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We investigate the Baber scattering problem in two dimensions, for the resistivity of a two-band
model. The circular Fermi surface is two sheeted, light s electrons scatter against heavy d electrons

characterized by a Fermi temperature Tr(d).

For T > Tr(d) a saturation of the temperature

dependence is expected, whereas for T <« Tr(d) a Fermi-liquid behavior is recovered. The details of
the crossover are studied by analytical and numerical methods. At low temperatures we show the
existence of a 72 In(T™* /T') behavior for the case of commensurate density, ks, = kq4, and calculate the
T* analytically. In the generic case of noncommensurate density, ks # k4, there is no logarithmic
correction. We study the region of validity of the low-temperature expansion by comparing with
exact numerical evaluations and find, in many cases, an extremely small domain of validity for the
low-temperature expansion. We discuss the possible application of these ideas to high-T. systems.

I. INTRODUCTION

The discovery of high-T, superconductivity' has stim-
ulated intense research activity on two-dimensional sys-
tems. One of the most striking features of these com-
pounds is the linear temperature dependence of the re-
sistivity down to the superconducting transition temper-
ature in all compounds. An extreme example? is the
2:2:0:1 compound BiySroCuOg, having very low T, = 7
K, which has an almost linear resistivity for a large range
of temperatures: p ~ T¥ with v ~ 1.1.

The above linearity of the resistivity has of course been
the central theme for the current theoretical efforts to
understand high-T, systems. The usual framework, how-
ever, is the single-band Hubbard model.® The justifica-
tion of the one-band model usually starts from a three-
band model*® that is projected down invoking the idea of
local singlet formation,%7 whereby the moments of doped
oxygen holes and the copper moments lock up to give
holes, i.e., spinless charges. The range of validity in hole
doping of such a projection is somewhat uncertain on the-
oretical grounds, particularly for a large concentration of
holes. Experimentally, the overdoped materials show low
T. and a more “normal” behavior in transport properties.
Also, recent experiments® on the Lay_Sr,CuO4 family
for various x show a fascinating variety of behavior of the
resistivity from low to rather high temperatures (~ 1000
K), at various doping levels, with convex temperature
dependences ( ~ T* with a > 1) at dopings that are
greater than the optimum 7, composition. Another im-
petus to the study comes from the photoemission data
in the 2:2:1:2 compound BiySryCaCuy03g,° which shows
that there are two bands at the Fermi surface, at least in
this family of compounds.

The above has motivated our interest in the classic
problem discussed almost 60 years ago by Baber!® (fol-
lowing a suggestion of Mott), of a two-band model of
carriers: the s and d electrons in the transition metals.
It seems useful to obtain a complete picture of the be-
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havior of the resistivity in this model problem in two
dimensions, as a function of, as we will soon see, a rich
set of parameters.

We consider light and heavy electrons of masses m,, mqg
with circular Fermi surfaces of diameter k,, kg with the
heavy particles acting as momentum sinks. Similar re-
sults are expected for typical, noncircular bands. The two
sets of carriers are treated as noninteracting fermions,
and a Boltzmann equation is used to set up the resis-
tivity. This apparently humble problem possesses some
points of interest. There is a basic temperature scale
Tr(d) = h%k2/2mg, the Fermi temperature of the heavy
particles. For T' > Tr(d) we expect a saturation of the
resistivity at a value that we expect to be of the order
of the maximum metallic resistivity in two dimensions,
since we have one “impurity” per lattice constant at high
temperatures, thereby satisfying the Ioffe-Regel criterion
(unless the scattering mechanism is pathologically small).
The resistivity at high temperatures, in a quasi-two-
dimensional material with a three-dimensional lattice
constant d should therefore be of order pyott = dh/e€?,
which for d = 10 A is ~ 2.5 mQcm. At low tempera-
tures, we find a Fermi liquid like T2 or, T'? In(T') behavior.
We thus have an interesting crossover with the resistivity
necessarily going through an inflexion point in between.
The question of how low in T we need to get in order
to see the Fermi-liquid behavior, and the complete tem-
perature dependence are worked out in this paper. The
model has an interesting “commensuration” effect when
the Fermi diameters of the two species are equal: in this
case the resistivity has an extra logarithmic correction,
which we evaluate exactly.

The plan of the paper is as follows: in Sec. II we derive
the formula for the resistivity by using the Boltzmann
spproximation. In Sec. III the low-temperature depen-
dence of the conductivity is computed. In Sec. IV the
full temperature dependence is obtained by using a nu-
merical integration technique and the pertinence of such
analysis to experiments is discussed.
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II. RESISTIVITY

Let us consider a model of two types of fermions of
effective masses my and mg and of Fermi wave vectors k,
and kg, related to particle densities through k, = v/2mp,
and kg = v/2mpq. We will assume for simplicity that they
can be described by a parabolic band. The Hamiltonian
of the system is therefore

Ho =Y les(k)cl , oCh,s,0 + €a(k)Ch 4 o Chodsols (2.1)
k,o
where
K-k
— 2
Esyd(k) 2msd (2 )

Bounds can be imposed on k to simulate a more realistic
system: we choose a spherical Brillouin zone with radius
24/m in a Debye approximation of the zone. We will
assume in the following the two species interact through
a spin-spin interaction of the Kondo lattice form

(2.3)

Hi, -S¢_ .
t = \/ST(-E—-F_l)_ k; k+q,k k'—q,k"

where S = % is the spin of the species, €2 the volume,
and

= % Z CL+q,u,aa¢7:U'ck,n,a’ ) (2.4)

o0’

w
Sk+q»k

and o stands for the Pauli matrices. At the level of the
Boltzmann approximation that we use, the fact that the
interaction is spin dependent is of no consequence, and
the same results obtain for a pure potential interaction:

Hip = 5 3 )ksarp(@r-ar (25)

k,k'\q

with p(8)k4+qk = Do c1+q’ack,a, etc. From (2.1) and
(2.3) or (2.5) the resistivity can be computed in a simple
Boltzmann approximation. We show in the Appendix
]

(B/2) X p.g Lok, p; )85 (k) + da(p) —

¢s(k +q)
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how the same result can be obtained from the memory
function formalism. The Boltzmann formulation has the
advantage of being a variational one and provides an up-
per bound for the resistivity of the system.

The Boltzmann equation can be derived as usual.!! Let
the scattering operator be defined as

27rJ2
L'(k,p;q) =

[ f2(k)fo(k + @) fa(p) Falp — q)
x6(es(k) — es(k +q)
+eq(p) — ea(p — 7)),

where f; and f; are the Fermi functions for s and d

particles and f = 1 — f. The linearized Boltzmann
equation may be written down as usual by expressing
fa=f2—®,((8f2)/(8¢)), where a = (s,d). In the pres-
ence of an electric field E,; along for example the z axis,
the linearized transport equation is

(2.6)

af°
- af: vi(k)eE;

=8 _To(k,p; q)[ @s(k) + Pa(p)
p.q

_Qa(k + Q) -

®a(p—9q)] (2.7

and a similar equation for d electrons. I in (2.7) is
the scattering operator (2.6) with the unperturbed Fermi
distributions f° and vZ 4 are the velocities of the particles
along the z dlI‘eCthI‘l vy 4 = [O€s,a(K)]/(Oks). Writing

®,0=—eEz¢s,4 , the Boltzmann equation reads
—0f2
—5otve = ﬂZI‘o (k, 23 9)[ $a(k) + ' (p)
—@a(k +q) — da(p — q)],

(2.8)

where a’ is the complement of a = (s, d).
A variational calculation of the resistivity can readily
be performed. One can write a variational resistivity as

— ¢a(p — q)I?

Pvar (T) =

where the notation (a; b) stands for

2
(a;b) = /a(k)b(k)z%. (2.10)

It can be seen that the first variation of py,, with respect
to ¢s,q treated as variational parameters, leads to the
integral equations (2.8). In order to get an estimate of
the resistivity one makes the simplest choice for ¢,

$s,a = V5 4(k). (2.11)
Note that if one were strictly in the continuum, a better

choice of variational ¢ would be ¢, 4 = ks ,q. With such
a choice, since the momentum is conserved in each colli-

[((—0£2/8€); $5v7s) + (-3 /0€); pavi))? ’

(2.9)

|
sion, the resistivity would be zero. This occurs because
due to momentum conservation the system has no way
to relax to equilibrium, and although the current is not
conserved it cannot decay to zero. In order to achieve
a finite resistivity one has to allow for the momentum
to relax as well. In a real solid this can occur through
a variety of processes, the most simple one being the
umklapp process due to the presence of the lattice. In
presence of such momentum nonconserving processes, if
one assumes that the dominant scattering mechanism for
electrons is the one in (2.3) then the resistivity will be
correctly given by the choice (2.11). A similar situation
occurs for the usual electron-phonon scattering mecha-
nism, where in the absence of umklapp processes for the
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phonons, the resistivity would remain zero due to the
phonon-drag effect.!!

The resistivity (2.9) is then given by p = N/D, where
D = (Ds + Dy)?. Let us start with the denominator

Wia  Befle=ta)
Da, = /W-'a (eﬁ(e—ﬂta) T 1)2 na,(f)

b

(2mae;|- k%) de
a

(2.12)

where W, , are the band edge, n(e) the density of state
per spin, which for the parabolic band we have chosen is
n(e) = (mg,)/(27), and p, the chemical potential fixed
by the condition that the number of particles is constant,

/W+: ng(€) f(e)de = /0 ] ng (€)de.

(2.13)

The resistivity is therefore given by'?13

p(T) = p{)(T),B Z vlﬁ,p,qf(es(k))f(fs(k) +As)

k.p,q

x f(ea(p)) F(ea(p) + Ba)6(As + Ag),
(2.14)

N

_ uBpp(T) (my — my)? /W+“’ de /WH
8

T =
p( ) 167!'5 mgmgqg W_ ., W_ 4

where the A through €; = €,(k) and €; = €4(p), with k =

q
A= ———(k
p— +md( cos @ + pcosby)

and ¢ defined in (2.17).

dea /w /vr d8s d0ag?6(q) f(es) fles + A) f(ea) flea — A),
o Jo
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where pj(T) = J?r/(QD). In the above equation, we
have defined

Vk,p,q = [Vs(k + q) — vs(k) + va(p — q) — va(p)]
_ (_1_ _ 1
- e %) ?
and

es(k+q) = Es(k) + A,

(2.15)

€d(p — q) = €4(p) + Aa.
(2.16)

One can easily see from (2.14) and (2.15) that the re-
sistivity vanishes if the two species have the same mass.
This is due to the fact that all collision processes conserve
momentum, and if the particles have the same mass, due
to Galilean invariance, the current is also conserved.
Using the condition Ag + Az = 0 in (2.14) we find

pcosfy kcosf,
=2 - ,
q 154 ( ma e )

(2.17)

where p = (mgymg)/(ms +myg) is the reduced mass. This
allows us to simplify (2.14) which reads

(2.18)

2mses + k2, p = \/2mgeq + kd2 as

(2.19)

In the following we will define po(T") by absorbing the prefactor of the integral (2.18) and compute the resistivity

- (ms + md)TI% W_ .. W_.a

where Tr is defined as

kskq

Tp = ————— .
F 2(ms + mq)

(2.21)

The temperature dependence of po(T’) solely arises from
D defined in (2.12), since po(T") « 1/D. The above ex-
pression is a resistivity po(7") times a dimensionless inte-
gral, which we proceed to evaluate by a low-temperature
expansion in the following section, and by numerical in-
tegration in the next.

III. LOW-TEMPERATURE EXPANSION

Although the full temperature dependence of the con-
ductivity requires a numerical integration, which will be
discussed in Sec. IV, one can get an analytic expression
for low temperatures as discussed below. At low tem-
peratures the chemical potential is independent of the
temperature, up to terms exponentially small in temper-
ature. One then gets from (2.12)

Wi s Wi T T - N
8 / de, / dea /0 /0 d6,d64 326(q) f(es) Fles + A) f(ea) flea — A),

(2.20)

\/b-= Qk? —+ Qk‘% =_1\£+Ei
2mms  2mmg  2ms  mg’

(3.1)

where N, is the total number of particles of the species
a. The square root of the denominator is the sum of the
squares of the two plasma frequencies of the two species.
Therefore, po(T") can be taken as a constant pg in (2.20),
to get the leading temperature dependence.

If one wants only the lowest order in T one can make
in (2.20) the substitution

€a = Ag€q, €5) — €q £ Ag(0,0), (3.2)

since one can make an expansion of A in €, and, due
to the Fermi factors in (2.14), €, ~ T. Up to terms
exponentially small in 7" one can also extend the limits
of integration for €; 4 to infinity. The integration over
€s,4 can then be performed to give

(3.3)

o0 des _ As
o (14 eBes)(1 4 eBleatBa)) 1 — e=BBs"
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The result for the integration over ¢4 is obtained from
(3.3) by changing A; — —A, in the denominator of the
left-hand expression. One therefore gets for the resistiv-
ity
Po
T)= —————=T
AT) (ms +ma)TE

2
< [ [ an.dos oo (1?2@/@

where ¢ and A are given by (2.17) and (2.19) with k = k,
and p = kq.

The low-temperature behavior of (3.4) will be different
depending whether the two species have the same Fermi
wave vector or not. The main results of this section are
the low-temperature expansions in (3.17) and in (3.19),
which are exact to O(T?). The details may be skipped
in a first reading.

(3.4)

A ky; =kqg =ky

To exponentially small terms we have A ~ T. Because

of the factor g2 in the integral (3.4), the lowest order in
J

5531

T is controlled by the terms for which cos8,+cos84 ~ T'.
One can therefore replace in (2.19), cos 4 by — cos s up
to higher orders in T'. This gives

2

2k}
A = ———[cos b, + cosBg) cos b,
+ mg

- (3.5)

and one can symmetrize the expression using cosfy ~
—cosf, as

k2

A= manmd[cosz 8, — cos? 8,). (3.6)

The resistivity is therefore given by

Po
p= (ms + mq)TE 4ka
/2 _(AB/2)>

d6,do 20, 3.7
/ / ¢ ol mapry 7

Again one can symmetrize (3.7). If one introduces ps 4 =
sinf; 4, (3.7) becomes

Po 2 1 1 2 2 (Aﬁ/2)2
=—1F0 o271 dpsd —p? - — (3.8
P~ m, +ma)T2 / / Hallld VI-p2/1- pg[ d]sinh2(Aﬂ/2) (3.8)
By using p4 = ps + pq and p— = ps — pgq (3.8) becomes
Po
p= e + md)Tz ka[Il + Ip), (3.9)
where
I = / diuy / dp- Gl ps), I = / iy / du_ Glug, o), (3.10)
Mt (2—p+)
and
2 — (u2 + u2)/2 )2

V= (s + 5)/2PH — (s + )2 sinh (B i)’

where we have introduced the dimensionless quantity 8y = 8TF. To evaluate I one introduces ¢ = fBfpip— and

X = #—/pt+. Then I; becomes

Br 2 1
—pt [ a2 dx .
57 ? s’ (9) /m, X VXA 08/ + B @8 PE —0)

The singularity of (3.12) comes from the terms, where x ~ ¢/B. The most singular term of (3.12) is therefore
“B/EBNA+XD) e [T 6 s
T s, X SRR ET = |, Pmianenle @19

By 2 1 d
n=pt [Ca—t [ X
0

The next singular terms are given by I; — I]. In the
difference one can let Sy — oo, this is permissible, since
we are interested in the leading T" dependence. One has
then I; —I] — 0, therefore I contains all the contribution
up to order T'. This is the usual idea of a subtraction
integral, and it must be stressed that the corrections to
the results here are of O(T3).

I can be computed in a similar fashion. One can no-
tice that, since A ~ f7* and puy ~ 1, d ~ T. Therefore

[
py+d ~ py—d ~ py. By making the change of variables
¢ = Bsu+d, x = d/(2 — p4) one gets for I,

Bs 2 1 d _ —
_op-1 ¢ dx vX — Vx — ¢/Bs
h=26; /o W () $/8; X —Tré
a1 +oo ¢2
~ 26; /0 gy (3.14)
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Using
+o0 2 2
¢ 71'
dp—5r—=—, 3.15
/o ¢sinh2(¢) 6 (3.15)
+o00 ¢2 7'[‘2
dp———1n(1/¢) = — .
/0 ¢ smn?(g) /) = 5 Inl), (3.16)
where o ~ 1.4054, one gets for the resistivity
o 2m?
p(T) = po(T/Tr)* =~ In(40Tr/T). (3.17)

B. k, # kq

We will assume in the following that for example k; <
k4. In the limit where § — oo one can approximate
(Bz)?/ sinh?(Bz) by (72)/3Té(x), since

(ﬂx)z _ 7r2

if F' is a regular function. Then using the usual properties
of the § function one gets

Q4T kg /2

o(T) = (T Te) 5 3 o

/1 — (ks/ka)? cos? 8

_ 2 2 ks + kq
= p0—3—(T/TF) In (kd — k3> . (319)

One therefore sees that the 72 In(T") dependence is ob-
tained only when the Fermi wave vector of the two car-
riers are the same. This is related to a weak singularity
of the forward scattering process in two dimensions.

IV. FULL TEMPERATURE DEPENDENCE

In order to obtain the full temperature dependence of
the conductivity one needs to perform a numerical inte-
gration of (2.20). The temperature scale will be given by
Tr [defined in (2.21)] so we will measure all temperatures
in units of Tr defining T' = T/Tr. Tr is of the order of
Tr(d) = k2/(2mg), but more convenient to scale out in
the integrals. The resistivity in (2.20) is given by a di-
mensionless integral times the prefactor po(7T"). In order
to get the temperature dependence correctly, particularly
for T > Tr, the temperature dependence of the denomi-
nator (2.12) in po(7T") must be taken into account as well.
The unknown remaining constant in pg can be fitted in
this model such that at sufficiently high temperatures
the resistivity saturates to roughly the Mott value, i.e.,
dh/€?. In fact, the Boltzmann equation approach does
not contain the essential physics of the Mott-Ioffe-Regel
saturation, and we have to put it in by hand. Within this
calculation the resistivity could saturate at a value lower
than the Mott value, if the scattering potential is cho-
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sen to be very weak. In these units the low-temperature
expansions (3.17) and (3.19), respectively, become

27!'2 =92 o
p(T) :pOTT ln(4¢7/T), ks = kdy (41)

o(T) = po 2T nl(ks + k) (ks — K], s # i
(4.2)

For the numerical integration we fix the Fermi wave
vectors through the density of the particles by

ks,d = \/ 27!'77,3,(1.

The bandwidth is determined by the Debye approxima-
tion as kmax = 24/

(4.3)

41 — k2 —k2
Wy, = R A——.c1
+,8 2ma ’ ,8 2ms )
(4.4)
4 — kﬁ —kﬁ
W=, W_y4=2.

This choice is somewhat arbitrary and only imperfectly
reproduces the features of a real band structure. But al-
though different and more realistic choices of the band
will change the precise numerical values, they are not
expected to change the qualitative features of our re-
sults. For a given tight-binding set of parameters, say
a hopping integral ¢ on a square lattice, we can estimate

mest = h?/(2tad,;..)- The chemical potentials that en-
ter the Fermi occupation factors in (2.20) are fixed so
that the number of particles of each species remains con-
stant and independent of the temperature by (2.13). This
constraint is unimportant if T < T, since the chemi-
cal potentials are independent, up to exponentially small
terms, of the temperature but will be crucial if T > Tp.
If one does not work with a fixed number of particles, as
one should in a solid, but with a fixed chemical poten-
tial, the temperature dependence of the resistivity will
be radically altered, as we will discuss later.

The results of the numerical integration are shown in
Fig. 1 together with the asymptotic formula for the case
of commensurate density, for two typical mass ratios.
Note the rapid departure of the asymptotic curves from
the exact values. Around T/Tr = 0.5 the resistivity
is reasonably linear, and the Fermi-liquid behavior only
shows up below ~ 0.2Tr. For Tr <« T <« T the resistiv-
ity saturates. Figure 2 shows the same comparison for
noncommensurate values of the Fermi diameters. Fig-
ures 3 and 4 show similar results for emptier bands, at
both commensurate and incommensurate densities. Here
also the departure from the asymptotic result occurs at
temperatures much lower than Tr. The crossover region
is larger but shows no improvement in the linearity, and
at high temperature the differences between commen-
surate and incommensurate densities disappears. Note
that in this model the “linear” regime found between the
Fermi liquid and the saturation regime is merely a conse-
quence of the existence of an inflection point in the curve
and is rather limited in temperature.
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FIG. 1. Dimensionless resistivity p(T)/po as a function

of the temperature for ks = kg4 = /7. The solid line is for
ms = 1, mqg = 5, the dotted line for m; = 1, mg = 10, and
the dashed-dotted line is the asymptotic formula, valid for
low temperatures.

It is interesting to note that if the constant number
constraint on the d electrons is replaced by a constant
chemical potential, then a very large region of linearity
results for Tr < T' <« T,. This artificial linearity is due
to the fact that a large number [O(T')] of scatterers (d
electrons) becomes available by the neglect of the number
conservation, when T' > Tr(d).

Some recent data of Takagi and Batlogg® on the family
Lay_.Sr,CuQy4, shows a progression of behavior on in-
creasing z. They find three regions: (a) £ <« 0.15, where
the resistivity increases very rapidly with temperature,
and saturates at a value near the Mott resistivity; (b)

15 e

10

p(T)

0 PSS S WS T S S NN ST U SH NN (N SN SN AT SN NS AT SN SO T SN W

00 05 1.0 1.5 2.0 25 3.0
T/Te

FIG. 2. Dimensionless resistivity p(T")/po as a function of
the temperature for 2k, = kg4 = /. The solid line is for
ms = 1, mqg = 5, the dotted line for m, = 1, mq = 10, and
the dashed-dotted line is the asymptotic formula, valid for
low temperatures.

15

p(T)
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T/Te

FIG. 3. Dimensionless resistivity p(T")/po as a function of
the temperature for 2k, = 2kq = /7. The solid line is for
ms = 1, mg = 5, the dotted line for m, = 1, mq = 10, and
the dashed-dotted line is the asymptotic formula, valid for
low temperatures.

x ~ 0.15, where the resistivity is linear over a very large
range—this is the optimum T case, and (c) = > 0.15,
where the resistivity is sublinear and shows no satura-
tion. In view of our results, we feel that the linear and
the underdoped cases are not understandable within the
framework of a two-band model, but the overdoped case
may very roughly be consistent with it.

We also take this opportunity to point out what seems
to be an error in a recent series of papers, on the same
model in two dimensions, asserting that the resistivity is
linear in T in the asymptotic regime.!?% The asymptotic
behavior is O(T?) with possible log corrections as we have

18
i i ]
L ] -3
10 =
— L .
l,_
N
st ]
i |
5| |
0 P S SN T SN S W SN SO AT SN W N ST S T S BN Y ST SN W T S S N
0.0 05 1.0 1.5 2.0 25 3.0

FIG. 4. Dimensionless resistivity p(T)/po as a function
of the temperature for k,//7 = 0.5, ka/+/m = 0.447. The
solid line is for ms = 1, mq = 5, the dotted line for m, =
1, mq = 10, and the dashed-dotted line is the asymptotic
formula, valid for low temperatures.
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shown in detail by direct calculation here.

The issue of logarithmic corrections was first pointed
out for a one-band model in Ref. 14. In fact, umklapp
scattering in a one-band model has much of the character
in our “commensurate” case, since the two species are col-
lapsed into one. This case, however, lacks the richness of
the two-band model, since there is only one Fermi tem-
perature in that problem, namely, a high-temperature
scale, and the entire issue of crossover has a very differ-
ent character.
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APPENDIX

In this appendix we rederive the resistivity for a two-
band system using the memory function formalism.!®
This formalism has the advantage to show in a clearer
way that the finite resistivity is related to the noncom-
mutativity of the current operator with the Hamiltonian,
and can be straightforwardly extended to the finite fre-
quency response. Conversely the variational principle is

J

F=[JH = 7&%@‘5 S [0a(k + 0) = vs(k) + va(p — @) — v(B)]Shrq - St

k,p,q
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lost. In our case both Boltzmann and memory function
give the same answer.

If one assumes that the system is a normal conductor
(o finite) at zero frequency then the conductivity can be
expressed in terms of the meromorphic memory function
M(w) by?®

_ _—1x(0)
oW = TEMwy (A1)
where
M(w) = _wx(w) (A2)
x(0) — x(w)’

and x(w) is the retarded current-current correlation func-
tion. x(0) is equal to the plasma frequency of the system
if the system has a finite resistivity at w = 0.15 One has
x(0) = Ns/ms+ Ng/mg4. The calculation of the memory
function can be carried out perturbatively to give at the
lowest order!®
(F3F)) = (F3 F)}_o)/w
—x(0) ’

The F operators take into account the fact that the cur-
rent is not a conserved quantity F = [j, H] and (F; F)?,
stands for the retarded correlation function of the opera-
tor F at frequency w computed in the absence of the scat-
tering potential [(2.3) in our case]. Notice the similitude
between (2.9) and (A3). In particular, the denominators
are identical in the two formulations as can be seen from
(2.12).

The commutator of the current and the Hamiltonian
is given by

Mw) = | (A3)

(A4)

where v is the velocity of the particle and is simply, for our parabolic band model, v,(k) = k/m,. It is obvious
from (A4) that if the masses of the two species are equal the resistivity vanishes since now the current is a conserved

quantity.
One can easily show

[f (es(k)) — fles(k) + Da)][f (€a(P)) — f(ealp) + Aa)][fo(Ad) — fo(=ABs)] ’ (A5)

J2
(F;F> = _'ﬁ' Z Uz,p,q
k

Drq

w—Ag— Ay + i€

where v 5, and A have been defined in (2.15) and (2.16). f is the Fermi function and f, the Bose one. By using
(A1) and (A5) one can get the temperature and frequency dependence of the conductivity. For w = 0 the resistivity
is simply the imaginary part of M. One gets from (AS5) for the imaginary part of the memory function

1-—6&"' J27T 2

x(0)ImM (w) =

k.p,q

and by taking the limit w — O one recovers (2.14).

5 2 vhpaf (€ () fles(k) + A5 fea(P) Flealp) + Da)8(w = Bs = Ba)

(A6)
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