in the appendix. These equations are very hard to solve analytically 
for other excitations, and hence we take a continuum limit appropriate to the half 
filled case. This procedure introduces an infinite number of states not originally 
present. The state space of the discrete model. is then embedded in the larger space. 
It is important to understand the nature of this embedding in comparing the results 
of discrete and continuum models. 

i The paper of Horovitz (1981) came to our attention after we had completed the major part of this work. 
The model is similar but the motivation and technical details seem different. 
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We have found it possible to solve the nonlinear equations in the continuum limit 
exactly. The solution is based on an ansatz for the ‘order parameter’, which in turn 
is guided by an approximate solution of the nonlinear equation following an idea of 
Sutherland (unpublished). The ansatz is shown to be self-consistent. The situation 
has a striking resemblance to the recent exact solution of a nonlinear eigenvalue 
problem (Shastry 1983). The present solution is for the case of periodic boundary 
conditions, which are particularly useful in counting the number of states for a large 
but finite system. The counting problem is crucial to an understanding of the embed- 
ding referred to above. 

In 9 2 we derive the nonlinear discrete equations for the model proposed by Su 
et a1 (1979). A continuum limit is taken which is appropriate for the half filled case 
and the continuum model is stated carefully. 

In § 3 this model is solved within an approximate scheme which yields a functional 
form for the order parameter. In 9 4  the ansatz is made and is shown to be self- 
consistent. Thus the model is solved exactly. In § 5 we highlight the salient features 
of the solution and comment on these in 0 6. For simplicity we retrict to a low density 
of solitons in 0 9  5 and 6 although our general solution is valid for an arbitrary density. 

2. Nonlinear equations 

We consider a model of Ne 
the lattice displacements ui  
SSH). The Hamiltonian is 

spinless fermions on a chain of Na sites interacting with 
in a model proposed by Su et a1 (1980: referred to as 

i i 

where the ci ’s  are fermion destruction operators, to the hopping parameter, a the 
electron-phonon coupling constant and K the elastic stiffness. The lattice is treated 
within the adiabatic approximation in (2. l), and periodic boundary conditions are 
imposed ( c , + N ~  =c i ,  u ~ + N ,  s u i ) .  We transform (2.1) into a more convenient form by 
dividing by to and introducing the variables 

ui = a/fO(ui+l -U;), y = a2/Kto.  
Thus 

~ e 1 [ [ v i - l ] ( C : + l C i + H C ) + ( 2 y ) - 1 1  U :  
i i 

The total energy is obtained from 

Here e ,  are eigenvalues of the fermion part and the summation is over Ne ‘occupied’ 
eigenvalues. The wavefunctions are obtained by expanding as follows: 

(2.5) 

= ~ ~ 1 4 , )  

(2 6) 

14,) = 1 I 4yctlvacuum). 

The amplitudes obey difference equations obtained from (2.5) and 
which yields 

E,*; = ( V i  - 1)4?+1 + (Ui-1 - 1)4:-1. 
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The amplitudes obey orthonormality and completeness relations 

c G*4? = sa.0,  c 44.4; =sip 
i a 

205 1 

(2.7) 

In these relations a's are appropriate labels for the N, eigenvectors of 26 
Equation (2.4) expresses the total energy as a functional of {vi} which requires the 

explicit solution of the difference equations (2.6). This is awkward if one wishes to 
explore various forms for { v i } .  Therefore it is convenient to reformulate the problem 
in terms of a variational principle where both {&} and {u i }  are treated as variables. 
Consider a functional 

Extremising with respect to 4;' (subject to orthonormality (2.7)) we recover (2.6). 
Extremising with respect to vi (subject to Xi ui  = 0) we find 

ui = y ( J -  ($:*$;+cl +cd) 
Q E O C C  

with the Lagrange multiplier 

J = N,' 1 ($:*4?+l +cc). 
QGOCC i 

(2.9) 

(2.10) 

Furthermore, at a solution of (2.6) and (2.9), Wtotal equals Etotal. Thus the stationary 
points of Wtotal may be regarded as possible excitations of the system. 

Equations (2.6) and (2.9) constitute a nonlinear set of equations. The ground state 
for the half filled band (Ne = Na/2) is believed to be of the Peierls dimerised kind. 
We show in the appendix that the Peierls state indeed obeys the nonlinear equations 
exactly for all values of y. For the other extreme case Ne<< N, (i.e. low density), 
equations (2.6) and (2.9) can be treated in a continuum limit. These equations have 
been solved exactly (Shastry 1983) and it is found that the Peierls state is stable for 
arbitrary coupling constants. 

We now turn to the study of the excitation spectrum and confine ourselves to the 
half filled case (Ne = $Na). It is convenient to remove a rapidly varying phase factor 
from the amplitudes of states close to the Fermi momentum. Thus define 

where L = Na/2. Also 

On V2n9 w, 3 -Uzn-1 .  (2.12) 

The equations of motion (2.6) and (2.9) are transformed into 

(2.13) 
(2.14) 

(2.15) 
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6, = y 1 (aE*bE +cc)-yA.  
a c o c c  

(2 .16 )  

The Lagrange multiplier 

Orthonormality of the amplitudes and completeness (2 .7 )  read 

1 (a::*a51+b:*bfl)=Sa,,,  
l G f l S L  

(2 .17)  

(2 .18)  

(2 .19 )  

It is difficult to analyse the above difference equations analytically and so we will 
replace them by the simplest possible differential equations. The continuum model 
is then similar to that considered by Takayama et a1 (1980) .  The smallness of y (weak 
coupling) is often cited as a criterion to justify the 'continuisation', although we are 
not aware of a rigorous discussion in the literature. In the present work we regard it 
as an assumption of convenience motivated by the hope that the problem would be 
analytically tractable. Further, one expects that by restricting x to an integer, it may 
be possible to recover most of the features of the spectrum of the discrete problem. 
We will comment on this later (in D 6 ) .  For the present we define the model by the 
equations (obtained from (2 .13) - (2 .16) )  

. E ~ u ~ ( x )  = [d/dx - 2 w ( x ) ] b a ( x ) ,  (2 .20)  

E , ~ " ( x )  =[-d/dx - 2 w ( x ) ] a a ( x ) ,  (2 .21)  
w ( x ) = y  [ u " * ( x ) ~ " ( x ) + c c ] .  

a E Occ 
(2 .22)  

The constant A in (2 .4 )  can be shown to be O(e-L) and hence negligible within the 
continuum solutions; also note that both w ,  and 0, have been replaced by w ( x ) .  The 
orthonormality of solutions follows from (2 .18)  as 

1 [ [a a * ( x  )a (x ) + b "*(x )b ' (x 11 dx = Sa,@.  (2 .23 )  
Jo 

We impose periodic boundary conditions a (x) = a ( x  + L ) ,  b ( x )  = b ( x  +L) .  An enumer- 
ation of the levels from which the N e  occupied levels in (2 .22)  are chosen would 
complete the statement of the model. To this end we note that the spectrum of (2 .20 )  
and (2 .21)  may be expected to be unbounded from below as well as above since the 
equations are analogous to the Dirac equation. Also the continuum model should 
respect the particle-hole symmetry of the discrete equations (i.e. if E ,  is an eigenvalue, 
then so is - e a ) .  Therefore it is natural to require that one retains precisely N J 2  
states for F > 0 and an equal number for E < 0. The occupied levels then correspond 
to the lowest N a / 2  states. It could be tempting to regard this group of N ,  ( = 2 N e )  
states as corresponding to the N,-dimensional state space of the original (discrete) 
problem. In the general case ( y  # 0) the above prescription has the virtue of being 
natural, and completes the statement of our model. 
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We note that equations (2.20)-(2.22) can be obtained from extremising a continuum 
version of the functional (2.8) 

W%,,, = 1 l L d x  ( a a ' ( x ) ~ b a ( x ) - b " * ( x ) - a " ( x )  d 
d 

a e o c c  0 dx 
L 

- 2 ~ ( x ) ( ~ ~ ~ ( x ) b " ( x ) + c c ) ) + ~ ~ ~  w2(x)dx. (2.24) 

At a stationary point (i.e. solution of (2.20)-(2.22)) this reduces to 
L 

Etotal= 1 E " + ' [  w2(x)dx. (2.25) 
a o o c c  y 0 

3. Approximate solution 

In this section we solve equations (2.20)-(2.22) in an approximate scheme. This 
scheme is similar in spirit to the one devised by Sutherland (unpublished) in a somewhat 
different context?. We expect the level at the top of the valence band continuum to 
be the most important one. The strategy is to replace (2.20)-(2.22) by a single- 
component nonlinear equation for the top level, and a linear equation for the remaining 
states. This may be achieved by replacing the summation in (2.24) by Ne times the 
contribution from the top level, a procedure which clearly generates an upper bound 
to the true energy. This approximation is expected to become exact for y >> 1, i.e. 
when the band width is negligible. Therefore we find (2.22) replaced by 

(3.1) 

where a. and bo refer to the wavefunction of the top level of the continuum (assumed 
real without loss of generality). The equations for a. and bo may be written as 

(X = (yNe)[2ao(x )bo(x 11 

The remaining fermions obey (2.20) and (2.21) with w(x) determined from (3.1). 
Equations (3.2) and (3.3) possess a constant of motion which renders them exactly 
integrable. Multiplying (3.2) by a. and (3.3) by bo and rearranging somewhat, we find 

(3.4) db; ( x ) / ( E o  + 4yLb;(x)) = -dui  ( x ) / ( E ~  + ~ ~ L u ; ( x ) ) .  

[ E O  + 4 y ~ b ;  C X ) I [ E O  + 4 y ~ a i  ( X I ]  = constant. 

Therefore 

(3.5) 

Eliminating bo from (3.2) using (3 .3 ,  we find that the RHS of (3.2) is the square root 
of a quartic in ao. Hence the solutions for a. and bo are Jacobian elliptic functions$ 
(compare (dldu)  sn(u)  = [(l -sn*(u))(l - m  ~ n ~ ( u ) ) ] " ~ ) .  It is straightforward to 

f This was reported (Sutherland and Shastry unpublished) at the Rocky Mountain Theoretical Physics 
Conference, Salt Lake City, Utah, USA in March 1982. 
1 We use the standard notation for Jacobian elliptic functions (e.g. Whittaker and Watson 1963) except 
that the parameter is displayed rather than the modulus. Wherever the parameter is not displayed, its 
value is understood to be m .  
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integrate the equations and we find 

ao(x) = A O  sn(x/A I m ) ,  bo(x)=Aosn(x/A+K Im). (3.6) 

The parameter of the elliptic functions is m =4yLA:A, and the scaling parameter 
A = l / ) E O I  ( E ~  = -leal). Periodic boundary conditions (ao(x) = ao(x + L ) )  yield 

L/A = 4Kn. (3.7) 

Here n is a quantum number which equals the number of oscillations ao(x)  undergoes 
in the domain O s x  s L. From (3,1), (3.6) and the definition of m, we find 

(3.8) 

Equation (3.7) implies that the 'order parameter' w(x) goes through 4n zeros for 
0 s x s L and hence we expect 4n to equal the number of solitons. Normalisation of 
(3.6) gives 

w (x) = (m/2A) sn(x/A) sn(x/A + K). 

A. = [m/8nA(K -E)]"'. (3.9) 

From (3.9) and the definition of m, we obtain 

K - E  = $y(L/n). (3.10) 

Equation (3.10) determines m, the parameter of the elliptic functions, as a function 
of y and n/L, and hence all the parameters are expressed as functions of y and n/L. 
Equations (2.20) and (2.21) may be solved for the remaining fermions, but we shall 
not pursue this here since essentially the same problem is solved in the next section. 

4. Exact solution 

We now make the ansatz that (2.20)-(2.21) are solved by the functional form 

w (x) = (m/2A) sn(u) sn(u + K), U = x / A .  (4.1) 

This is of course just (3.8); however, the parameter m and the length scale A are 
undetermined as yet. The ansatz is based upon the success of an earlier similar scheme 
(Shastry 1983). By squaring (2.20) and (2.21) we obtain Klein-Gordon-like equations 

(-dz/dx' + V, ( x ) ) ~  a (x) = E :U a (x), 

(-d'/dX' + vb(x))b" ( X )  = E ;b"(x), 

where 

v,J,(X) =4wZ(X)T2 do(x)/dx. (4.4) 
Scaling x by A and using (4.1) we find 

A2Va,b = m 2 s n 2 u  sn'(u +K) rm(d /du) ( sn  U sn(u + K ) ) .  (4.5) 
Using the identities 

sn2(u) sn'(u +K) = m-'(l  -cn2 u -cn' u + K ) ,  
(dldu)  sn U sn(u +K) = cn2 U -cn2(u +K), 
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we find 
A ~ V ,  = m(2 sn2 U - 11, 

A2 Vb = m [2 sn2(u + K)  - 11. 

Inserting into (4.2) we obtain 

(-d2/du2+2m sn2 u ) a " ( u )  =A"a" (u ) ,  

E-d2/du2+2m sn2(u +K)]b"(u) =A"b"(u) ,  

where 

A" = m + s t A 2 .  

(4.6) 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

Equations (4.9) and (4.10) are in the standard form for Lame's equation (with n = 1 
in the notation of Sutherland (1973)). The eigenfunction and eigenvalues are explicitly 
known (Whittaker and Watson 1963, chap XXIII) and are conveniently expressed in 
the language of band theory. It is sufficient to consider (4.8) since the corresponding 
'partner' b" can be obtained from (2.21). 

4.1. Midgap band 

This band corresponds to the first band of LamC's equation. The eigenfunctions are 
given by 

(4.1 1) 

where @(q) = rq /2KK'+Z(q  1 ml). Here 8 and Z are Jacobi's theta and zeta functions 
and &(U) = 8 ( u  +K) and ml = 1 -m. The parameter q is necessarily real to ensure 
bounded (Block-like) solutions and - K ' < q s K '  (since q and q + 2 K '  lead to the 
same solution). The eigenvalue A, = 1 - ml cn2(q I ml), which together with (4.10) gives 

E,' = *(./z/A)lsn(q ImJl. (4.12) 

a,(u) = constant(&(u +iq)/O(u)) e iuO(q) 

Periodic boundary conditions imply 

L/A=4Kn (4.13) 

and 

@(q) = A(2r/L)  x integer. (4.14) 

From (4.14) we see that q's form a continum in general with a level density 
(L/2rA)p  (4) dq where 

F(q)=d@(q)/dq =dn2(qIml)-1+E/K.  (4.15) 

For a given value of n, equation (4.14) implies that there are exactly 2n distinct values 
of q (since for 4 = K', its maximum value, @(K')  = r / 2 K  and the RHS equals that for 
'integer' = n). The integer runs between -n + 1 and n, Therefore we have a total of 
4n midgap states (remembering the two signs in (4.12)). 

The partial density associated with (4.1 1) can be found by using Jacobi's addition 
formula 

+iq)&(u -iq) = ( ~ / 2 K J m , ) [ e 2 ( u ) e : ( i q ) - N 2 ( u ) H :  (iq)] 
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and the definitions HI6 = m1/4 sn, H1/B1 = m1I4 cd and Jacobi’s imaginary transfor- 
mation cd(iq I m )  = nd(q I ml). Thus 

lu,(u)12 =n,“[dn’(qIml)-m sn2(u Im)]. (4.16) 

Normalising according to (2.23) we get 
n: = 1/2Lp(q). (4.17) 

Finally let us note that the solution of (4.9) for b, can be inferred from (2.21) directly. 
It is readily established that 1b,(u)(2= IQ,(u +K)12 and, moreover, using (2.21) 

(4.18) 

(We have used the identity [d/du +2m sn(u) sn(u + K ) ]  sn2(u) = 2 sn(u) sn(u + K )  in 
(4.18).) 

4.2. Valence and conduction bands 
These bands correspond to the second band of LamC’s equation. The eigenfunctions 
of (4.8) are 

(4.19) a,(u) = constant(hl(u -ip)/8(u)) exp[iu*(p)] 

where 

W p )  =iZ(-ip I m )  = dn(p I m J  sc(p I m d - Z ( p  1m1) -xp/2KK’. (4.20) 
The quantum number p is real and - K ’ < p  < K ‘  since p and p +2K’ lead to the same 
state. The corresponding eigenvalue A, = 1 +m/cn2(p 1 ml)  and hence from (4.10) we 
get 

(4.21) 
The +( - )  sign is associated with the conduction (valence) band. Applying periodic 
boundary conditions we find 

(4.22) 
Thus W s  form a continuum for large L with a level density (L/2xA)v(p) dp where 

(4.23) 

From (4.23) it is clear that the number of states in this band is infinite (since 
dc(plml)+oo as p + K ’ ) .  We must now impose the cut-off procedure discussed in 
0 2. Since the midgap band contains 4n states, the valence and conduction bands 
must be chosen to contain L -2n states in each (L  = NJ2). Therefore we retain 
quantum numbers p in the interval -pm < p  <pm where pm is determined from 

E ;  = *A-’ dc(p I mi) .  

9 ( p )  = A(27r/L) x integer. 

v ( p )  -d*(p)/dp = dc2(p I m l )  - E / K .  

W p d  = (77/2K)(L/2n - 1)  (4.24) 

The partial density associated with (4.19) is obtained by using an addition theorem 

~ ( u  -ip)H(u +ip) = ( . r r / 2 ~ m : ” ) [ ~ ~ ( u ) e ’ ( i p )  -e’(u)~’(ip)], 

(which follows from 4.22 with integer = L/2- n ) .  

of Jacobi 
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the definition H / 6  = m 1'4 sn and sn(ip 1 m) = i sc(p 1 m 1). Thus 

laP(u)l2 = ni[sc2(p I ml) + sn2(u 1 m 11. (4.25) 

Normalisation yields 

n i  = m/2Lu(p).  (4.26) 

We note that b p ( u )  can be obtained from (2.21) and l b , ( ~ ) 1 ~  = lap(u +K)12.  Let us note 
also that 

(4.27) 

We now consider the self-consistency of our ansatz (4.1). From (2.22) and (4.1) 
[ad(u)b;(u)+cc]  = ~ [ 2 n ' ,  dc(p lml)] sn(u)  sn(u +K). 

we should have 
( ? I  

y 1 (a,*b; +cc)+y 1 (a,*b, + c c )  = (m/2A) sn(u)  sn(u +K). (4.28) 

On the LHS of (4.28) we have chosen the lowest Ne states in the spectrum. From 
(4.18) and (4.27) we see that the ansatz is functionally satisfied by every term in the 
summation on the LHS identically! Numerical self-consistency is achieved by requiring 

m/4yA= 1 n',dc(pIml)-mm:'2 1 n,"Isn(q/ml)/. (4.29) 

The summations may be replaced by integrations and on using (4.15), (4.23), (4.17) 
and (4.26), we obtain after some integrations 

tanh-'[sn(p,l m1)]-tanh-1(m:'2) = ~ / 2 y .  (4.30) 

Equations (4.24) and (4.30) constitute two simultaneous (transcendental) equations 
for pm and the parameter m in terms of the interaction constant y and the soliton 
quantum number n .  These must, in general be solved numerically. The total energy 
of the system may be obtained from (2.25) and after some further integrations we find 

Etotadn 1 = -(mL/2.rrA2) sc(pm I m d  nc(pm I m J  

p o V B  qoMB 

IPISPm /q /==K'  

= -(L/2xA2)[m :/2 cosh(.rr/y) +$(l+ ml) sinh(.rr/y)]. (4.31) 

These equations are particularly easy to solve in the limit n/L << 1 (i.e. a low density 
of solitons). From (4.13) we expect K to be very large in this limit, and on using the 
asymptotic formula K(m)+,,lln(4/m : I2)  we find 

ml - 16 exp(-L/2nA). (4.32) 
Neglecting terms of O(ml),  (4.24) and (4.30) become 

tanpm-pm/K = ( ~ / 2 K ) ( L / 2 n  - l )+O(ml ) ,  (4.33) 
tan pm = sinh(.rr/2y) +O(ml )  (4.34) 

(we have lumped together terms like m:", m l  In ml  in the symbol O(ml)).  From 
(4.13) and (4.33) we find 

(4.35) A-' = AO'[I - ( 2 n / ~ ) ( 1  -2pm/.rr)]+0(ml) 
where 

(4.36) -1 AO = T-' tan pm = .rr sinh(.rr/2y) + O(ml). 



2058 B S Shastry 

The total energy from (4.31) is 

Etotal(n) = -(L/27rAg) tan p m  sec p,[l - (2n/L)(1- 2p,/.rr)l2 + O(m1). (4.37) 

In the limit n / L  << 1, we note that the midgap band width (2/A)m :'2 is negligible and 
these states may be essentially viewed as 4n bound states. 

5. Features of the solution 

(a) Firstly we note that a given n corresponds to 4n midgap (soliton) states. It is 
interesting that the number of solitons is always a multiple of 4, a fact which can be 
traced back to (2.22) where the 'order parameter' is expressed as a bilinear in fermion 
amplitudes, each of which undergoes a change in phase in even multiples of T. The 
case n = 0 (zero soliton sector) corresponds to w ( x )  = constant, i.e. a Peierls dimerised 
state with fermion eigenvalue spectrum 

For n # 0, the midgap states may indeed be viewed as interpolating between topologi- 
cally distinct Peierls dimerised states, as suggested by SSH, and hence termed solitonic. 

(b) We compute the soliton creation energy from (4.37) and the definition 

e, = (4n )-'[Etotal(fi) - ~ t o t a 1 ( 0 ) I -  

eS=(2Ao)-'(1 - 2 p J ~ )  seCpm[l-(1-2p,/7r)n/L]+O(ml). (5.3) 

(5.2) 
Thus 

In the weak coupling limit y + 0, we have (from (4.34)) p m  + 7r/2 and hence e, + l/7rA0. 
(c) The solution obtained can be generalised to the case of spin-i fermions as 

follows. For this purpose consider Ne = N,, and (2.25) generalised to 
L 

= 2 c E ,  + 7-1 I, w 2 ( x )  du. 
a E o c c  

The solution has exactly the same form as in the above case. The self-consistency 
condition (4.34) is modified to 

pm = tan-'[sinh(x/4+)]. (5.4) 

e ,=Ai ' ( l  -2pm/7r) secp,+O(ml) ( 5 . 5 )  

The soliton energy is changed to 

and in the limit y -+ 0, reduces to 2/7rAO in agreement with Takayama et a1 (1980) 
and Brazovski (1980). 

(d) We shall consider next the expectation value of 'charge'. Firstly one has a 
trivial fractionalisation arising from the fact that the midgap states (4.12) are nor- 
malised to unity and have 2n peaks, each with an area 1/2n. This is easily discarded 
since one may form linear combinations of the degenerate states, and form a set of 
functions each having area unity under its only peak. Non-trivial fractionalisation 
occurs, in the picture of SSH, due to the net charge of all the continuum states in the 
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valence band, distorted by the presence of the solitons. To study this we form partial 
densities 

Combining (4.23),  (4.25) and (5.6) and with sc(p ( m ~ ) +  tan p ,  dc(p [ m l ) +  sec(p), we 
get 

p $ ~ ( ~ ) = f ( l  -2n/L)+2npm/7rL --(27rA)-' cn2(x/A) ( 5 . 8 )  
and p c B  ( U )  = p e B ( u  +K). The total 'charge' density is then 

p;B(u) =P<B(U) + p t B ( u )  

= ( 1  - $) + s p m  - ;pm( 1 
1 

(5 .9 )  

It is easy to verify that pTVB has 4n minima, located exactly at the peaks in the density 
of the midgap states. The latter may thus be regarded as being formed by depleting 
the former. Moreover, the integral of pTVB is ( L - 2 n )  and hence the valence band 
has the correct number of fermions. 

The possibility of a non-integral charge emerges if we measure the area of p ; ~  
under any one peakt. We find (for example near the soliton located at zero) for 
L. >> 10 >>A, 

(5 .10)  

Therefore fractionalisation occurs only in the limit y + 0 where pm = ~ / 2 ,  otherwise 
the 'charge' is irrational ip general. 

This behaviour is closely related to that of the completeness relation4 (2 .19) .  
Setting n = m in (2 .19) ,  we define 

f ( x ) =  1 JaR(x)12+ 1 J a R ( x ) ) 2 +  1 Ja'(x)12-1. (5.11) 
a o V B  ~ E C B  a c M B  

The indicated summations can be carried out and we find 

f ( X ) = 2 p < ~ ( x ) + ( 2 A ) - '  dn2(x/A)- 1 
= ( 1  -2pm/7r)[(2A)-l  cn2(x/A) - 2 n / L ] +  O(ml). (5 .12)  

Note that the integral of f ( x )  vanishes but for x = 0 , 2 K A , .  . . , f ( x )  has 2n maxima 
with area ( 1 - 2 p m / r )  under each peak. Then function f ( x )  is expected to vanish 
identically if the N ,  states retained in our model correspond to the N ,  states in the 

t This corresponds to fractionalisation of the expectation value of the charge operator. It is believed that 
the fluctuations of the non-integral charge are vanishingly small in the limit L + 03. These are some questions 
as to whether the eigenvalues can themselves be fractional within the context of relativistic field theory 
(see Rajaraman and Bell 1982). For a review with a solid state emphasis see Prange (1982). 
$ By completeness, we refer to the lattice version in (2 .19) .  The complete spectrum of Lame's equation 
is of course complete in the sense of (2.19) with the Dirac delta function on the RHS rather than the 
Kronecker delta function. 
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state space of the discrete problem. The only cases for which f vanishes identically 
are (a) n = 0, i.e. the soliton-less Peierls dimerised state for arbitrary y and (b) y + 0, 
i.e. the extreme weak coupling limit for any n. 

6. Concluding remarks 

It is remarkable that the ansatz in § 4 solves the stated problem exactly. Its success 
is closely related to the similar solvability of a related problem (Shastry 1983). The 
present solution agrees with the result of Takayama et a1 (1980) and Brazovski (1980) 
in the weak coupling limit since the midgap states have a density dn*(x/A), which for 
x close to 2nKA is like sech2(x/A-2nK). Also the order parameter profile 
sn(u) sn(u + K )  is locally like the hyperbolic tangent. The soliton energy is also in 
agreement, Horovitz (1981) also finds that LamC’s equation is relevant to the n-soliton 
solution for a similar model. 

An interesting aspect of our solution is the failure of f ( x )  (5.12) to vanish locally 
in general. In a related phenomenon, the expectation value of charge in the proximity 
of a soliton is -7-l tan-’[sinh(.rr/4?)] (from (5.10) and (5.4)), an irrational number 
in general. (For the typical numbers quoted by SSH for polyacetylene we obtain a 
‘charge’ -0.445 357 964 ,  . , !) It is only inthe limit of weak coupling that one obtains 
a fractional answer. For the lattice model, the arguments of SSH (see especially the 
discussion in Jackiw and Schrieffer 1981, after equation (2.14)) are quite general, and 
show that if a soliton-like solution exists then the ‘charge’ must be exactly -;. The 
result obtained for the present model for non-zero y must then be an artifact of the 
continuum theory. The origin of the difficulty is seen to be the failure of the complete- 
ness relation f(x)  # 0 (equation (5.12)) locally, although globally j f  dx = 0. What 
happens is that in building the midgap states in the functional form (4.11) one ‘uses 
up’ momenta which are not contained in the discrete state space, and thus the 
correspondence between the discrete and continuum models is lost. Thus the embed- 
ding of the state space of the discrete problem in the Hilbert space of the continuum 
problem is not ‘well ordered’ in energy. In the extreme weak coupling, however, the 
solution found here is in accord with the results of SSH for the discrete model and 
provides support for their physical picture for the excitations of the system. 

It is worth mentioning that the remarkable factorisation of the solution (commented 
upon after (4.28)) can be exploited to construct ‘weighted’ solvable models which 
satisfy the (discrete) completeness properties. For simplicity consider the case of small 
n .  Here the sum over valence states is replaced by ( L / 2 r A ) a ( p )  W ( p )  dp, 
where W ( p )  is a weight factor which enables us to enforce the completeness relation 
f ( x )  = 0. Requiring completeness, Z,,V, 1 = L -2n and the self-consistency (4.28), 
we find 

-’ W ( p )  sec“(p) dp, so= 1, 81 = l I Y ,  8 2  = 211. 8, =IT 

Therefore it is clear that every choice of the weight function which obeys the above 
three relations generates an exactly solvable model obeying the completeness relation. 
However, since these involve W ( p )  > 1 in general (from So = l), it is difficult to assign 
a physical meaning to the models, and hence to identify a W ( p )  which would be ‘best’ 
in  some sense. (A model with W ( p )  s 1 can clearly be interpreted as consisting of 
selective retention of states in the continuum.) 

n/2 

I,,, 
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In conclusion we remark that the discrete nonlinear equations ((2.6), (2.9)) may 
be expected to have solutions which are qualitatively similar to the ones found here. 
It should be possible to compute the exact soliton profiles and energies numerically. 
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Appendix. Stability of Peierls dimerisation 

We show in the following that the nonlinear difference equations (2.6) and (2.9) are 
solved by the Peierls dimerised state 

VZn = v, VZntl = -v. (All  
It is convenient to rewrite (2.6) and (2.9) in the form 

and 

Wehavedefined 

so 

The sum in (A4) is over the lowest Ne(=Na/2) eigenstates. The difference equations 
(A2) are solved by 

GLZn = ak  exp(ik2n), 4 2 n + l  = bk exp(ik2n). ('46) 

E :  = *2(cos2 k + V2 sin2 k)"2,  (A71 

Substituting (A6) into (A2) we find 

The normalised amplitudes may be chosen in the form 
-1/2 * ak =Na exp(-idk/2), bk = a t .  

The -ve  ( t v e )  solutions in (A7) are associated with valence (conduction) bands. 
Periodic boundary conditions yield 

k = (2.rr/Na) x integer. 
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Clearly -7r/2 < k 6 7r/2 since k and k + 7r lead to the same solution. Thus we have 
NJ2 distinct states in the valence and conduction bands. From (A4), (A5), (A6) and 
(A9) we obtain 

J = $(XE+XO), (A121 
Comparing (A3) and (A12) with (Al) ,  we see that the assumption (Al )  is self-consistent 
provided 

V = "2 dk[cos(& - 2k)  -cos &I. 
2 - n / 2  7 

Using (A8) this condition can be written in the form 

v = [2yV/r ( l -  V2)][K(1 - V2)-E(1 - V2)]. ( ~ 1 4 )  
This condition can of course, be derived by computing the total energy from (Al) ,  
(A7) and (2.4) and minimising with respect to V. The above derivation shows that 
the Peierls argument is better than variational; it is, in fact, an exact solution 
of the Euler-Lagrange equations. The problem of showing that this state is the 
absolute minimum is open. 
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