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The Gutzwiller variational wave function for the Hubbard model has

. ) 2,.3,4)" . ! ..
seen & recent upsurge of 1nterest(1’ e ). In this preliminary report,

we present some analytical resulis for the variational emergy. In Sec (A)
we present the calculation of the energy in the ladder approximation, which
is expected be exact for low particle density. Sec (B} contains an
approximation equivalent to the Gutzwiller approximation (GA) to the
calculation of the expectation value of the Hamiltonian with the help of
a ‘density matrix scheme, which appears to be the most streamlined
rederivation available, and brimgs out the local nature of the approxima-
tion. In Sec (C) we focus on the 1/2 filled case and examine the
possibility of a metal-insulator tramsition within the wave function.

Sec (D) contains a simple exactly solvable model for which both the exact
answer, and the variational calculation a’'la Gutzwiller are possible, and
may shed some light on the possible singularities of the energy for the
original problem.

A) Tow density limit-linked cluster expansion

We wish to calculate the Gutazwiller wvariational energy for the Hubbard
model

By (@) = <8]e™/2Vi &2V | 45 <4 ™| > (1)

whare |¢> is the free Fermi wavefunction, and V = Z o, oo, H=T+ UV with
+ iy

T = Z ek C;GCkU. The linked cluster expansion follows most simply by con—

sidering the gemerating function

expiNG(a,8,7)} = <[22V Y/ 2V | 4s cyl 22V 45 (2)

x

with ¥(g) = EBTVquT. The function G is expected to be or order 1 and has

a representation in terxms of connected diagrams obtained by expanding in
powers of y. It follows that .
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- 2 = 2 -
Ev(oc) = E0 + 38 G(a,B,a)/%? 0 + 20 > G{o,0,Y)/¥=2 (3

One meaningful expansion can be carried out to infinite order in the para-
meters ¢ and Yy, corresponding to particle-particle multiple scattering
1adders (this should be exact within the Gutzwiller scheme for a low

particle density) and yields with %kgl-fk’ fk the usual fermi step

function, the angular Brackets signifying an average over all wave vectors
= <f T >
and S(Q) fg fo s
2 2 ¥
7 i ((eu/2S(k+p)_1)/

£
4 By k+Q, "r—0

L
= + - -
Ev(a)/N e, + <(Ek+Q EP‘Q € ep)fk \ ,

s(ktp))2)> + T <g L (S (k*P), (&)

+ Py
The sinple particle momentum distribution function <<nk>> = GEvféek can be
also worked out from (&), We may note that this scheme breaks down for
increasing particle demsity — at half filling the energy should be zero for
U + », a + —= but overshookts somewhat , ~and also the Migdal discontunity in
<<nk>> exceeds unity. For low density, however, this scheme is appealing

since it is presumably exact, and also_exhibits a sensitivity to the band
structure.

(B) The Gutzwiller approximation using a density matrix
In this section we present what appears to be the most concise
"derivation" of the Gutzwiller approximation (GA) to the problem of evaluat-
. 1 . . : ] . .
ing Ev(u) ( ), in the hope that the nature of the approximation would be
v s . . . s s . v -
clarified, Consider the variational density matrix p. = p0 eaf e BTedfzv

with Py = exp B Z W T oo By virtue of the Peierls—Feynman argument, the
ig

expectation value trpGH/trpg, in the limit B » = tends to Ev’ which 1s an

upper bound to the true energy., The GA for the potential energy, or

equivalently d. =, 0., is obtained by considering d = tr(po eave_BTd)f

i i
oV —gT . *F 37 .. . .
tr(poe e 8 ), expanding e 8 formally as a power series in 8, ‘and retaining
the first nonzero term in the humerator and denominator, For d, it is

.. -BT . . . - .
sufficient to set e 6T 1, which gives the approximation a highly local

character (since propagation arises through T!). We find d x+x+ea/0,

= (x, + x+x+eu)fﬂ where p, = N§/N and x_ = expfu_ and D = 1 + x, + x,

P
* x, can ge eliminated in favour o p+ and

+ x+x*ea. The two unknowns §f and
P, and this leads to the famous relatiom % = d(l-p+d)/(p+—d)(p+-d). in
the paramagnetic 1/2 filled case we find-d = % [1+tanh(a/4)]. in order to
calculate the kinetic energy,.we need for i neighbour of j, <<Ci C:.| >
tr(paCZ Cj )/tr L For this quantity the numerator requires 2 ginéle hop
from T whereas the denominator does not, and hence a sensible approximation

+ —gT + -
can be made by forming the ratio q, = <<C, Ci >>/[tr(poe BTCi Cj )/trpoe BT].
+ e + Ia
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P . s =BT
Within the same spirit we can expand e B in both numerator and denomlnator

and a straightforward calculation gives'q+ [l+2x ec’”’2 2 0"]/D

p(lp)
which is the usual answer, For 1/2 filling we find q = Sech? (a/4). Note

that ¢-1/4 is an odd function of a within this scheme, which is actually a
reflection of the symmetry of the system (p-h conjugation of one species),
and is difficult to preserve in a perturbative expansion in @ as in sec. A.

C, 1/2-filled large U limit

s . . ) 2 .
‘Within the GA, Brinkman and Rice noted( ) that a metal imsulator
transition follows for ¥ > UC, with the minimizing value of o tending to —e,

This happens because both the potential energy (Ud) and kinetic energy

- a|/2

(= qeo) behave as e as ¢ + —» (gee above), This transition is

characterized by d vanishing for U > Uc. This wvanishing of d is not bome

(3,4)

and has

(3

been argued to be unreasonable within the Gutzwiller wave fumction .

out by the recent finite chain or Monte Carlo simulations

. . . -la
The crux of the argument is that the Gutzwiller wave function e | 4>

can be expanded in the complete set of eigenfunctions of v (which has a

]ql/ |

trivial spectrum 0,1,2,...) in the form |x0> + e 1 3% t ... . Here

IXO E {<vf¢>f |v> and ]xl z §<u|¢> [u>,_with |v> as a basis in the
N-2

manlfold of 2 singly occupied’ states, and |u> in the manlfold of 2. NC

. 2 .
states. It is expected than that.d ~ e Iu] and <<K,E,>> v e |a|/ (since

the latter conmects [y.> and [¥,>), This argument is, however, not totally
0 177

convincing in view.of the large number of states in the manifold of states
with d=1 relative to d=0. The key question is whether or not there is some
correlation within the Ferii wave function between a doubly occupied site
and a partner hole. (The GA sets all determinants as unity thereby ma?ng
o /2

2

the welght of > as O(N ) relative to |x.» thereby leading to d v e
X1 0

The following simple calculation sheds some light on this issue. Consider a
configuration of down spins frozen on one sublattice of the s.c. lattice
and allow the up spins to be mobile., The Fermi wave function is written for
up spin fermions and a straightforward calcula ion of d can be performed

yielding 4 = % (1 + th{o/2)), (Similarly if we carry out an annealed

average over down spins, the same expression for d results). This supports
the expectation that the correct asymptotic form of d should be v e ¢ , as
suggested by the simple argument, thereby ruling out the vanishing of d for
any U. In fact it seems most likely that the Gutzwiller wave functionm
describes a metallic state, for any value of U, other than U = =,

AS an amusing extension of this argument, consider the variational

wave functiom |> = exp[— E (n.+ ; + n, (I-v ))]i¢> where v, =
(r + expl(Q.r 3)/2, with Q as the AFM orderlng wave vector n/2(l 1 1) for

the s.c. lattice. For large a, the prefaector pushes the up and down electrons
to different sublattices thereby reduclng double occupation. The variational

calculatlon can be performed exactly and we Find e, = —!e | fen(a/2) +

U/(4ch (2/2)) leading te 2 metal to antlferromagnetlc 1nsulator tran51t10n
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for U > Uc' There exists a gap in the excitation spectrum for adding an

‘ ) .
extra particle. However, the momentum space distribution <<Ckck>> for the
original k's, continues to show a Migdal jump (Zk = sech{a/2)) and the

signal of the transition is only found by examining the behaviour-of ad/ou,
which has a jump discontinuity at LG

D. A solvable mean field model’ .

We present here a simplified version of the Hubbard model on a s.c.
lattice which breaks rotation and translation invariance, for which (at
half filling) the exact answer and a Qutzwiller like variational calculation

can both be performed analytically. Consider H=T + % pQ pQ where Q = AFM

ordering vector and p, in the: usual charge density operator (summing over Q
Q

would give the Hubbard model). The exact solution proceeds by writing B in
terms of particle and hole operators, followed by utilizing the Schwinger
éoupled fermion representatiom of spins, to write H = E lEk‘[GE + T;] -

U/ Gi ¥ Ti + U/N, where the summation extends over Kaif the zone. This

k k .

problem is familiar from Anderson's treatment of the BCS Hamiltonian, and
the solution cortesponds to an antiferromagnetic insulator for all non zero
values of U, Consider now a Gutzwiller like wave function |¢v> = exp((a/N)

Po Py )|¢>;_ The variational ealculation can be performed exactly and turns
ou@ tg be rather mon trivial, We find that <<k E.>> = e sech{a/2 tanh(uydlz))

and <<P.E.>> = Uf4(l * yotanh(ayolz)), where v = tanh{a/2 tanh(cc.yo/Z)). The
solution exhibits a metal imsulater transition for U = Uc, which is again
characterized by a jump discontipuity in 3(P.E,)/f3U, Note that y is non

vanishing only for lul > 2, and the nontrivial jnsulating phase cannotl be
reached from the metallic one by Yparturbation theory' in .
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