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We demonstrate  how to construct a large class of interacting quan tum systems 
for which an exact solution may be found for the ground state wave function 
and  ground state energy for some range of interaction parameters. It is shown 
that the ground state exhibits singularities in these cases, and in some simple 
instances the exact ground state phase diagram and critical indices are also 
found. 
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A large number of quantum spin systems have been discovered whose 
ground state wave function and energy can be found exactly. Examples 
exist in all dimensionality, and the zero-temperatures phase diagram is 
sufficiently complicated to exhibit singularities as parameters of the Hamil- 
tonian are varied, and thus exhibit two or more phases. These models are 
elaborations based on the original observation of Majumdar (1) for the exact 
ground state of a one-dimensional spin chain. 

It is the purpose of this paper to elucidate the special properties of a 
system required for such a solution, and thus delineate the class of 
problems which can be exactly solved by the general methods. To this aim 
we define the notion of superstability, and then prove a theorem which 
enables us to construct the large class of exactly soluble models. Various 
features are illustrated by simple examples. 
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We first introduce the important concept of superstability. We shall 
say that an eigenstate + of the Hamiltonian H is superstable (SS) with 
respect to the operator J at H if 

( H  + a S ) ~  -- O(a)~, -- E(a)qJ (1) 

for all l al < c, with c a nonzero, positive number. The quantity a is the field 
conjugate to J.  The set of all a for which ~p is an eigenstate of H (a )  will be 
called the region of superstability of ~p with respect to J. Note that q~ is not 
to depend upon a. 

We easily prove the following results: 
1. If ~ is superstable with respect to J,  then q~ is an eigenstate of J. 
2. The region of superstability is all a. 
3. The set of all J ' s  for which q~ is superstable form an [(n - 1) 2 + 1]- 

dimensional vector space, where n is the dimension of the original vector 
space. (The number of mutually commuting independent operators, on the 
other hand, form only an n-dimensional vector space.) 

We henceforth normalize, unless otherwise indicated, so that J~ = 0 by 
replacing J by J - M, where )~ is the eigenvalue of J corresponding to ~. 

We are concerned with finding the ground state of certain interacting 
systems, so we define the following additional concepts: 

If ~ is the ground state of H(a )  for all la] < a, a a nonzero positive 
number, then we say that ~b is superstable as a ground state (SSGS) with 
respect to J at H. 

Likewise we define the region of superstability of + as a ground state 
(RSSGS) to be the set of all a for which ~ remains a ground state of H(a) .  
This region of the-- in  general--multidimensional field space a includes, of 
course, the origin a = 0, but otherwise it is a very complicated region 
usually difficult to determine exactly. 

To settle on notation, ~b always indicates our SS state which may also 
be SSGS. We have normalized so that Jtp = 0, and thus the energy 
eigenxmlue is E, independent of a for all a. The operators and fields J ,  a 

are, of course, multidimensional. The ground state is always written as 
t)o(C 0 with ground state energy E0(a ). tp, E coincide with t)o(C 0, E0(et ) for the 
RSSGS. 

The following general results relevant for the ground state are easily 
shown: 

1. E0(a ) as a function of a is concave downwards. 
2. d E o ( a ) / d a  = [~b0(a),J~b0(c0] ~ J(cx). 
3. Legendre transformation gives us the quantity Eo(J ) -~ Eo(e 0 - 

oJ(a ) ,  which is concave upwards. 
4. The RSSGS is a convex region. Thus the set of J ' s  for which ff is a 

superstable ground state also form a vector space of dimension less than or 
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equal  to ( n -  1)2+ 1. If we determine that  the RSSGS includes laol < ao 

for a set of independent  Jo, then the RSSGS also includes the region 
generated by  the ao, mean ing  the po lyhedron  with vertices at ( 0 , . . . ,  0, _+ 
ao, 0 . . . . .  0); or the convex hull. 

W e  now give some examples  to illustrate the concepts,  and  indicate 
they are not  empty.  

1. First, consider  the simplest  case of a vector  space of d imension 
n = 2. Then  the mos t  general  Hami l ton ian  with a SS state is H9 = 6i2~j2a , 
(i, j = 1,2). The  RSSGS is then clearly a > 0. 

A slightly more  compl ica ted  case is n = 3. We  take the Hami l ton ian  as 

i ~ 1 7 6  H =  a X (2) 

?,* B 
The  condit ion which determines the RSSGS is that  the nonzero  eigenvalues 
be  positive, or aft - I)tl 2 > 0, a + / 3  > 0. 

2. Consider  now the two-spin Hami l ton ian  

H = S .  S',  S ( S  + 1) = S .  S (3) 

If we write the total spin as 

L = S + S',  L = 0, 1 , 2 , . . . ,  2 S  (4) 

then we m a y  reexpress the Hami l ton ian  as H = ( 1 / 2 ) L .  L -  S ( S  + 1). 
This immedia te ly  gives us the eigenvalues. The  ground state is given by  
L = O, E o = - S ( S  + 1) and  the ground state wave  funct ion is a nondegen-  
crate singlet. 

First, let J = L~; [H, Lz] = 0, and  thus all states are SS. We  m a y  
explicitly find the energies as 

E ( , )  = ~ L ( L  + 1) - S ( S  + 1) + ,L~ (5) 

For  a given L, the lowest energy is always at  L z = + L. Thus  the levels 
L = 0 and  L = 1 cross at a = + 1, and  we find the RSSGS to be [a I < a 
= l .  

Second, let J = Sz S~. This opera tor  acting on the singlet state can only 
give a singlet contr ibut ion,  and  thus the singlet state is SS with respect  to 
this J .  The  eigenvalue ~, of J is de te rmined  by  3)~ = - S ( S  + 1), so if 

H = S . S ' +  ~ SoS'ao (6) 
0 = x , y ~ 2  

then 

= - s ( s  + 1)(1 + ) 

The  RSSGS,  a l though nonzero,  is a more  compl ica ted  calculation. 

(7) 
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3. Let us now consider the s p i n - l / 2  Heisenberg-Ising chain with 
Hamiltonian 

H ( ~ ) - -  H ( 8 )  + ~ J  = ~ [ S .  S ' +  8SzS" ] + ~ 2 S z  (8) 
? / . / ' / .  

Since [H(8),J] = 0, all states are SS with respect to J. However, to answer 
the more interesting question of the RSSGS of the singlet ground state 
~b0(8), it has been shown by Yang and Yang (2) that for 6 > 1 the RSSGS is 
given by 

( - l ) "  
]a[ < 2(sinh~) ~=~-~ 2 cosh(~)~) 

_ ~rsinhX sech (1 + 2n) ~ ~ (9) 

where coshX = 8 + 1. 
The operator J is an extensive parameter, and J//N is the intensive 

magnetization per spin. Then the field - c~ serves as a magnetic field. Yang 
and Yang also find that for near ~, the energy per spin is given by 

E(~)  ~ 'c~- ~[3/22~x [ sinhs)t ~ (-1)nn21-1/2 
2 n = _ ~  cosh n)t (10) 

Thus the singularity of the ground state as a function of a is not simply first 
order at la] = a, but instead is continuous with an appropriate critical 
exponent. 

4. If [H,J] - 0 ,  then H and J can be simultaneously diagonalized, 
and all states are SS. If the dimension n of the vector space is finite, then 
the parameter space is covered by separate RSSGS regions of different SS 
states. On the other hand, if the dimension n of the vector space increases 
without limit, as for a thermodynamic system, the RSSGS regions usually 
do not remain finite. Example 3 illustrated a situation where in fact the 
RSSGS for the singlet state remains finite. In general, a ground state which 
is SS will be also SSGS if the dimension n of the vector space is finite, 
whether H and J commute or not. 

We now wish to consider a more general case where the vector space V 
is the tensor product of two vector spaces V ~ • V 2. The notation is as 
before with the addition of a superscript to indicate when an operator acts 
in a vector space V j. The superscript will never indicate powers of an 
operator. As a first example, we treat the Hamiltonian: 

H =  H 1 • 12+  a j l  • K2=__ H 1 + ozjiK 2 (11) 

H 1 is the previous Hamiltonian SS with respect to j l. The expression 
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a j l  x K 2 in turn is shorthand for a generally more complicated expression 

o~J' • K 2 =  E % j 2 K r  2 (12) 
O,T 

Thus the fields a in general are multidimensional. We further assume that 
the operator K 2 is bounded so that the eigenvalues yj lie between - 7  and 
~,. This we indicate as IK21 < ~,. The corresponding eigenstates we write 
as t~}. 

Let us look at the action of H on 01 • 6f ,  where 0t is any vector 
in Vl: 

Hq~ ' •  ~j2= ( H i +  e~yjj])O, • ~ (13) 

Since ly/ < Y, we will be within the RSSGS if laly < a.  Then all states 
~pl • ~p~ are degenerate ground states with ground state energy E ,. 

Let us now look at a more complicated situation where 

H = H 1 x 12 + I 1 • H 2 + a J  I x K 2 (14) 

Consider the action of H on ~p = ~pl X ~p2: 

H~p = ( E l +  Eg)~p (15) 

Thus ~ is SS with respect to j ]  • K 2, as is any state ~1 • t j.2. 
On the other hand, 

E 0 > m i r t h  2 + min (H  1 + ~ J ' K  2) = E 2 + m i n ( H  1 + a j l K 2 )  (16) 

But by our previous argument, if ]a]y < ~, E 0 > E 2 + E 1. Thus consider- 
ing + as a trial state, we have the upper bound equal to the lower bound, 
and conclude that ~ = 6 1 •  ~02 is SSGS with ground state energy E 0 
= E 2 + E I. The RSSGS includes the region Ic~]~, < a, but may easily be 
larger. 

We remark that nowhere have we required that there exist a state SS 
with respect to K 2 at H 2. 

The previous considerations lead us to the following: 

Clus ter  T h e o r e m .  Let us consider a set of Hamiltonians H j ( j  = 
1 . . . . .  N)  acting on the vector spaces V j. Assume these have s t a t e s  ~J  
SSGS with respect to operators J J .  Let the RSSGS include the region 
generated by ]c%J] < ~J .  Further assume K j to be bounded operators with 
]K/[ < y / .  Then the following Hamiltonian, 

H = E H J +  EJJK/c~ j* (17) 
j j,l 

o,.r 

acting on V =  V l •  . . -  • V u has the state 6 = ~ 1 •  . . .  •  SSGS 
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with respect to the interactions J~Kt~. The ground state energy is E 
= E l +  . . .  + E u. The RSSGS includes the region in parameter  space 
R = R 1 • �9 �9 �9 • RN, where R j is generated by 

fl / 

lo" 

If l ranges only over a finite number  of neighbors, then the resulting 
RSSGS remains finite in the limit N ~ oo. 

The proof is simply by induction on the previous case. 
Because of limited space we can only offer a few simple examples of 

applications of the cluster theorem to specific systems. References 3 and 4 
give two important examples to which the cluster theorem applies. Two 
further examples are offered to illustrate important aspects. 

5. Let us consider a chain of spins Tj alternating with pairs of spins 
Sj, S), T = S. The interaction is chosen to be 

N 

H =  ~] 2uSj. S~ + (Sj + S~).(Tj + Tj+,) (19) 
j = l  

The pairs of spins S, S'  form a cluster, and the SS state is a product of 
singlet states for each of these N clusters. This state is SSGS for a 
sufficiently large. When a cluster is in the singlet state, the chain is broken 
at this point, and this system is representative of a large class of systems in 
which clusters act as "switches" causing the lattice to fall into independent 
pieces. The ground state has a degeneracy (2T + 1) N since the T spins are 
then independent. The ground state energy is E 0 = - 2 a N S ( S  + 1). We 
may also establish that the RSSGS includes the region ~ > 1. 

On the other hand, if a = 1, we may consider the alternate cluster 
scheme T 1S 1 , S; T 2, $2S ~, T3S3, S~ T4, $4S ~ . . . . .  It is degenerate with the 
previous state, and if we consider it as a trial state, it gives us the estimate 
E o < - [ a  + 1]NS(S + 1). Thus, the RSSGS is a > 1. 

6 .  As a second example, let us consider a mean field model made up 
of N 2 chains, the chain being the cluster with the Heisenberg-Ising 
Hamiltonian of example 3. The interaction we take to be amm' /N  between 
all pairs of chains. Here m = ~ S z / N  is the z component  of magnetization 
of a chain. The ground state is a product of the singlet ground states of an 
individual chain as given in Ref. 2. 

The RSSGS we determine by minimizing the mean field ground state 
energy per spin, 

am2 (20) E ~  E~ 2 

where Eo(m ) is the ground state energy per spin of an individual chain. The 
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boundary of the RSSGS occurs at an a which gives a second minimum of 
the energy at m, where 

o / m  2 
E0(m) 2 = E0(0) (21) 

This value of a is considerably larger than the boundary value of the 
RSSGS of an individual chain as given in the previous example 3. 

With the cluster theorem, we have given a procedure for constructing 
larger and more complicated systems, which in turn have a state which is 
SSGS. We will be most interested in thermodynamic systems which we 
have shown to have a nonzero RSSGS in the limit N---) oo. In proving the 
cluster theorem, we were only concerned with the existence of the RSSGS. 
This is sufficient to also establish the existence of a singularity of the 
ground state energy as a function of the fields a, since a very simple trial 
function can give a lower energy than the SS cluster functions for suffi- 
ciently large lal. Another way of saying the same thing: The ground state 
cannot be independent of the external parameters ~ for all a, and thus a 
singularity must exist at the boundary of the RSSGS. 

To locate the boundary of the RSSGS exactly is difficult. By better 
and better trial functions, we can enclose the boundary from the outside, 
and by better and better lower bounds on the Hamiltonian we may enlarge 
our estimate of the interior of the RSSGS. Depending on our diligence, this 
can give us quite a good approximation to the boundary of the RSSGS. 

On the other hand, designation of the clusters and interactions is 
arbitrary, and it may happen that two different cluster schemes may give 
two different RSSGS with a common portion of boundary. Examples are 
Ref. 4 and our fifth example. In this case we can rigorously locate the 
singularity, and conclude that it is of first order with a discontinuity in the 
normal derivative upon crossing the common boundary. However, it would 
be a mistake to conclude that all singularities at the boundary of a RSSGS 
must be of first order, as the example of the Heisenberg-Ising chain 
showed. 

A detailed discussion of the nature of the SSGS phase, the microscopic 
theory of the excitations above this phase, and the connection with the 
"standard" theory of phase transitions will be presented in an expanded 
paper. We simply remark here, that for a system built of finite clusters, it is 
reasonable to designate the RSSGS phase as a quantum fluid, as was done 
in Ref. 3. 
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