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Abstract. We study the conservation laws of both the classical and the quantum mechanical
continuum 1/r2 type systems. For the classical case, we introduce new integrals of motion along
the recent ideas of Shastry and Sutherland (SS), supplementing the usual integrals of motion
constructed much earlier by Moser. We show by explicit construction that one set of integrals
can be related algebraically to the other. The difference of these two sets of integrals then gives
rise to yet another complete set of integrals of motion. For the quantum case, we first need to
resum the integrals proposed by Calogero, Marchioro and Ragnisco. We give a diagrammatic
construction scheme for these new integrals, which are the quantum analogues of the classical
traces. Again we show that there is a relationship between these new integrals and the quantum
integrals of SS by explicit construction. Finally, we go to the asymptotic or low-density limit
and derive recursion relations of the two sets of asymptotic integrals.

1. Introduction

The integrability of both the classical and the quantum one-dimensional problem ofN

particles interacting via the two-body potentialsV0(x) = g2/x2, Vt(x) = g282 sin−2[8x]
andVh(x) = g282 sinh−2[8x] has been shown more than two decades ago by Moser [1] (for
the classical problem) and Calogero, Marchioro and Ragnisco (CMR) [2] (for the quantum
problem), both groups exploiting a technique due to Lax [3]. These early results have been
reviewed, extended and collected nicely both for the classical and the quantum cases by
Olshanetsky and Perelomov in [4, 5].

For the classical systems, integrability restricts the motion in terms of action-angle
variables onto a torus in phase space. However, for the quantum case, integrability leads to
solvability only for those special cases which support scattering, i.e. systems which fly apart
when the walls of the box are removed. In these cases, integrability implies conservation of
individual momenta and thus the wavefunction is given asymptotically by Bethe’s ansatz.
For the above interaction potentials, Sutherland [6] has exploited this fact to determine the
properties of the quantum systems in the thermodynamic limit.

Recently, Shastry and Sutherland (SS) have given an independent proof of integrability
of the quantum many-body problem and constructed new integrals of motion [7]. However,
for any finite number of particlesN , we know that in principle we have exactlyN conserved
quantities. Therefore we expect the new integrals of motion to be related to the integrals
constructed by CMR. It is the aim of the present work to elucidate some of the features
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of the new integrals of motion and to show their relation to the integrals of CMR. We
emphasize that this new proof of integrability has also made possible the application of the
ideas of the asymptotic Bethe ansatz to the 1/r2 models with quantum exchange [8].

In section 2 we show that the new construction of SS gives integrals of motion also
for the classical problem. We next explicitly calculate these new integrals up ton = 4 and
compare them to the integrals of CMR. This then gives rise to yet another set of integrals
Kn. Section 3 is devoted to a comparison of the two series of integrals of motion for the
quantum case. The integrals given by CMR are not extensive quantities and we need to
resum them via an application of the linked cluster theorem. In section 4, we take the
asymptotic or low-density limit of the problem and section 5 summarizes and discusses our
results.

2. The classical case

The Hamiltonian of primary interest for our present work is given as

H =
∑

i

p2
i + λ(λ − 1)82

∑
ij

′
sinh−2[8(xi − xj )]. (1)

The interaction term reduces toV0 in the limit of high densities (or8 → 0) and the
trigonometric interactionVt is just the analytic continuation of8 → i8. Here and in the
following, we will use the primed sum

∑′ to indicate that the summation runs over unequal
indices only.

2.1. Moser’s invariants

Let us briefly recall the method of [1, 3]. We introduce the Lax pairL, M,

Ljk = pjδjk + i(1 − δjk)
√

λ(λ − 1)8 coth[8(xj − xk)] (2)

Mjk = 2
√

λ(λ − 1)82

[
δjk

∑
l

′
sinh−2[8(xj − xl)] + (1 − δjk) sinh−2[8(xj − xk)]

]
. (3)

The classical equations of motion then imply the matrix equation

dL

dt
= {L, H } = i[ML − LM] (4)

where we define the Poisson brackets as

{F, G} =
N∑

j=1

∂F

∂xj

∂G

∂pj

− ∂F

∂pj

∂G

∂xj

.

The time evolution ofL consequently is an isospectral deformation,

L(t) = exp

[
i
∫ t

0
M(τ) dτ

]
L(0) exp

[
− i

∫ t

0
M(τ) dτ

]
and the integrals of motion are simply given as the traces

Tn = Tr Ln(t) = Tr Ln. (5)

We also need to show that theTn’s are in involution, for example,{Tn, Tm} = 0. Using
the Jacobi relation for Poisson brackets, we see that

{H, {Tn, Tm}} = {Tn, {H, Tm}} − {Tm, {H, Tn}} (6)
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and thus{Tn, Tm} is also an integral of motion. But, allowing the system to evolve in time,
all particles scatter, the Lax matrix itself evolves into

L
t→∞−→ L∞ =


Ljj = kj

Ljk = +i
√

λ(λ − 1) j > k

Ljk = −i
√

λ(λ − 1) j < k

(7)

and so the coordinate dependence vanishes. Thus the Poisson bracket{Tn, Tm} evaluates
to zero. We remark that this is the procedure that we use to prove involution for all the
integrals constructed in the following chapters.

Let us defineαjk = √
λ(λ − 1)8 coth[8(xj −xk)] andαjj = 0. Then a direct calculation

of the integrals of motion up ton = 4 gives

T1 =
∑

i

pi = P (8a)

T2 =
∑

i

p2
i +

∑
ij

′
α2

ij (8b)

T3 =
∑

i

p3
i + 3

∑
ij

′
α2

ijpi (8c)

T4 =
∑

i

p4
i + 2

∑
ij

′
α2

ij (p
2
j + pipj + p2

i ) + Tr α4. (8d)

Using

α2
ij = 8

√
λ(λ − 1)[sinh−2[8(xj − xk)] + 1]

we see that

T2 = H + 82λ(λ − 1)N(N − 1).

Note that due to the antisymmetryαij = −αji , only even powers ofα—and thus integer
powers ofλ—will appear in all these expressions.

Let us now define the classical down-boost [4]

X =
N∑

j=1

xj . (9)

We then find easily that

{X, Tn} = nTn−1. (10)

Further, Jacobi’s identity gives

{X, {Tn, Tm}} = (n − 1){Tn−1, Tm} + (m − 1){Tm−1, Tn}. (11)

As a particular case, supposen = 2, so n − 1 = 1 andTn−1 = P . Then by translation
invariance{P, Tn} = 0, so we conclude that if{H, Tn} = 0, then {H, Tn−1} = 0. In
particular, {H, TN } = 0 implies that allTn are integrals. Finally, we may construct all
integrals of motion fromTN by repeatedly using the boostX in the representation

X =
N∑

j=1

∂

∂pj

. (12)
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2.2. Shastry’s invariants

In [7], Shastry and Sutherland provide a set of integrals of motion for the quantum problem.
However, mimicking their arguments, we can straightforwardly construct integrals of motion
for the classical case, too. Let us introduce the singular matrix1jk = 1 for all i, j and the
vectorηj = 1 for all j . Then we define integrals of motion such that

Jn = Tr[Ln(t)1] = η†Ln(t)η =
∑

i1,i2,...,in+1

Li1i2Li2i3 · · ·Lin−1inLinin+1 (13)

with the Lax matrixL given as before. We then have

dJn

dt
= d

dt
{Tr[exp[iMt ]Ln(t) exp[−iMt ]1]} (14)

= i Tr[MLn(t)1 − Ln(t)M1] (15)

= i
[
Tr[Ln(t)1M] − Tr[Ln(t)M1]

]
(16)

= 0 (17)

sinceM1 = 1M = 0 as shown in SS. Involution for these integrals of motion is proven
by the same asymptotic argument as before. A direct calculation of the conserved quantities
of SS up ton = 4 gives

J1 =
∑

i

pi (18a)

J2 =
∑

i

p2
i +

∑
ij

′
α2

ij −
∑
ijk

′
αijαjk (18b)

J3 =
∑

i

p3
i + 3

∑
ij

′
α2

ijpi −
∑
ijk

′
αijαjk(pi + pj + pk) (18c)

J4 =
∑

i

p4
i + 2

∑
ij

′
α2

ij [p2
i + pipj + p2

j ] + Tr α4 +
∑

i 6=j 6=k 6=l 6=m6=i

αijαjkαklαlm

−
∑
ijk

′
αijαjk[p2

i + p2
j + p2

k + pipj + pjpk + pkpi ]. (18d)

Again the Hamiltonian can be found in then = 2 term,J2 = H +82λ(λ − 1)N(N2 − 1)/3
and again only even powers ofα appear in the expressions of theJn’s.

The action of the down-boost on these new integrals of motion is as in equation (10),
for example,{X, Jn} = nJn−1. Much more useful is the up-boostY which we define as

Y =
∑

i

xip
2
i +

∑
ij

′
(xi + xj )α

2
ij /2 (19)

in analogy with the up-boost operator
∑

n nSnSn+1 in the Heisenberg model. Unfortunately,
this up-boost only works, if we restrict ourselves to the potentialV0 such thatα2

ij =
λ(λ−1)/(xi −xj )

2. In this case, we find by explicit construction that{Y, Jn} = (n+1)Jn+1.
The Jacobi relation{Jm, {Y, Jn}} = {Y, {Jm, Jn}} − {Jn, {Jm, Y }} now gives

(n + 1){Jm, Jn+1} = {Y, {Jm, Jn}} − (m + 1){Jn, Jm+1}. (20)

Thus, if {Jm, Jn} = 0 and{Jm+1, Jn} = 0, we also have{Jm, Jn+1} = 0. We emphasize that
the up-boost (19) seems to work only for the special potentialV0.
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2.3. Relation between invariants

We can again use the Jacobi relation to show that the Poisson bracket{Tn, Jm} is an integral
of motion which, in the asymptotic limits, evaluates to zero. The difference between the
integrals of motion of Moser and SS then gives rise to yet another set of constants,

Kn = Jn − Tn =
∑

i1 6=in+1

Li1i2Li2i3 · · ·Lin−1inLinin+1. (21)

Various terms in theJn’s can be simplified with the help of the coth rule,

αijαjk + αijαki + αjkαki = −82λ(λ − 1) (22)

and hence we find

K1 = 0 (23a)

K2 = 82λ(λ − 1)N(N − 1)(N − 2)/3 (23b)

K3 = 82λ(λ − 1)(N − 1)(N − 2)P (23c)

K4 = 82λ(λ − 1)(N − 2)[(N − 2)T2 + P 2] + [82λ(λ − 1)(N − 1)(N − 2)]2/9. (23d)

Note thatK3 is the first term that is not a simple constant, and in order to make theKn’s a
complete set of integrals of motion, we may simply useKN+1 andKN+2. Thus we conclude
that by construction, we can express Shastry’s integrals of motion in terms of Moser’s and
vice versa. We emphasize that this relationship is not linear, but only algebraic as seen
from the existence of theP 2 term in K4.

Taking the limit 8 → 0, we see that theKn’s are zero. Thus only for the simplest
case of the Calogero potentialV0(x) = g2/x2 do we find that the Moser set of integrals of
motion is identical to the set of SS.

3. The quantum case

In the quantum case, the elements of the LaxL and M matrices become operators
themselves, i.e. the momentum operator ispj = −i∂/∂xj and we have the commutation
relation [xj , pk] = iδjk. Since operator elements do not necessarily commute, we always
mean an ordered product of elements when we multiply matrices in the following.

3.1. Calogero’s invariants

The early work of Calogeroet al [2] quantized the classical Lax equation, by
antisymmetrizing the right-hand side of equation (4). The proof of invariance of the traces
then does no longer hold. However, CMR also showed that after replacing the classical
variables with the corresponding quantum mechanical operators, we can define new integrals
of motion In such that

1(β) ≡ det[1− βL] ≡ 1 +
N∑

n=1

(−β)nIn. (24)

CMR then go on to argue that theseIn are conserved, [In, H ] = 0, and in involution,
[In, Im] = 0. The later result is again proved† by use of the asymptotic limit as in the last

† We would still need to prove that, fort → ±∞, L takes the form ofL∞, at least in the sense of weak
convergence. However, we have explicitly checked the commutation relations of theIn’s for up to N = 5
particles andn = 5.
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section. A direct calculation of the conserved quantities of CMR up ton = 5 for H yields

I1 =
∑

i

pi (25a)

I2 = 1
2I 2

1 − 1
2

[ ∑
i

p2
i +

∑
ij

′
α2

ij

]
(25b)

I3 = 1
6

∑
ijk

′
pipjpk − 1

2

∑
ijk

′
α2

jkpi (25c)

I4 = 1
4!

∑
ijkl

′
pipjpkpl − 1

4

∑
ijkl

′
α2

ijpkpl − 1
4

∑
ijkl

′
αijαjkαklαli + 1

8

∑
ijkl

′
α2

ij α
2
kl (25d)

I5 = 1
5!

∑
ijklm

′
pipjpkplpm − 1

12

∑
ijklm

′
α2

ijpkplpm − 1
4

∑
ijklm

′
αijαjkαklαlipm + 1

8

∑
ijklm

′
α2

ij α
2
klpm.

(25e)

Note that the Hamiltonian can be found in the term in parenthesis inI2.
Let us define a quantum down-boost operator analogous to the classical boost [5]. With

X = ∑N
j=1 xj as before, we then find

[X, Im] = i(N − m + 1)Im−1. (26)

Using Jacobi’s identity for commutators, we can easily show that as previously, [H, In] = 0
implies [H, In−1] = 0 and thus [H, IN ] = 0 implies allIn are integrals. A particularly nice
result is to writeIN = detL, treat the momentapj as classical c-numbers since there are
no ordering ambiguities, and use the representation

X =
N∑

j=1

i
∂

∂pj

(27)

to generate allIn in the quantum case.
Of special importance in the following will be that, as in the classical invariants by

Moser,α will only appear in even powers in theIn’s. Therefore,λ will occur with integer
powers only and terms such as [λ(λ − 1)]3/2 do not exist.

3.2. Shastry’s invariants

In [7], Shastry and Sutherland provide a proof of integrability in the quantum case via an
entirely different method. The HamiltonianH is given as before but the Lax matrices now
read

LSS
jk = pjδjk + i(1 − δjk)λ8 coth[8(xj − xk)] (28)

≡ pjδjk + i(1 − δjk)χjk (29)

MSS
jk = 2λ82

[
δjk

∑
l

′
sinh−2[8(xj − xl)] + (1 − δjk) sinh−2[8(xj − xk)]

]
(30)

with χii = 0. SS define their conserved quantum integrals of motion as in equation (18),
for example,Jn = η†(LSS)nη. The new Lax matrices obey the ordered Lax equation

[LSS, H ] = MSSLSS− LSSMSS (31)

and we may easily prove invariance via

[Jn, H ] = η†[(LSS)n, H ]η = η†[MSS(LSS)n − (LSS)nMSS]η = 0 (32)
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since as beforeη†MSS = MSSη = 0. A direct calculation of the conserved quantities of SS
up to n = 4 yields

J1 =
∑

i

pi (33a)

J2 =
∑

i

p2
i +

∑
ij

′
(χ2

ij + χ ′
ij ) −

∑
ijk

′
χijχjk (33b)

J3 =
∑

i

p3
i + 3

∑
ij

′
(χ2

ij + χ ′
ij )pi −

∑
ijk

′
χijχjk(pi + pj + pk) (33c)

J4 =
∑

i

p4
i + 2

∑
ij

′
(χ2

ij + χ ′
ij )[p

2
i + pipj + p2

j ] +
∑

i 6=j 6=k 6=l 6=m6=i

χijχjkχklχlm

+ Tr χ4 −
∑
ijk

′
χijχjk[p2

i + p2
j + p2

k + pipj + pjpk + pkpi ]

+2i
∑
ij

′
χ ′′

ijpj + 4i
∑
ij

′
χijχ

′
ijpj + i

∑
ijk

′
χijχ

′
jk(pj − pk)

−
∑
ij

′
χ ′′′

ij − 2
∑
ij

χijχ
′′
ij + 2

∑
ijk

′
χijχ

′′
jk −

∑
ij

′
(χ ′

ij )
2 +

∑
ijk

′
χ ′

ijχ
′
jk

+3
∑
ijk

′
χ2

ijχ
′
jk + 2

∑
ij

′
χ2

ijχ
′
ij −

∑
ijkl

′
[χijχ

′
jkχkl + 2χijχjkχ

′
kl ]+

∑
ijk

′
χijχjkχ

′
ki .

(33d)

The derivativeχ ′
jk is defined by the commutator [pj , χ

(n)
jk ] ≡ −iχ(n+1)

jk . See the appendix
for an explicit list of derivatives.

Using χ ′
ij = −82λ sinh−2[8(xi − xj )], we see that just as in the classical caseJ2

contains the Hamiltonian, i.e.J2 = H + 82λ2N(N2 − 1)/3. However, the interaction
strengthλ(λ − 1) in the Hamiltonian could only be obtained with the modified form of
the Lax matrixLSS. Also, theλ dependence of the constant term in the above equation
is different from its classical counterpart. We remark that the last terms in equation (33b)
and (33c) can again be written as a constant and a constant× ∑

i pi by the coth rule of
equation (22).

The down-boost operator acts as before, for example, [X, Jn] = inJn−1. In case of the
potentialV0, we may also use the up-boost of equation (19) in operator form as

Y =
∑

i

(xip
2
i + p2

i xi)/2 +
∑
ij

′
(xi + xj )α

2
ij /2. (34)

Then [Y, Jn] = i(n + 1)Jn+1 and we again have from the Jacobi identity

i(n + 1)[Jm, Jn+1] = [Y, [Jm, Jn]] − i(m + 1)[Jn, Jm+1] (35)

so if [Jm, Jn] = 0 and [Jm+1, Jn] = 0, this then implies [Jm, Jn+1] = 0. We remark that an
operator similar to our up-boost operatorY , which we constructed in analogy to the boost
in the Heisenberg model, has been found previously by Wadatiet al in the context of an
investigation of the systems with algebraic potentialV0 [9].

Finally, we note another interesting property of these integrals of motion. Let90 denote
the ground state of the model, then it has been shown in [10] that

∑
j LSS

ij 90 = 0 for all
i = 1, . . . , N . Therefore, we see that

9
†
0Jn90 = 0 (36)
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for all n. Thus all theJn’s somehow know about the ground state and subtract the appropriate
expectation values, for example, the ground-state expectation value of the Hamiltonian is
just the above constant,82λ2N(N2 − 1)/3.

3.3. Perturbation theory in the Lax matrices

Looking at equation (25), we see that eachIn, n > 1 in fact contains various powers ofI1.
Furthermore, in the thermodynamic limit, theIn’s are not extensive quantities. Thus the
situation seems to be similar to the usual problem ofconnectedand disconnectedpieces
of diagrams encountered in perturbation theory. In brief, CMR’sIn seems to contain
disconnected pieces and we hope that by a linked cluster expansion, we can write new
integrals of motion with connected graphs only.

Let us be specific. With the help of the fermionic coherent path integral [11], we may
rewrite the determinant

1(β) = det[1− βL] (37)

=
∫ ∏

a

dc∗
a dca exp

[
−

∑
jk

c∗
j [δjk − βLjk]ck

]
(38)

=
∫ ∏

a

dc∗
a dca exp

[
− β

∑
jk

c∗
j (δjk/β)ck − c∗

j Ljkck

]
(39)

where c∗
a, ca, a = 1, . . . , N are Grassmann variables. Note first that we may write this

expression both for a classicalL anda quantumL. The fact that the elements of a quantum
matrix will not necessarily commute with each other is taken care of by the Grassmann
nature of the integration: each momentumpi will only encounter indicesj 6= i, otherwise
the integration measure will have expressions such ascici or c∗

i c
∗
i which are zero.

When we now include a dummy time dependence for the Grassmann variables, i.e.
c(∗)
a = c(∗)

a (t), we can write

1(β) =
∫ ∏

a

dc∗
a(τ ) dca(τ )

× exp

[
−

∫ β

0
dt

( ∑
jk

c∗
j (t)(δjk/β)ck(t) − c∗

j (t)Ljkck(t)

)]
(40)

= 10

〈
exp

[
−

∫ β

0
dt

( ∑
jk

−c∗
j (t)Ljkck(t)

)]〉
0

(41)

where the average is defined as

〈F(c∗
a(ti)c

∗
b(tj ) . . . cg(tk)ch(tl) . . .)〉0 = 1

10

∫ ∏
a′

dc∗
a′(τ ) dca′(τ )

× exp

[
−

∫ β

0
dt

∑
j ′

c∗
j ′(t)(1/β)cj ′(t)

]
F(c∗

a(ti)c
∗
b(tj ) . . . cg(tk)ch(tl) . . .).

(42)

This is very much like a path integral description of a many-body partition functionZ. We
further note that the interaction partV = ∑

jk c∗
j (t)Ljkck(t) is just the super Lax operator

L of SS.
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The perturbation expansion is obtained by expanding equation (40) in a power series

1(β)/10 =
∞∑

n=0

(−1)n

n!

∫ β

0
dt1 dt2 . . . dtn

×
〈 ∑

i1j1

c∗
i1
(t1)Li1j1cj1(t1) · · ·

∑
injn

c∗
in
(tn)Linjn

cjn
(tn)

〉
0

(43)

≡
∞∑

n=0

(−1)n

n!
1n (44)

and 1n ∼ βnIn. The last equation is obtained by comparison with equation (24) and
10 = 1. Note thatIn = 0 in equation (44) for alln > N . For example, forN = 2, we
have

I3 ∼
N=2∑

i1j1i2j2

N=2∑
i3j3

Li1j1Li2j2Li3j3〈c∗
i1
cj1c

∗
i2
cj2c

∗
i3
cj3〉0

and clearlyi3, j3 always take index values already covered by{i1, j1, i2, j2}. Thus the
bracket〈 〉 is zero by the Grassmann character of thec’s.

Let us now calculate the first few orders of1(β). With gi being a dummy propagator,
we find

11 = − β
∑

i

Liigi (45a)

12 = 1
2β2

∑
ij

(LijLji − LiiLjj )gigj (45b)

13 = − 1
3!β

3
∑

i1,i2,i3,

j1,j2,j3

Li1j1Li2j2Li3j3〈c∗
i1
c∗
i2
c∗
i3
cj1cj2cj3〉0

= − 1
3!β

3
∑
ijk

(LikLjjLki − LikLjiLkj − LijLjkLki + LiiLjkLkj

+ LijLjiLkk − LiiLjjLkk)gigjgk. (45c)

Introducing the diagrammatic notationi•−→ j ≡ Lij , we can represent these expressions
by their graphs as in figure 1. Note that only in equation (45c) do we need to worry about
the ordering of the matrix products. If we ignore that ordering for the moment—the classical
case—we have

13 = − 1
3!β

3
∑
ijk

[3LiiLjkLkj − 2LijLjkLki − LiiLjjLkk]gigjgk. (46)

We see that the second term in equation (46), representing the fully connected diagram, is
actually just constant× Tr(L3).

Let us see what these expressions tell us. (i) We see that in fact the1n’s are just
the In’s of CMR with gi = 1. (ii) We observe that the fully connected diagrams give the
traces of powers ofL in the classical case as was expected from the well known matrix
formula ln detA = Tr ln A. Thus these connected diagrams are the quantum analogue of the
classical integrals of motion. (iii) The ordering of the matrix products becomes important
for n > 2, thus necessitating order labelling of diagrams.

3.4. Constructing connected diagrams

We now want to rewrite the perturbation expansion (43) so that we only use fully connected
diagrams, and we want to do this such that we can minimize the ordering problems coming
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Figure 1. Diagrammatic representation of equation (45). Each line is labelled by a number
indicating precedence in the corresponding matrix product. 1 corresponds to the right-most
matrix.

from the quantum character of the Lax matrix. The basic program is due to Thiele and is
known as the linked cluster theorem. It can be summarized as follows. We resum the series
(44) as

1(β) = exp

[
−

∑
n=1

βn

(n − 1)!
Tn

]
(47)

and use it to define theTn’s. Comparing equations (44) and (47), we find up ton = 4,

T1 = I1 (48a)

=
∑

i

pi (48b)

T2 = I 2
1 − 2I2 (48c)

=
∑

i

p2
i +

∑
ij

′
α2

ij (48d)

T3 = I 3
1 − 3I1I2 + 3I3 (48e)

=
∑

i

p3
i + 3

∑
ij

′
α2

ijpi (48f)

T4 = I 4
1 − 4I2I

2
1 + 2I 2

2 + 4I3I1 − 4I4 (48g)

=
∑

i

p4
i + 2

∑
ij

′
α2

ij [p2
j + pipj + p2

i ] + Tr α4 − 2
∑
ij

′
α′′

ij αij

− 2
∑
ij

′
(α′

ij )
2 − 4i

∑
ij

′
α′

ij αijpi. (48h)

Since CMR have already proven [In, Im] = 0, there is no ordering problem for theIn’s in
the construction of theTn’s and we, furthermore, have [Tn, Tm] = 0. SinceT2 is, up to a
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constant, the Hamiltonian, this implies both involution and invariance.
As expected, we find that eachTn corresponds to the fully connected diagrams of the

series (44). We can now directly use the diagrammatic approach to construct theTn’s.
However, for a givenn, there are(n − 1)! different labelled diagrams and thus different
matrix orderings. Each diagram itself is an ordered operator expression and it is quite
tedious to get them into a form as in equation (48) with all momenta to the right. As an
example, we give the diagrams forT4 in figure 2.

Figure 2. The six diagrams associated withT4.

Ignoring matrix and quantum ordering, the resultant expressions for theTn’s are equal
to the classically invariant traces of equation (8). Thus we may hope that due to the special
form of the quantum Lax matrixL, the matrix product order somehow is unimportant and
the Tn’s are just the quantum traces TrLn. Explicitly calculating the quantum traces, we
find that indeed up ton = 3, we haveTn = Tr Ln. However, forn = 4, the quantum trace

includes the non-zero term−2
∑

ijk

′
αijαjkα

′
ki . Note that this term has a factor [λ(λ−1)]2/3†,

but as shown in section 3.1, such a term does not arise in theIn’s and consequently also
not in theTn’s. Therefore, theTn’s are not simply the quantum traces.

Note that these expressions are again very close to the ones obtained forJn. However,
as before in the classical case, we see that already forn = 2, 3, there are the same constants
in the J expressions which do not appear in theT expressions.

3.5. Relation between invariants

We again would like to see if we can express Shastry’s integrals in terms of ourTn’s. As
we have seen in section 2.3 for the classical case, we expect this relation to be algebraic.
Fortunately, as shown in the last section, fractional powers ofλ neither appear in theJn’s
nor in theTn’s so that noa priori reasons forbid an algebraic relationship in the quantum
case.

Furthermore, given two sets of integrals of motion{Tn} and {Jn}, we know that
commutators of integrals are themselves integrals of motion, and since asymptotically these
integrals evaluate to zero, the two sets of integrals can be simultaneously diagonalized. A
relationship between asymptotic integrals of the formJn = An[{Tm}] can always be found,
since either set of integrals gives an algebraically complete set of symmetric polynomials
of increasing degree. Suppose we have such a relationship. Then, the operatorsJn and
An[{Tm}] have the same eigenvalues in the same basis, hence must be the same operator,
and so there must exist a relationshipJn = An[{Tm}] between the operators themselves.

† This term seems to be missing in [6].
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Replacingαij and χij by their appropriate definitions, using the explicit form for the
derivatives as given in the appendix and counting powers ofλ andp’s, we then have

J1 = T1 (49a)

J2 = 82λ[3 + λ(N − 2)]N(N − 1)/3 + T2 (49b)

J3 = 82λ[3 + λ(N − 2)](N − 1)T1 + T3 (49c)

J4 = [−75+ 120λ − 48λ2 + (55− 110λ + 52λ2)N + (−5 + 25λ − 18λ2)N2 + 2λ2N3]

×λ2N(N − 1)84/15+ [2 + λ(N − 2)]λ82T 2
1

+[10 − 12λ + 11(λ − 1)N + (2λ − 1)N2]λ82T2 + T4. (49d)

Hence we have succeeded in writing Shastry’s quantum integrals in terms of theTn’s which
in turn are derived from Calogero’s quantum integrals for up ton = 4. Again, as in the
classical case, this relationship is not linear, since we observe theT 2

1 term in equation (49d),
and only if we restrict ourselves to the potentialV0(x) = g2/x2, by taking the limit8 → 0,
do we find that both sets of integrals of motion are identical.

With 90 the N -particle ground state as before, we may use equation (36) and hence
relate the expectation values of variousTn’s. For example,

9
†
0T290 = 82λ[3 + λ(N − 2)]N(N − 1)/3

and

9
†
0T390 = −82λ[3 + λ(N − 2)](N − 1)9

†
0T190 ∼ 9

†
0P90 = 0.

We further note that as in the classical case, we may define new non-trivial constants of
motion Kn = Jn − Tn for 8 6= 0. We then have9†

0Kn90 = −9
†
0Tn90. Unfortunately, we

can not give a simple formula directly in terms of the Lax matrices for the construction of
the Kn’s analogous to equation (21).

4. The asymptotic limit

In the asymptotict → ∞ limit—equivalent to the low-density limit—the elements of the
Lax matrix are no longer operators, but numbers. Thus explicit calculations are much easier
and we hope that we can study the connection between asymptotic Calogero and Shastry
integrals of motion in more detail than in the last section.

4.1. Asymptotics of Calogero’s integrals

The asymptotic form for the Lax matrixL gives a corresponding asymptotic form for the
Calogero integralsIn → In. We define a generating function of the asymptotic Calogero
integrals,

D[z, λ] = 1
2

[ N∏
j=1

(1 − zpj − iλz) +
N∏

j=1

(1 − zpj + iλz)

]
(50)

and then have

det[1− zL∞] = D[z,
√

λ(λ − 1)]. (51)

We also define the elementary symmetric functions of theN variablespj as

ar [p] =
N∑

16j1<...<jr

pj1 · · ·pjr
(52)
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and for conveniencea0 = 1 anda−r = 0. Then

D[z, λ] =
∞∑

r=0

(−λ2z2)raN−2r [1 − zp]. (53)

In particular,

IN = aN [p] − λ(λ − 1)aN−2[p] + λ2(λ − 1)2aN−4[p] − · · · (54)

and the other integrals can be constructed via[ N∑
k=1

∂

∂pk

, Ij

]
= (N − j + 1)Ij−1. (55)

Since the elementary symmetric functionsaj obey the same relationship, this also gives us
the expression forIj as a linear combination ofaj , aj−2, aj−4, . . . . The general expression
for Ij in terms of thear [p] can be obtained using

ar [1 − zp] =
N∑

j=0

(−z)r−j

(
N + j − r

j

)
ar−j [p] (56)

and we find

Ij =
N∑

j=0

[−λ(λ − 1)]r
(

N + 2r − j

2r

)
aj−2r [p]. (57)

4.2. Some generating functions

Let us define the quantity

Z[z, λ] =
N∏

j=1

[1 − z(pj + iλ)] ≡ D[z, λ] − iλzN [z, λ]. (58)

The symmetric part ofZ is D = (Z[z, λ] + Z[z, −λ])/2 as in the previous section, while
the antisymmetric part(Z[z, λ] − Z[z, −λ])/2 is given by

iλzN [z, λ] = iλz

∞∑
r=0

(−λ2z2)raN−2r−1[1 − zp]. (59)

For z real, these are the real and imaginary parts ofZ, respectively. This expression forZ
is the standard generating function for the elementary symmetric functions, so that

Z[z, λ] =
N∑

j=0

(−z)jaj [p + iλ]. (60)

Clearly, then, we haveIj = Re{aj [p + i
√

λ(λ − 1)]}.Taking the logarithm ofZ,

ln Z[z, λ] =
N∑

j=1

ln[1 − z(p + j + iλ)] (61)

one advantage of using the generating functionZ is clear when one anticipates the
thermodynamic limit. We now consider

∂

∂z
ln Z =

N∑
j=1

− pj + iλ

1 − z(pj + iλ)
. (62)
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This, however, is the generating function for the symmetric power sums

br [p] =
N∑

j=1

pr
j (63)

since

P [z] =
∞∑

r=0

zrbr+1[p] =
N∑

j=1

pj

1 − zpj

(64)

and we see that

∂

∂z
ln Z[z, λ] =

∞∑
r=0

zrbr+1[p + iλ] ≡ P [z, λ]. (65)

4.3. Asymptotics of Shastry’s integrals

Shastry’s integrals also approach an asymptotic formJj → Jj , and similarly we define an
asymptotic generating function

G[z, λ] ≡ N [z, λ]

D[z, λ]
(66)

then, we see thatN [z, λ] = G[z, λ]D[z, λ], so expanding, we have

N∑
k=1

(−z)k Im{ak[p + iλ]} = λ

∞∑
k=1

∞∑
j=1

(−1)j−1Jj−1 Re{ak−j [p + iλ]}. (67)

Equating powers ofz, this gives

Im{ak[p + iλ]} = λ

k∑
j=1

(−1)j−1Jj−1 Re{ak−j [p + iλ]}. (68)

More explicitly,

λ−1 Im{ak[p + iλ]} = N Re{ak[p + iλ]} − J1 Re{ak−1[p + iλ]} + · · · + (−1)kJk. (69)

This allows us to iterate and findJk in terms of the otherJj ,

Jk = Jk−1 Re{a1[p + iλ]} − · · · − (−1)kN Re{ak[p + iλ]} + (−1)kλ−1 Im{ak+1[p + iλ]}.
(70)

SinceIj = Re{aj [p + iλ]}, this recursion relation also relates the asymptotic forms of
the CMR and SS integrals. However, this relation is between asymptotic integrals with the
same parameter, and such integrals do not even commute.

5. Conclusions

Our original intent and hope at taking up the present work was to give a simple connection
between the integrals of motion of CMR and the recently discovered integrals of SS. In
fact, we were speculating that due to the special structure of the quantum Lax matrix, we
would simply findTn ∼ Jn.

Quite the opposite has happened. In the quantum case, although we have succeeded in
rewriting theIn integrals of CMR into extensive quantitiesTn, we have, however, failed
to give a simple formula for the connection of theseTn’s to theJn integrals of SS for all
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but the simplest potentialV0(x) = g2/x2. In general, we do find a complicated algebraic
relationship which gives rise to yet another set of non-trivial integrals of motionKn.

In the classical case, we show that the quantum definition of SS may also be used
to construct classical integrals of motion. Hence here the situation now is just as in the
quantum case and again we show that we may re-express the integrals of SS in terms of the
classical integrals of Moser. Again, the difference of these two sets of integrals vanishes
only for the potentialV0 and otherwise may be used to define new constants and this time,
we can give an explicit formula for theKn’s directly in terms on the LaxL matrix. Indeed,
we may even define a one-parameter family of integrals of motion in the classical case, for
example,

Rn(δ) = Tr[Ln(1 + δ1′)] (71)

with 1′
ij = 1 if i 6= j and zero otherwise. ThenRn interpolates between Moser’s integrals

Rn(0) = Tn and the integrals of SSRn(1) = Jn.
Most of the previous formulae are given in terms ofα’s andχ ’s and are thus valid not

only for the hyperbolic pair potentialVh, but also for the trigonometricVt and the rational
V0 after taking the appropriate limits as mentioned at the beginning of section 2. However,
we have found an up-boost only for the classical and the quantum many-body system with
algebraic potentialV0(r) = g2/r2. Also, the elliptic potentialVe = 1/sn2, is not included
in this study. Although the classical integrals of Moser and the quantum integrals of CMR
are valid for this potential, the proof of SS no longer holds both for the classical and the
quantum case. This is due to the fact that the row and column sums of the elliptic Lax
M matrix are no longer zero. The ansatzJ ′

n = Tr Lng[{xj }] gives an equation for the
coordinate dependent matrixg as∂/(∂t)g = Mg − gM. Unfortunately, we have not found
a non-trivialg such that it gives the SS integrals of motion in the elliptic case.
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Appendix A. Derivatives

We have definedγij = coth[8(xi − xj )] and soχij = 8λγij and αij = 8
√

λ(λ − 1)γij .
Then the derivatives are

∂χij

∂xi

= χ ′
ij = 82λ[1 − γ 2

ij ] (A1a)

χ ′′
ij = −283λγij (1 − γ 2

ij ) (A1b)

χ ′′′
ij = −284λ(1 − 4γ 2

ij + 3γ 4
ij ). (A1c)

The same relations hold forαij , i.e.

α′
ij = 82

√
λ(λ − 1)[1 − γ 2

ij ] α′′
ij = −283

√
λ(λ − 1)γij (1 − γ 2

ij )

α′′′
ij = −284

√
λ(λ − 1)(1 − 4γ 2

ij + 3γ 4
ij )

and, lastly,

γ ′
ij = 8[1 − γ 2

ij ], γ ′′
ij = −28γij (1 − γ 2

ij ) γ ′′′
ij = −28(1 − 4γ 2

ij + 3γ 4
ij ).
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