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We determine a set of Dyson-Schwinger equations or loop equations for a model of two coupled
random matrices belonging to the orthogonal, unitary, or symplectic ensembles. In the large-N
limit, the loop equations become closed algebraic equations, allowing us to obtain the correlations
between the eigenvalues of the two matrices. The expression we obtain is valid near the center as well
as the edge of the cut. In particular, this determines how the correlations between the eigenvalues of
perturbed and unperturbed chaotic Hamiltonians depend upon the strength of the perturbation, and
also the space and time dependence of density-density correlators of the Calogero-Sutherland-Moser

model for three values of the coupling constant.
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I. INTRODUCTION

There is considerable recent interest in the connection
between apparently irreconcilable fields, namely, chaotic
quantum systems and exactly integrable many particle
systems of a certain kind. Quantum chaotic systems are
known to possess a certain universality in terms of their
correlation functions [1]; this is the well known universal-
ity underlying the Wigner-Dyson random matrix theory.
These universal correlation functions are known to be the
ground state correlation functions of a many body sys-
tem in one dimensional (1D) that is exactly integrable
[2], the 1/r? quantum many body system known as the
Calogero, Sutherland, and Moser (CSM) system [3]. The
recent work [4] relates the correlation functions of a per-
turbed quantum chaotic system to those of time depen-
dent correlations of the CSM system. These connections
have enriched both fields, and have led to new calcula-
tional schemes for objects of interest.

The CSM system may be defined via the Hamiltonian

Y2 ., 1
H=— _— — S+ x(A -1 —_—

(1)

Among the quantities of interest here are correlation
functions (p(z,0)p(y,t)), etc., involving the density of
particles p(xz,t) = Efv:l 0(x — z;(t)). The choice Q =
4/72A/N leads to a normalization (p(0,t)) = 1 in the
center of the Wigner semicircle. The harmonic confin-
ing well is missing in the Sutherland model, where the
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particles are confined to a ring.

In quantum chaos one is interested in the correlation
between the eigenvalues F; of the Hamiltonian H of
a classically chaotic system, e.g., averages of the type
(o (E)pu(E'")), where pg(E) = Ef;l §(E — E;) is the
density of eigenvalues. These are described by treating
H as an N x N random matrix with a Gaussian proba-
bility distribution, in the NV — oo limit. The correspon-
dence between these eigenvalue correlators and the equal-
time density correlators, e.g., {p(z, 0)p(y, 0)), of the CSM
model is well known: the eigenvalue (connected) corre-
lators of H in the three different ensembles, orthogonal,
unitary, and symplectic, are identical to the CSM correla-
tors with the values of the coupling constant A = %, 1,2,
respectively, with the position coordinate =z of the CSM
system corresponding to the energy E of the chaotic
Hamiltonian.

In this paper we consider the time dependent corre-
lators (p(z,0)p(y,t)) of the CSM model, as well as the
eigenvalue correlations in quantum chaos which depend
upon the strength of a perturbation parameter. The
eigenvalue correlators are of the type (pu,(E)pu(E’));
H, is an unperturbed Hamiltonian, H is the perturbed
Hamiltonian

H = Hycos Q¢ + Hy stQ¢, 2)

where the perturbation H; is in the same universality
class as Hyp (described by the same ensemble), and ¢ de-
termines the strength of the perturbation. The above
CSM and quantum chaos correlators are the same with
a mapping that relates time to the strength of the per-
turbation: ¢ = —In[cos(Q¢)]/Q? (in the large-N limit
Q—0,t— ¢2/2).

This correspondence between the two systems is es-
tablished [5] by mapping both onto a third system: the
random matrix model. In particular, the connection is
with the two-matrix model defined by the partition func-
tion
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Z=/dA dB e ° (3)

where § = NSp [V(A)+V(B)—cAB] and V(A) = $uA?.
For A = %, A and B are N x N real symmetric matrices
(orthogonal ensemble), for A = 1, A and B are N x N
Hermitian matrices (unitary ensemble), and for A = 2
N x N real self-dual quaternions (symplectic ensemble).
Sp (A) stands for Tr A for A = 3,1 and for $Tr A for
A = 2. The parameters are related to those of (1) and

(2) through p = FrngTb and ¢ = %;’;—%’é Note that
since Q ~ O(1/v/N) p and ¢ are O(1) when ¢ and ¢ are

o(1).
In this model the connected density-density corre-
lator is pap(z,y) = (pa(z)pB(y))e, where the den-

sity is defined as pa(z) = xTré(z — 4), (X) =
% f dAdBe °X, and the subscript ¢ implies the con-
nected part. In the limit N — oo the correlator
paB(z,y) is related to the correlators mentioned in the
above two systems with the following identifications.
For quant'um chaos, <pHg(El)pH(E2)>c|quantumchaos =
Npap(E,, E}), with E! = N~ E;. For the CSM model,
(p(xvo)p(yat»c'CSMmOdel = NPAB(w,’y’)a with z' =
~2zand y' = N 2y.

Hence the problem of finding the correlators in quan-
tum chaos or the CSM model is one of finding the cor-
relator in the matrix model (3). Various different tech-
niques [6,7,4,8,9] have been used to do this, with results
that have various domains of validity. Here we develop
another method of obtaining these correlators based on
the method of loop equations (Dyson-Schwinger equa-
tions) generally applied in the context of QCD, noncrit-
ical string theory, and 2D quantum gravity, to obtain
some additional results.

II. RESULTS: CORRELATORS
AND LOOP EQUATIONS

In the large-N limit, the expectation value for the den-
sity is given by the well known Wigner semicircle law
[10,1,11]

R ” 2
(pa(@)) = (p5(2)) = —5Va? — a7, Ja|<a, (4
and () =0 for |z| > a, where a, the “end point of
the cut” is given by a = (,‘4%‘112—2)%' Our result for the
connected density-density correlator to leading order in
%, valid over the entire cut, is
1 1 1
472 N2 Aa? cosf cos a
1 + coshu cos(6 + )
[coshu + cos(6 + a)]?

paB(z,y) =

1 — coshu cos(f — a)
[coshu — cos(8 — a)]2 |’

()

where u = In(£), |z|,|y| < a, and we have defined
sinf = £ and sina = ¥. For A = 1 (free fermions)
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the above result was derived in [9] using methods differ-
ent from ours. Our method, described below, is capable
of generalization to A = %, 2 (which corresponds to inter-
acting fermions) with the above result.

We find the connected Green function Gap(z,w) =
(Wa(2)Ws(w))e, where W4 (z) = %’I‘rﬁ, to leading

. 1.
order in :

Gap(z,w) = R 1
ABGHW) = Na A - LW (2)W (w)]?
el )
=W |- W2 w)]
Here

W(z) = (Wa(2) = (Wn(2) = —5lz — V22 —a2]. ()

Equation (5) then follows from the identity
1

paB(z,y) = T 4n? li_l)]%[GAB(iB + i€,y + i)
+Gap(z —ie,y — i€) — Gap(x + i€,y — t€)
—Gap(z — i€,y + i€)]. (8)

We note that in the connected correlators (6) and (5),
the dependence on A\ appears only as an overall factor,
and through the end point of the cut a.

The connected Green function G 4p(z,w) is obtained
as a solution of a set of closed algebraic equations relat-
ing the following five correlators of the two-matrix model:

W), W(zw) = GN(Eheis) Wilk) =
Wan() = (ATr(EpB)), (Was(s)Wa(w)), and
G ap(z,w). The closed set of algebraic equations is

0= —p[zW(2) — 1] + cWa,1(2) + AW (2)3, (9)
0= —uWyu1(2) + c[zW(z) — 1], (10)

0 = [—pz + cw + AW (2)]WP (2, w) + uW (w) — W (2),

(11)
0 = [2AW (2) — p2z]Gap(z, w) + c(Wa1(2)Wa(w))e,
(12)
0= —pu(Wa1(2)Wa(w))e + czGap(z,w)
1 9
——JVE—(,—);D-W(Z)(z,w). (13)

In Egs. (9)-(13) only terms of the same order in the
1%,— expansion have been exhibited on the right-hand side
(RHS); higher order terms in # have been suppressed. It
is only with this suppression (valid in the large-/V limit)
that one gets closed equations. Such equations were orig-
inally obtained for the one-matrix model in the context

of large-N QCD [12,13] and string theory [14,15], where
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they are referred to as “loop equations” since an insertion
of W4 (z) has the geometric interpretation of creating a
hole or loop on the string world sheet. Loop equations
for the two-matrix model have also been discussed earlier
[16,17] in the context of 2D quantum gravity. However,
they do not involve the correlator G 4p which is rele-
vant for quantum chaos and the CSM system, and are
restricted to the case A = 1.
(9) and (10) give (7)
(4)], and (11) gives [17] W@ (z,w) W (e
Fmally, (12) an (13) give Gap(z,w)
-—Wﬁﬁmtwa 2)(z,w) which can be

[from which follows
W (w)—cW (z)

shown to be equal to (6) with some algebra.

III. DERIVATION OF THE LOOP EQUATIONS

The above set of closed equations is obtained by start-
ing from a set of “Ward identities.” For example, to de-
rive (9) consider the identity

a - n

where ¢ and j are not summed over. For A =
B are real symmetric matrices), we have

3 (A and

DA

1
0An gT'j((;ik‘sjl + 8adjk), (15)

where [1] g;; = 0;; + 1. This implies that

8 in n— -
A [}:(Ak (AR + 28,5(A7 )
2

+Z(Ak)ij(A"-1"°)i,-] (n>2), (16)
k=1

and

7]

mTff(A) =

2 ! Iy
9 [£'(A));s- (17)

Using (16) and (17) in (14), then multiplying by 2
and summing over ¢ and 7, we get

0= —u<%1‘m"+1> + c<%,—’1‘rA”B>

+5 Z< A’cl A"‘l"‘>

1 n—1
+m<—ﬁ1‘m > (18)

Dividing (18) by ;,171- and summing over n from 0 to oo
gives

0=—plzW(z) — 1]+ cWa,i1(z) + %(WA(Z)WA(Z))

1 8
5757 ). (19)
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Now decompose (Wj4(2z)Wa(z)) into its disconnected
and connected parts: (Wa(2)?) = (Wa(2))® +
(W4(2)W4(2))e. Recognizing that (Wa(z)) = W(2) is
O(1) and (W4 (2)Wa(z)). is O(§=), and suppressing the
latter as well as the last term in (19), gives (9).

Following a similar procedure Egs. (10), (11), (12), and
(13) follow, respectively, from the identities

o= fan an i o
0= 9A;; [e™5(A™)i; W (w)], (22)

A)7';;Wa(w)}. (23)

:/dA dB

Note that the terms on the RHS of Egs. (12) and (13)
are all of O(gz), while those in (9)—(11) are O(1). The
reason this happens is that all O(1) terms in (22) and (23)
cancel. For example, starting from (22) and following
the steps described above one obtains an intermediate
equation

1?) -
0B;; {e S[(z B

0= —'lt([zWA(z) — I]WB(UJ)) + C<WA 1(Z)WB(U’)>

2 WA Wa(2)Wa () — g o (Wa ()W (w)).
(24)

When this equation is separated into disconnected and
connected parts using (fg) = (f){(9) + (f9)e, (fgh) =
(F)(g)(B) + (Fg)e(h) + (F)(gh)e + (g){fh)e + (fgh)e, ome
sees that there is a cancellation of terms that come ar-
ranged in a form that is proportional to the RHS of (19).
This leaves us with

0= W(2) ~ p2lGan(2 ) + e Wan () Ws (w))e
F WA Wa(w)he — 5o Ganleyw),  (29)

which is the same as (12) when the last two terms, which
are O(Wl‘[) and O( %), respectively, are suppressed.

The identities for the unitary and symplectic ensem-
ble are arrived at by following the same sequence of
steps but with the following relations for the deriva-
tives in place of (16) and (17). For A = 1, since A is

a Hermitian matrix, one uses O4ii 8;%8;1, which im-

A
plies 55— (A™)i; = 3% c(AF);;(AM17kY, for (n > 1),
and %T&’f(A) f'(A)J,. For A = 2 (symplec-
tic ensemble), A4;; = A(O)e(o) +32 A(")e(") where
(€@, e e () = (1, 10(3) ic® za(l)) I is the 2 x 2
unit matrlx, and o(®) are the Pauh matrices. In this case
the independent variables are the real symmetric N x N
matrix A®) and the real antisymmetric N x N matrices
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A©@). Then, SpA=1Tr4 =N 4Q, and one finds

a n e(o) n—1 & N s
849 (4% = i Lz:_;(A )ii (A )ii + 26, (A" 1)y

+1§:(Ak)ij(x4"—l_k)ij} (n=2), (26)
k=1

o e(0) , ,
549 trf(4) = » [f'(A)ji + f'(A)is], (27)
8 ( n—1
O amy; = €@ |37 (k) (4R,
aAg;z)( )iz =€ kgo( )i )
—26;5 (A" 1);
n—2
- Z(Ak)ij (An_l"k)ij] , (28)
k=1
and
o
4(@) trf(A4) = e [f'(4)ji — F'(A)y), (29)

ij

where tr 4 = Efcvzl Apgr is a 2 X 2 matrix. Using these
identities in (14) and (20)—(23) gives the loop equations
(9)—(13). This completes the derivation of (6) for all three
ensembles.

IV. CONCLUSIONS AND DISCUSSION

To sum up, we have presented a method for calculating
correlators in random matrix models based on loop equa-
tions which leads to the result (5) for the density-density
correlator. This method treats all three ensembles on
the same footing because the procedure for deriving the
loop equations remains the same. The only distinction
between the ensembles enters at the level of counting the
degrees of freedom, that is, through equations such as
(15) [18].

The result (5) averages over eigenvalues around z and
y independently [19]. While this independent averaging
over the positions of £ and y does lose information about
an oscillating piece of the correlation function, namely,
the 2kp piece, for many physical applications only the
smoothed results are needed.

As mentioned in the Introduction, a number of meth-
ods for obtaining density-density correlators in the two-
matrix model exist in the literature. In particular, the
supersymmetry technique [6] and methods of Ref. [7]
can also provide information about the oscillating piece.
However, to the best of our knowledge, the formula (5)
for the smoothed correlator does not appear in the liter-
ature except for the case of the unitary ensemble (A = 1)
[9]-

We now discuss the universality of this formula. It
is satisfying that for all three ensembles the result is
the same, up to an overall factor of A and the depen-
dence of the edge of the cut on A. However, the for-
mula has been derived above only for Gaussian ensem-
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bles, V(A) = puA?. The question is whether it holds
for more general ensembles. We remark here that in two
physically different limits (5) is universal. First, near
the center of the Wigner semicircle and ¢? < O(N), (5)
reduces to [4,8]

1 [(z—y)? = 4nPN%?
27202 [(x — y)2 + 4m2A2¢2)2”

(p(z,0)p(y, t)e = (30)
This identifies the sound velocity as v, = 27\ in the
CSM model. The RHS of (30) also equals {pg, (z)pr (¥))c
for quantum chaos. Though an analytic proof does not
yet exist, there is substantial evidence [4,5] that (30) is
universal. Second, in the “equal-time” limit (¢ = 0 or
u = 1), (5) reduces to

B 1 1 a? — zy
2m2N2)2 (z — y)2 V(@2 —z2)(a® — y2)
(31)

This expression was obtained in Ref. [20] for Gaussian
ensembles of a single random matrix, and proven to be
universal for all even polynomial potentials in the uni-
tary ensemble [21]. The proof of universality has been
extended to the other ensembles also [22]. Thus the
equal-time limit of (5) is known to be universal for all
z and y, near the center as well as near the edge of the
cut. For further observations regarding universality see
9|.

[ ]Using the method of loop equations we have obtained
the expression [analogous to the one above Eq. (14)]
for Gap(z,w) for an arbitrary polynomial potential of
degree m in terms of W(z). In order to establish uni-
versality it remains to check that this expression leads
to (5) using the fact that W(z) is itself a solution of an
mth degree polynomial equation [17]. The number of
equations needed for closure increases with the degree
because new types of correlators get coupled into the ex-
isting Egs. (9)—(13). For example, when V(A) is cu-
bic, the correlators (W (z)) and (W3 (z)Wg(w)). [where
Wa(z) = Atr(-2;B?)] get coupled. The equations also
contain a finite number (depending on m) of other un-
known quantities such as (trA) and (trA2), but these are
all self-consistently determined from the loop equations
and the analyticity properties of W (z). The procedure
for deriving the additional equations remains similar to
the one discussed above. These results as well as higher
order correlators and correlators for crossover to different
ensembles will be presented elsewhere.

We remark that (5) or (6) is valid for all z and y in-
cluding near the edge of the semicircle and for all time.
Thus it may have a larger applicability than for the CSM
model and quantum chaos, e.g., in quantum gravity and
string theory, or in conductance fluctuations of meso-
scopic conductors where behavior near the edge of the
cut is particularly relevant [22].

PAB(CB, y) =
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