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We show an exact equivalence between the partition function af a d-dimensional model of electrons with short
range interactions and a (d + 1)-dimensional classical problem. For d = 1 the latter is the combinatorial problem of
two coupled arrow-vertex models.

Recently Suzuki [1] has proved interesting theorems using Trotter’s formula [2] to demonstrate that the parti-
tion function of a d-dimensional quantum-mechanical spin system is equivalent to that of a (d + 1)-dimensional
problem involving only classical (Ising) variables. In this letter we use Trotter’s formula to study an interacting
Fermi system in ¢ dimensions, and establish a similar correspondence with a (d + 1)-dimensional system whose
only variables are commuting operators“. Besides its intrinsic interest, this result is important from the point of
view of numerical studies, as it becomes possible to perform Monte Carlo calculations for the equivalent classical
system [1]. '

The model we study is that of a single band of electrons with short-range interactions [4—6] — commonly re-
ferred to as the Hubbard model. It is of considerable interest both in the study of itinerant magnetism [7] and as
a candidate for a metal-insulator transition [8]. The Hamiltonian (appropriate to a grand canonical ensemble) is
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Here c:.ra creates an electron of spin o in a Wannier state centred at site i and o = cfgr:}-o. U is the short ranged re-
pulsion, u is the chemical potential and ¢ is a hopping matrix element which we take to be non zero only between
nearest neighbor sites.

Few exact results exist on the system described by J( for finite ¢ and U. For example the ground state energy
[9] and spectrum of low-lying excitations [10, 11] are known in one-dimension. Also in 1-D, 7 can be mapped
onto a (quantum) spin Hamiltonian with two spins per site [12]. Also, there are numerical studies of rings and
chains with a finite number of sites [13, 14].

The equivalence of H to a classical Hamiltonian ¥(,;; that we get is valid in any dimension d. 3, pp» which in-
volves only commuting operators, includes 4-site interactions on a (d + 1)-dimensional lattice. For clarity, we pre-
sent the case d = 1 in detail, and indicate the generalization to higher dimensions. For d = 1, we further show the
combinatorial problem is equivalent to that of the partition function of two interpenetrating vertex models [15,
16]. o

Define J = —B3C where § is the inverse temperature, and partition JC thus:
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' An entirely different approach to establishing quantum-classical equivalences for such problems has been discussed in ref. [31.
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Here U = —BU, = —pu and 7 = —Pr. A is the set of all odd sites in the chain, and B the set of all even sites. Notice
that each of #(, T and T is the sum of commuting terms. Trotter’s formula gives*2
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so that the grand partition function Z =lim,, Z{m) where
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Here | p,,) stands for a member of the complete set of eigenstates of H and is obtained by prescribing the eigen-
values of the operators 71, ¥ i, o for a given r as follows

Aigl Pa,) = MipglPay) (5)

where n,,,, denotes the eigenvalue of the operator 7;,, and finally finds an interpretation as the value of the num-
ber operator in a (d + 1)-dimensional classical system.
Since | pq,) is an eigenfunction of ¥y, the evaluation of a typical matrix element in eq. (4) involves only terms

like
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MO(i, r) is a function of the four occupation numbers and can be calculated straightforwardly. We find
Me°(i,r) = lim eltalisn) (6)
N—reo
with
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Here i1;,, = (1 — n;,,). The limit A > o guarentees that M9(i, r) is non zero only if 7,5 + Ris 10 =Mirs1o
+ Miy 1,410 2 the Kinetic energy conserves the number of particles with a given spin.
Let us regard 7 as a coordinate in a direction perpendicular to the original 1-D lattice. Then (i, r) labels points

on a 2-D lattice and we have

Ztm =Tr Lt e¥eff(m2) : (®)
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with A'(B") labelling the set of all odd (even) r. For a given r, (¢, has the same form as 3(, except that the vari-

#2 We thank Dr. S. Dattagupta for bringing to our notice misprints in eqgs. (3) and (4) in the original manuscript.

16



Volume 61A, number 1 PHYSICS LETTERS 4 April 1977

>

sinh (F/m)  sinh(f/m)

@

3 cosh(T/m)  cosh(t/m)
o2
7
(b)
7(
-
I exp[(;#zﬁ)/m] exp(sE/m)  exp(z#/m)
Fig. 1. # gy is defined on the dotted lattice. Arrows are Fig. 2. Allowed vertices are shown with their weights. (a) These
drawn on the interpenetrating dashed and solid lattices ac- vertices result from up-spin hopping. Down spin hopping gives
cording to the rules of fig. 2. the corresponding dashed vertices with corresponding weights.

(b) These vertices are associated with the localized interaction.
For each one, the interchange of a solid and dashed line gives
an allowed vertex of equal weight.

ables 71;, in 3(, are replaced by n;,,. The /1, terms involve 4-site interactions. We now show how the partition
function Z(™) for the classical Hamiltonian J( g can be associated with a certain arrow-vertex model [15—1 6].

In fig. 1, the dotted lines indicate the lattice on which 3( gy is defined. The solid and dashed lines form inter-
penetrating lattices on which arrows will be drawn. The intersection of a pair of solid lines is associated with the 4-
spin terms in the (4 — 4") and (B — B') summations, whereas intersections of dashed lines correspond to terms in
the (4 — B")and (4" — B) sums. The rule for drawing an arrow on a solid (dashed) bond is that an arrow pointing
northeast or northwest represents the presence of an up-spin (down-spin) particle at the site at the centre of the
bond, whereas an arrow pointing southeast or southwest represents its absence. With these rules it is easy to verify
that the partition function has contributions from the vertex configurations shown in fig. 2a, with the correspond-
ing weight factors. Identical weight factors hold for arrow configurations on the dashed lattice. Vertices at the in-
tersection of a solid and a dashed bond give weight factors corresponding to #(,. There are eight such vertices, and
four are shown in fig. 2(b). The other four are obtained on interchanging the role of solid and dashed bonds and
have identical weight factors.

Thus the problem of evaluating Z is reduced to summing over all allowed vertex configurations, and weighting
with the appropriate factors. The chemical potential u is now determined from the constraint %, ; (nj,/2m) =N,
the total number of electrons.

Turning to higher dimensions, we can demonstrate a similar equivalence with a classical system. The problem is
one of partitioning the kinetic energy into parts, each of which is the sum of commuting terms. One possibility
for a 2 — D lattice is illustrated with the help of fig. 3. Decompose the sum of the hopping over all nearest neigh-
bor bonds into 7'; + T + T3 + T4 where for instance T includes the hopping on all the single dashed bonds (for
up spins) and single solid bonds (for down spins). Trotter’s formula can be used again, and on inserting 4m com-
plete sets of states, we can convert the problem into a 3 — D classical problem. It should be noted that relations

like
B o=k )
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Fig. 3. This decomposition of a 2 — D lattice illustrates how
to break up the kinetic energy in higher dimensions.

enable correlation functions for the quantum system to be calculated using the effective classical Hamiltonian.
In conclusion, it is worth pointing out that in our treatment, the (d + 1)th dimension enters the classical prob-
lem on the same footing as the original d dimensions, unlike in other treatments of the problem [3].

B.S.S. thanks Professor M. Suzuki for a stimulating discussion which led to our interest in this problem.
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