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Abstract. We study the conservation laws of both the classical and the quantum mechanical
continuum ¥r2 type systems. For the classical case, we introduce new integrals of motion along
the recent ideas of Shastry and Sutherland (SS), supplementing the usual integrals of motion
constructed much earlier by Moser. We show by explicit construction that one set of integrals
can be related algebraically to the other. The difference of these two sets of integrals then gives
rise to yet another complete set of integrals of motion. For the quantum case, we first need to
resum the integrals proposed by Calogero, Marchioro and Ragnisco. We give a diagrammatic
construction scheme for these new integrals, which are the quantum analogues of the classical
traces. Again we show that there is a relationship between these new integrals and the quantum
integrals of SS by explicit construction. Finally, we go to the asymptotic or low-density limit
and derive recursion relations of the two sets of asymptotic integrals.

1. Introduction

The integrability of both the classical and the quantum one-dimensional problem of
particles interacting via the two-body potentidls(x) = g2/x2, Vi(x) = g2®?sin ?[dx]
andVi(x) = g?®?sinh [ ®x] has been shown more than two decades ago by Moser [1] (for
the classical problem) and Calogero, Marchioro and Ragnisco (CMR) [2] (for the quantum
problem), both groups exploiting a technique due to Lax [3]. These early results have been
reviewed, extended and collected nicely both for the classical and the quantum cases by
Olshanetsky and Perelomov in [4,5].

For the classical systems, integrability restricts the motion in terms of action-angle
variables onto a torus in phase space. However, for the quantum case, integrability leads to
solvability only for those special cases which support scattering, i.e. systems which fly apart
when the walls of the box are removed. In these cases, integrability implies conservation of
individual momenta and thus the wavefunction is given asymptotically by Bethe's ansatz.
For the above interaction potentials, Sutherland [6] has exploited this fact to determine the
properties of the quantum systems in the thermodynamic limit.

Recently, Shastry and Sutherland (SS) have given an independent proof of integrability
of the quantum many-body problem and constructed new integrals of motion [7]. However,
for any finite number of particled’, we know that in principle we have exactly conserved
guantities. Therefore we expect the new integrals of motion to be related to the integrals
constructed by CMR. It is the aim of the present work to elucidate some of the features
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of the new integrals of motion and to show their relation to the integrals of CMR. We
emphasize that this new proof of integrability has also made possible the application of the
ideas of the asymptotic Bethe ansatz to tlie*Imodels with quantum exchange [8].

In section 2 we show that the new construction of SS gives integrals of motion also
for the classical problem. We next explicitly calculate these new integrals up=std and
compare them to the integrals of CMR. This then gives rise to yet another set of integrals
K,. Section 3 is devoted to a comparison of the two series of integrals of motion for the
guantum case. The integrals given by CMR are not extensive quantities and we need to
resum them via an application of the linked cluster theorem. In section 4, we take the
asymptotic or low-density limit of the problem and section 5 summarizes and discusses our
results.

2. The classical case

The Hamiltonian of primary interest for our present work is given as
H=Y p?+10.— Doy sin?[®(x; — x))]. 1)
i ij

The interaction term reduces td, in the limit of high densities (o — 0) and the
trigonometric interactiorV; is just the analytic continuation b — i®. Here and in the
following, we will use the primed sur_’ to indicate that the summation runs over unequal
indices only.

2.1. Moser’s invariants

Let us briefly recall the method of [1, 3]. We introduce the Lax {gairM,

Ljr = pjSjx + (1= 8j1)v/A(A — 1)@ coth[® (x; — x1)] (2)

Mjp = 2/A0. — 1)@2[5_,-k Z’sinh—z[ob(x,- —x)] 4+ (1 — ;) sinh?[® (x; — xk)]:|. (3)
l

The classical equations of motion then imply the matrix equation
dL

q =L HY =ML~ LM] (4)

where we define the Poisson brackets as
N 9F 0G  9F 9G
(F.G}=) —— - — —.
j=1

The time evolution ofL consequently is an isospectral deformation,

L) = exp[i /t M(r)dr]L(O) exp[ —i ft M(r)dr]
0 0

and the integrals of motion are simply given as the traces
T, =TrL"(t) =TrL". (5)

We also need to show that thig’s are in involution, for example(T,, 7,,} = 0. Using
the Jacobi relation for Poisson brackets, we see that

{H’ {Tn’Tm}}Z{TH’{H7 Tm}}_{Tm’{Hv Tn}} (6)
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and thus{T,, T,,} is also an integral of motion. But, allowing the system to evolve in time,
all particles scatter, the Lax matrix itself evolves into

Ljj = k;
L=3L® ={ Ly =+i/A0 - 1) j>k )

and so the coordinate dependence vanishes. Thus the Poisson Bfjclgtl evaluates
to zero. We remark that this is the procedure that we use to prove involution for all the
integrals constructed in the following chapters.
Let us definex;, = /A(A — 1)@ coth[® (x; —x,)] ande;; = 0. Then a direct calculation
of the integrals of motion up te = 4 gives

T, = Zpi =P (89)
=Y p+Y (8b)
i ij

I3 = Z P+ 32 ,Ol,'szi (8c)
i i

Ta= Y pi+2> (2 + pipj + p}) + Tra. (8d)
i ij
Using
af = ©y/10. — D[sinh™?[@(x; — x0)] + 1]
we see that
T, = H + ®*A(h — DN(N — D).
Note that due to the antisymmetsy; = —«;;, only even powers ofk—and thus integer

powers ofA—will appear in all these expressions.
Let us now define the classical down-boost [4]

N
j=1
We then find easily that
{X1 Tn} = nTnfl' (10)

Further, Jacobi’s identity gives
{(X ATy, Tu}t = (0 — D{Ty—1, Tn} + (m — D{T—1, To}. (11)

As a particular case, suppogse= 2, son —1 =1 and7,_; = P. Then by translation
invariance{P, T,} = 0, so we conclude that ifH, T,} = 0, then{H,T,_1} = 0. In
particular, {H, Ty} = O implies that all7, are integrals. Finally, we may construct all
integrals of motion fronTy by repeatedly using the boo&t in the representation

(12)
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2.2. Shastry’s invariants

In [7], Shastry and Sutherland provide a set of integrals of motion for the quantum problem.
However, mimicking their arguments, we can straightforwardly construct integrals of motion
for the classical case, too. Let us introduce the singular matyix= 1 for all 7, j and the
vectorn; = 1 for all j. Then we define integrals of motion such that

I =THL"OAl =n'L"(On =Y LiiLiis Li,yi, Lij,., (13)

1,02, sin 41

with the Lax matrixL given as before. We then have

det” = %{Tr[exp[th]L”(t)exp[—th]A]} (14)
—iTML"(1)A — L" ()M A] (15)
=i[TL"(t)AM] — Tr[L" ()M A]] (16)
—0 17)

sinceMA = AM = 0 as shown in SS. Involution for these integrals of motion is proven
by the same asymptotic argument as before. A direct calculation of the conserved quantities
of SS up ton = 4 gives

J1= Z Di (189)
/ /
o= Pl ) el =) e (180)
i 7 ik
J3= ZP? + 32 ol pi — Z ok (pi + pj + pr) (18c)
i i ijk
Ja= Z Pf‘ + 22 Olizj[Piz + pipj + PJ-Z] + Tro* + Z OOk Qg1 Ol
i i i j kAL m i
/
—Z il pf + pf+ pi + pipi + pip+ pipil- (18d)

ijk

Again the Hamiltonian can be found in the= 2 term,J, = H + ®?A (A — 1)N(N?>—-1)/3
and again only even powers afappear in the expressions of thigs.

The action of the down-boost on these new integrals of motion is as in equation (10),
for example{X, J,} = nJ,_1. Much more useful is the up-boostwhich we define as

Y = Zx,-pf + Z (xi + x))af /2 (19)
i ij

in analogy with the up-boost operatpt, n.S,.S,1 in the Heisenberg model. Unfortunately,
this up-boost only works, if we restrict ourselves to the potenti@lsuch thataizj =

A —=21)/(x; —xj)z. In this case, we find by explicit construction tHat J,} = (n+1)J,.1.
The Jacobi relatiofJ,,, {Y, J,}} = {Y, {Jn, Ju}} — {Jn, {J, Y} NOW gives

(n + D{Jn, Joy1} =Y, {Jp, I} — (m + DiJ,, Iy} (20)

Thus, if{J,,, J,} = 0 and{J,,;1, J,} = 0, we also havdJ,, J,.1} = 0. We emphasize that
the up-boost (19) seems to work only for the special potefal
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2.3. Relation between invariants

We can again use the Jacobi relation to show that the Poisson bfagkes,} is an integral
of motion which, in the asymptotic limits, evaluates to zero. The difference between the
integrals of motion of Moser and SS then gives rise to yet another set of constants,

Ki=Jo=Ti= 3 LipLis- - Liy siyLigiss- (21)
i1%in41

Various terms in theJ,’s can be simplified with the help of the coth rule,

ik + o + ajro = —PZA( — 1) (22)
and hence we find
K1=0 (23a)
Ko = ®?A(h — HN(N — 1)(N — 2)/3 (2%)
K3 = ®?1(A — 1)(N — 1)(N — 2)P (23%)

K4 = ®% (0 — 1)(N — 2[(N —2Ta 4+ P?] + [®*A(A — 1)(N — 1)(N — 2)]?/9. (23d)

Note thatK3 is the first term that is not a simple constant, and in order to mak& tfea
complete set of integrals of motion, we may simply #se,; andK y,». Thus we conclude
that by construction, we can express Shastry’s integrals of motion in terms of Moser’s and
vice versa We emphasize that this relationship is not linear, but only algebraic as seen
from the existence of th@2 term in K.

Taking the limit® — 0, we see that th&,’'s are zero. Thus only for the simplest
case of the Calogero potentitih(x) = g2/x? do we find that the Moser set of integrals of
motion is identical to the set of SS.

3. The quantum case

In the quantum case, the elements of the Uaxand M matrices become operators
themselves, i.e. the momentum operatopjs= —id/dx; and we have the commutation
relation [x;, ps] = ié;x. Since operator elements do not necessarily commute, we always
mean an ordered product of elements when we multiply matrices in the following.

3.1. Calogero’s invariants

The early work of Calogeroet al [2] quantized the classical Lax equation, by
antisymmetrizing the right-hand side of equation (4). The proof of invariance of the traces
then does no longer hold. However, CMR also showed that after replacing the classical
variables with the corresponding quantum mechanical operators, we can define new integrals
of motion I, such that

N
AB) =detll— LI =1+ (=p)"I,. (24)
n=1
CMR then go on to argue that thegg are conserved,I], H] = 0, and in involution,
[1., I,] = 0. The later result is again provedly use of the asymptotic limit as in the last

1 We would still need to prove that, far - +oo, L takes the form ofL>, at least in the sense of weak
convergence. However, we have explicitly checked the commutation relations df,'théor up to N = 5
particles and: = 5.
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section. A direct calculation of the conserved quantities of CMR up 65 for H yields

I = Z Di (25a)
/
S Py 3 @)
i ij
/ /
=3 pipipc—3 ) oa5pi (25)
ijk ijk
/ / / !/
Iy = % Z DiPjDkPr — %Z O‘iszkpl - zllz OOk Oty O+ % Z Ol,?jafg (25d)
ijkl ijki ijkl ijkl
/ / / /
Is = é Z PiPjPkP1Pm — %2 Z Oliszkplpm - 211 Z QOO O P+ % Z ozfioc,f,pm.
ijklm ijklm ijklm ijklm
(2%)

Note that the Hamiltonian can be found in the term in parenthesis. in
Let us define a quantum down-boost operator analogous to the classical boost [5]. With

X =Y, x; as before, we then find

[X,I,] =1(N—m+1)],_1. (26)
Using Jacobi’s identity for commutators, we can easily show that as previo#sly,] = 0
implies [H, I,_1] = 0 and thus H, Iy] = 0 implies all I, are integrals. A particularly nice
result is to write/y = detL, treat the momentg; as classical c-numbers since there are
no ordering ambiguities, and use the representation

N . 9
li

=

to generate alf, in the quantum case.
Of special importance in the following will be that, as in the classical invariants by

Moser,« will only appear in even powers in thi’s. Therefore A will occur with integer
powers only and terms such as(f — 1)]*? do not exist.

X = (27)

3.2. Shastry’s invariants

In [7], Shastry and Sutherland provide a proof of integrability in the quantum case via an
entirely different method. The Hamiltoniaii is given as before but the Lax matrices now
read

LSS = p;djx +i(1— 8)A® coth[® (x; — x;)] (28)
= pidjix +1(1 = &) xjx (29)
Mﬁ(s = 2}\.@2[8]‘]( Z Sinh_z[CD(xj — xl)] +(1- jk) Sinh_z[CD(xj — )Ck)]:|

[
(30)

with x;; = 0. SS define their conserved quantum integrals of motion as in equation (18),
for example,J, = n'(LS9"n. The new Lax matrices obey the ordered Lax equation

[LSS, H] — MSSLSS_ LSSMSS (31)
and we may easily prove invariance via
[Jn, H] = ' [(L5S)", H]y = [MPX(LSS" — (L39"M>n = 0 (32)
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since as beforgMSS = MSS) = 0. A direct calculation of the conserved quantities of SS
up ton = 4 yields

Jl = Z Di (33&)
o= PP+ G+ x) =Y XijXi (330)
i i ik
/ /
J3 = ZP? + 32 (X5 + x)pi — Z Xij Xjk(pi + pj + pi) (33¢)
i i ik

!
Jo = ZP? + 22 O+ xiplpE + pipy + pi1 + Z Xij Xjk Xt Xim
i ij i j#kFEFmAEL

/
+Trx* =3 xijxlpf + P} + pE+ pips + pipi + pepi]

ijk
- / . ! - 4
20 X A i pi 1Y X xi(pi — i)
ij ij ijk
/ ’ / /
=D =2 i+ 2 K= D O+ ) i
ij ij ijk ij ijk
/ / / /
+3Z X,%'Xj{k + ZZ X,‘ZjX,‘,j—Z [Xij X + 2Xinij;§z]+Z Xij Xjk Xii -
ijk ij ijkl ijk
(33d)
The derivativey/, is defined by the commutatop], x;;'] = —ix;;"". See the appendix
for an explicit list of derivatives.
Using X,-/,- = — O sinh [ (x; — x;)], we see that just as in the classical cake

contains the Hamiltonian, i.el, = H + ®?\2N(N? — 1)/3. However, the interaction
strengthi (A — 1) in the Hamiltonian could only be obtained with the modified form of
the Lax matrix LSS, Also, the > dependence of the constant term in the above equation
is different from its classical counterpart. We remark that the last terms in equatibh (33
and (32) can again be written as a constant and a constant, p; by the coth rule of
equation (22).

The down-boost operator acts as before, for exampe/[] = inJ,_1. In case of the
potential Vo, we may also use the up-boost of equation (19) in operator form as

Y= ipf+ pix)/2+4 ) (i + e /2. (34)
i ij

Then [Y, J,] =i(n + 1)J,,1 and we again have from the Jacobi identity
|(n + 1)[Jma Jn+1] = [Ya [va Jn]] - |(m + 1)[‘]}17 Jm+l] (35)

so if [/, Ju] =0 and [J,,41, J,] = 0, this then implies J,,, J,+1] = 0. We remark that an
operator similar to our up-boost operatioy which we constructed in analogy to the boost
in the Heisenberg model, has been found previously by Wadatl in the context of an
investigation of the systems with algebraic potentigl[9].

Finally, we note another interesting property of these integrals of motion¥}.eenote
the ground state of the model, then it has been shown in [10]¥hat>>W, = 0 for all
i=1...,N. Therefore, we see that

Wi J,Wo =0 (36)
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for all n. Thus all the/,’s somehow know about the ground state and subtract the appropriate
expectation values, for example, the ground-state expectation value of the Hamiltonian is
just the above constan®?A2N (N? — 1)/3.

3.3. Perturbation theory in the Lax matrices

Looking at equation (25), we see that edghn > 1 in fact contains various powers of.
Furthermore, in the thermodynamic limit, thg's are not extensive quantities. Thus the
situation seems to be similar to the usual problentafinectedand disconnectedpieces
of diagrams encountered in perturbation theory. In brief, CMR’'sseems to contain
disconnected pieces and we hope that by a linked cluster expansion, we can write new
integrals of motion with connected graphs only.

Let us be specific. With the help of the fermionic coherent path integral [11], we may
rewrite the determinant

A(B) = det[1— BL] (37)
= /1_[ dc de, exp[ - Zc}‘[éjk - ﬁij]cki| (38)
a Jjk
= / 1_[ dc de, exp[ - B qu(8jk/ﬂ)ck — c;-‘ijck:| (39)
a jk
wherec¥, c,,a = 1,..., N are Grassmann variables. Note first that we may write this

expression both for a classicAlanda quantumlL. The fact that the elements of a quantum
matrix will not necessarily commute with each other is taken care of by the Grassmann
nature of the integration: each momentwmnwill only encounter indiceg # i, otherwise
the integration measure will have expressions sucti@sor ¢ c¢; which are zero.

When we now include a dummy time dependence for the Grassmann variables, i.e.
™ = c™(r), we can write

A(B) = / [ ] dej(x) dea(n)

B
xexp[— /0 dt(Zc}*(r)(ajk/mck(r)—cjf(r)L,kck(r))] (40)
ik

— Ao< exp|: _ /0 ! d,( Xk: —cl;‘(t)ijck(t)>i|>0 (41)
J

where the average is defined as

1
(FE i) cswen - No= 5 / [T dei (@) dewr ()

B
X exp[ —/0 dtch,(t)(l/ﬁ)cjf(t)]F(cj(zi)cZ(tj) cocgen() ).
=
(42)

This is very much like a path integral description of a many-body partition funcfiokve
further note that the interaction pat = ij i () Ljkc () is just the super Lax operator
L of SS.
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The perturbation expansion is obtained by expanding equation (40) in a power series

© (_1yt B
NGV e /0 Ayl

n

n=0
X < Z ¢, () Liyjicjy(ta) - - Z c; (ta)Li,j,cj, (ln)> (43)
iLj1 inn 0
[o.¢] _1 n
=Y =D, (44)
—= n!

and A, ~ g"I,. The last equation is obtained by comparison with equation (24) and
Ao = 1. Note that/, = 0 in equation (44) for alh > N. For example, forN = 2, we
have

N=2 N=2

I~ > > LijLipLisn(chenchncicio

11j112j2 13J3
and clearlyiz, j3 always take index values already covered {by ji, i2, j2}. Thus the
bracket() is zero by the Grassmann character of the

Let us now calculate the first few orders &af8). With g; being a dummy propagator,

we find

A= —p Z Liigi )
i
Az =32 (LijLji — LiLj)gig e
ij
Az= — %133 Z Liyjy Liyj, Lisjs (CZCZCZCHCJ'ZCB)O

i1.ip.i3,
J1.02.J3

= — %lgsz(Liijiji — LixLjiLyj — LijLjxLyi + Lii LjxLy;
ijk
+ LijjLjiLyx — LiiLjjLik)8ig;8k- (45¢)
Introducing the diagrammatic notatiéa — j = L;;, we can represent these expressions
by their graphs as in figure 1. Note that only in equationcj4% we need to worry about
the ordering of the matrix products. If we ignore that ordering for the moment—the classical
case—we have
Az=—3p° Z[3Liiijij —2L;jLjxLii — Lii Ljj Lik]8i 8 8- (46)
ijk
We see that the second term in equation (46), representing the fully connected diagram, is
actually just constant Tr(L3).
Let us see what these expressions tell us. (i) We see that in fach tiseare just
the I,’'s of CMR with g; = 1. (ii) We observe that the fully connected diagrams give the
traces of powers of. in the classical case as was expected from the well known matrix
formula IndetA = Trin A. Thus these connected diagrams are the quantum analogue of the
classical integrals of motion. (iii) The ordering of the matrix products becomes important
for n > 2, thus necessitating order labelling of diagrams.

3.4. Constructing connected diagrams

We now want to rewrite the perturbation expansion (43) so that we only use fully connected
diagrams, and we want to do this such that we can minimize the ordering problems coming
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() &

(P
k k k
5 3 2
143y —1  — 3
((3) J 27 17
7 7 7
koo k k

Figure 1. Diagrammatic representation of equation (45). Each line is labelled by a number
indicating precedence in the corresponding matrix product. 1 corresponds to the right-most
matrix.

from the quantum character of the Lax matrix. The basic program is due to Thiele and is
known as the linked cluster theorem. It can be summarized as follows. We resum the series
(44) as

ﬂn
A = exp| — —T, 47
(8) p[ ;(n_l)! ] (47)
and use it to define th&,’s. Comparing equations (44) and (47), we find up:te: 4,
Ti=1 (489)
- n (48)
To =17 — 21, (48c)
=Y Y (48d)
i ij
T3 = If’ — 311, + 313 (48¢)
=Y p+3) fipi (48
i ij
Ty = Iy — ALI7 + 21IZ + AL, — 414 (48g)
= ZP? + ZZ (Jl,~2j[p,2 + pipj + pfl+ Tra — 22 o
i ij ij
—22 ((X;J)Z—4ZZ otlfjoe,-jpi. (48h)
ij ij

Since CMR have already provet,[ I,,] = 0, there is no ordering problem for thg's in
the construction of thd,’s and we, furthermore, havd}], 7,,] = 0. SinceT; is, up to a
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constant, the Hamiltonian, this implies both involution and invariance.

As expected, we find that ead) corresponds to the fully connected diagrams of the
series (44). We can now directly use the diagrammatic approach to construgt’she
However, for a givem, there are(n — 1)! different labelled diagrams and thus different
matrix orderings. Each diagram itself is an ordered operator expression and it is quite
tedious to get them into a form as in equation (48) with all momenta to the right. As an
example, we give the diagrams @ in figure 2.

I 3 kI 4 kK I ,o 0k
4

S
IMW:
. —_
-~
5
N (3]

£
—_
o
-~
[
e
«
o

Figure 2. The six diagrams associated wilh.

Ignoring matrix and quantum ordering, the resultant expressions fdf,tkeare equal
to the classically invariant traces of equation (8). Thus we may hope that due to the special
form of the quantum Lax matri¥., the matrix product order somehow is unimportant and
the T,,’s are just the quantum traces II't. Explicitly calculating the quantum traces, we
find that indeed up ta = 3, we havel,, = Tr L". However, forn = 4, the quantum trace

includes the non-zero term2} ", ;, /a,-jajka;d. Note that this term has a factor(ph.—1)]%3,
but as shown in section 3.1, such a term does not arise if,theand consequently also
not in the7,’s. Therefore, thel,’s are not simply the quantum traces.

Note that these expressions are again very close to the ones obtainkd Fowever,
as before in the classical case, we see that already fo2, 3, there are the same constants
in the J expressions which do not appear in theexpressions.

3.5. Relation between invariants

We again would like to see if we can express Shastry’s integrals in terms df,@®urAs

we have seen in section 2.3 for the classical case, we expect this relation to be algebraic.
Fortunately, as shown in the last section, fractional powers ogither appear in thd,’s

nor in the7,’s so that noa priori reasons forbid an algebraic relationship in the quantum
case.

Furthermore, given two sets of integrals of moti¢f,} and {J,}, we know that
commutators of integrals are themselves integrals of motion, and since asymptotically these
integrals evaluate to zero, the two sets of integrals can be simultaneously diagonalized. A
relationship between asymptotic integrals of the fofin= A,[{7,,}] can always be found,
since either set of integrals gives an algebraically complete set of symmetric polynomials
of increasing degree. Suppose we have such a relationship. Then, the opdyaamc
A,[{T»}] have the same eigenvalues in the same basis, hence must be the same operator,
and so there must exist a relationship= A,[{T,,}] between the operators themselves.

T This term seems to be missing in [6].



4710 R A Romer et al

Replacinga;; and x;; by their appropriate definitions, using the explicit form for the
derivatives as given in the appendix and counting powers afd p’s, we then have

J1=T (49)
Jy = ®°A[3+ AN —2IN(N —1)/3+ T (4%)
J3 = ®?A[B+ AN —2|(N — DTy + T3 (4%)

Jo=[-75+ 1200 — 48).2 4 (55— 1100 + 5202 N + (=54 251 — 1813 N? 4 202N?)
XA2N(N — 1)®*/154 [2 4+ A(N — ]AD*T7
+[10 — 120 + 11(A — DN + (2h — HN?JAD2T, + Ty (49d)

Hence we have succeeded in writing Shastry’s quantum integrals in terms Bf shehich
in turn are derived from Calogero’s quantum integrals for umte 4. Again, as in the
classical case, this relationship is not linear, since we observE2kerm in equation (48),
and only if we restrict ourselves to the potentialx) = g2/x?, by taking the limit® — 0,
do we find that both sets of integrals of motion are identical.

With W, the N-particle ground state as before, we may use equation (36) and hence
relate the expectation values of variofjss. For example,

WiT,Wo = 2A[3 + AN — 2]N(N — 1)/3
and

WiTsWo = —D2A[3 + A(N — 2)](N — VW T1wg ~ Wi P, = 0.
We further note that as in the classical case, we may define new non-trivial constants of
motion K,, = J,, — T,, for ® # 0. We then haveIJgK”\llo = —\IISTH\IIO. Unfortunately, we

can not give a simple formula directly in terms of the Lax matrices for the construction of
the K,,'s analogous to equation (21).

4. The asymptotic limit

In the asymptotic — oo limit—equivalent to the low-density limit—the elements of the

Lax matrix are no longer operators, but numbers. Thus explicit calculations are much easier
and we hope that we can study the connection between asymptotic Calogero and Shastry
integrals of motion in more detail than in the last section.

4.1. Asymptotics of Calogero’s integrals

The asymptotic form for the Lax matrik gives a corresponding asymptotic form for the
Calogero integrald, — Z,. We define a generating function of the asymptotic Calogero
integrals,

Dlz,A] = %[lﬁl(l—zpj — ikz)+ﬁ(l—zpj +i)»z)} (50)
j=1 j=1
and then have
det[1— zL>] = D[z, V/A(A — D)]. (51)
We also define the elementary symmetric functions of ¥heariablesp; as
N
alpl= > piop (52)

1< <<y
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and for convenienceg = 1 anda_, = 0. Then

Dlz. 2] = ) (=2%% an—2[1 - zp]. (53)
r=0
In particular,
Iy = anlpl = 2 = Day—2[p] + 22(+ — D?ay_alp] — - - (54)
and the other integrals can be constructed via
LA
[sz} =(N—j+1I;1. (55)
=1 9P«

Since the elementary symmetric functianisobey the same relationship, this also gives us
the expression foZ; as a linear combination af;, a;_», a;_4, .... The general expression
for Z; in terms of thea,[p] can be obtained using

N .
al—zpl =) (=) <N +; - r) ar—;[p] (56)
j=0
and we find
N .
7 =) 12— 1) (N oy ) aj-2[p]. S
=0

4.2. Some generating functions

Let us define the quantity
N

Zlz, Al =] [11 - 2(p; +i0)] = DIz, 2] — 22Nz, A]. (58)
j=1

The symmetric part of is D = (Z[z, A] + Z[z, —A])/2 as in the previous section, while
the antisymmetric partZ[z, A] — Z[z, —1])/2 is given by

irzNz, Al =iz ) (—=3%2%) ay_21[l — zp]. (59)
r=0

For z real, these are the real and imaginary part€opfespectively. This expression f&f
is the standard generating function for the elementary symmetric functions, so that

N
Z[z. 2] =) (=2)aj[p +iAl. (60)
j=0
Clearly, then, we hav&; = Re{a;[p + i+/A(A — D]}.Taking the logarithm ofz,
N
INZ[z.2] =) _In[1—z(p+j +i)] (61)
j=1

one advantage of using the generating functiBnis clear when one anticipates the
thermodynamic limit. We now consider

3 N 4 iA

Sz __ptr (62)

0z = 1—z(p; +ir)
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This, however, is the generating function for the symmetric power sums

N

blpl =) (63)
j=1

since
00 N
r bj
P2l =Y "balp] = (64)
z ;Z +1LP ; 1—zp;

and we see that

a% In Z[z, ] = ;sz,+l[p +ir] = Plz,A]. (65)

4.3. Asymptotics of Shastry’s integrals

Shastry’s integrals also approach an asymptotic fdym> 7;, and similarly we define an
asymptotic generating function

_ Nz, 2]

" D[z, 4]

then, we see thaV/[z, A] = G[z, A]D[z, A], so expanding, we have

Glz, Al (66)

N 0o 00
Yo =ofImig[p+ialy =2) ) (/N aRea[p+ir]).  (67)

k=1 k=1 j=1

Equating powers of, this gives

k
Im{a[p +ir]}) = 2 ) (=)' J_1Rela_;[p +iAl}. (68)
j=1

More explicitly,

W7 m{alp +iA]) = N Rela[p +ia]) = A Relagalp + A} + - + (D" T (69)

This allows us to iterate and find in terms of the othe(7,

Ji = JieaRelaalp + i3]} = = (=D N Rela[p +ia]} + (=12 Im{apa[p +iA]}.
(70)

SinceZ; = Re{a;[p + 1]}, this recursion relation also relates the asymptotic forms of
the CMR and SS integrals. However, this relation is between asymptotic integrals with the
same parameter, and such integrals do not even commute.

5. Conclusions

Our original intent and hope at taking up the present work was to give a simple connection
between the integrals of motion of CMR and the recently discovered integrals of SS. In
fact, we were speculating that due to the special structure of the quantum Lax matrix, we
would simply find7,, ~ J,.

Quite the opposite has happened. In the quantum case, although we have succeeded in
rewriting the I, integrals of CMR into extensive quantitidy, we have, however, failed
to give a simple formula for the connection of theggs to the J, integrals of SS for all
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but the simplest potentidly(x) = g?/x2. In general, we do find a complicated algebraic
relationship which gives rise to yet another set of non-trivial integrals of matipn

In the classical case, we show that the quantum definition of SS may also be used
to construct classical integrals of motion. Hence here the situation now is just as in the
guantum case and again we show that we may re-express the integrals of SS in terms of the
classical integrals of Moser. Again, the difference of these two sets of integrals vanishes
only for the potentialVy and otherwise may be used to define new constants and this time,
we can give an explicit formula for th&,’s directly in terms on the Lax. matrix. Indeed,
we may even define a one-parameter family of integrals of motion in the classical case, for
example,

R,(8) = Tr[L"(1 + 8A))] (71)

with A}, =11if i # j and zero otherwise. TheR, interpolates between Moser’s integrals
R,(0) = T,, and the integrals of S®,(1) = J,.

Most of the previous formulae are given in termsod$ and x’s and are thus valid not
only for the hyperbolic pair potential,, but also for the trigonometri®; and the rational
Vo after taking the appropriate limits as mentioned at the beginning of section 2. However,
we have found an up-boost only for the classical and the quantum many-body system with
algebraic potentialy(r) = g2/r?. Also, the elliptic potentialVe = 1/sr?, is not included
in this study. Although the classical integrals of Moser and the quantum integrals of CMR
are valid for this potential, the proof of SS no longer holds both for the classical and the
guantum case. This is due to the fact that the row and column sums of the elliptic Lax
M matrix are no longer zero. The ansalz = Tr L"g[{x;}] gives an equation for the
coordinate dependent matrixasd/(dt)g = Mg — gM. Unfortunately, we have not found
a non-trivial g such that it gives the SS integrals of motion in the elliptic case.
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Appendix A. Derivatives

We have dEfiHEd/ij = COth[@(x,‘ — Xj)] and SOy = cb)‘-yij and ojj = /A — l))/l]
Then the derivatives are

A Xij /

E)x: =Xij = A1 — Vi?] (Ala)
Xl = —20%y;(L— v (Alb)
Xi| = —20°0(1 — 4yf + 3. (Alc)

The same relations hold far;;, i.e.
of; = P*V/A0 — D[ — afy = =20%/a(h — Dy;; (1 — v
" __ 4 2 4
o = =20 /2L —D(A - 4y + 3)/1.1.)
and, lastly,
J/i.,j = o[l - V,’?]v Vi‘,]{ = —20y;(1- V,‘?) V,",,V =201 - 4)’5 + 3)’,“})'
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