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We study the one-dimensional Heisenberg antiferromagnetw’rti% using a Majorana representation of
the s:% spins. A simple Hartree-Fock approximation of the resulting model gives a bilinear fermionic
description of the model. This description is rotationally invariant and gives power-law correlations in the
“ground state” in a natural fashion. The excitations are a two-parameter family of particles, which are spin-
1 objects. These are contrasted to the “spinon” spectrum, and the technical aspects of the representation are
discussed, including the problem of redundant st4®8163-182€27)01805-5

[. INTRODUCTION tion. Since the HF approximation is not unique in the general

case, we require that the susceptibility calculated by two

The study of various representations of spins in terms ofnethods, namely, from the energy change and from the fluc-

bosonic or fermionic operators is an old and well-studiedtuation spectrum, should agree. This requirement, interest-

problem, reviewed nicely, for example, in Ref. 1. The needngly, rules out several possibilities, and leads to a particular

for exploring various representations has received a furthegcheme which is implemented. We obtain a spectrum of low-

impetus from the recent interest in the Heisenberg antiferrolying excitations which bears a strong resemblance to the one
magnet, as a standard model in the resonating valence boff#scussed in Sec. lII. _ _ _

theorie<? i.e., models where states with no long range@Ne We also discuss the spin of the Majorana fermion. In Sec.

order play an important role. The Schwinger boson represerl\)—/_’l.;’\'e ctobm?hute the dé/r;grjrslctstructurte functlorgj andtsus;cttra]ptl-
tation is of very general validity, i.e., for ang, but the 'y, at Doth zero and finte temperatures, and contrast inese

. e T ) with previously known results. In Sec. VI, we study the re-
Schwinger fermionic representation is only valid & 3 sponse of the model to uniform and staggered magnetic
and gives sf=3%, ¢l 7%, with the constraint fields. We end with some concluding remarks in Sec. VII.

> ,clc,=13%The constraint is not very easy to deal with,

except in an averaged sense. Hence one may look for uncon- Il. MAJORANA REPRESENTATION

strained representations. Fo 3 such unconstrained repre- ) ) )
sentations can be found. The so-called “drone fermion” Al €ach siten, we can write the spin operators

. . CLepeas . _ H H " -9
representatiot®is one of the possibilities, where we write Sh=0on/2 in terms of three Majorana operatag as’

+_,f - — z_ f 1 )
S| =a; ¢, S, = ¢;a;, ands;=a;a;— 3, where thea’s are

canonical anticommuting variables, arlis areal fermion oh=—idndn, on=—idndy,

with ¢'=¢ and ¢?>=1. Thus ¢ is a “drone” whose only

‘job’ is to make spins at different sites commute, rather tharfnd

anticommute. In single-site problems like the Kondo prob-

lem, these are useffilHowever, this representation violates oi=—idrdl. 1
rotation invariance, since our choice of thexis was arbi-

trary. A fully rotation invariant scheme does exist, and can(We set Planck’s constant equal to) Tthe operatorsg?d
for example, be derived from the above, by simply rewriting(with a=x,y,z) are Hermitian and satisfy the anticommuta-
the complex fermiom in terms of its two real components as tjon relations
ax¢,+ig¢,. This leads to a representation with three Majo-

rana fields, and is studied in this paper, in the context of the
one-dimensional Heisenberg model.

The plan of this paper is as follows. In Sec. II, we discuss ) . .
the Majorana representation and the need for enlarging thié iS interesting to note that the relatids{=3/4 automati-
Hilbert space of states in order to obtain a representation dtally follows from Egs.(1) and (2); one does not have to
the Majorana algebra. We introduce the spiantiferromag-  impose any additional constraints at each site unlike the
netic chain and its low-lying excitations in Sec. Ill. In Sec. Schwinger representatlénTherg is a locak, gauge invari-

IV, we use the Majorana representation to study the chaimnce since changing the sign éf does not affecg,. [The
within a rotationally invariant Hartree-Fo¢kiF) approxima- ~ Schwinger representation has a locéllUgauge invariance

{(ﬁﬁq’(ﬁg}:z‘smn‘sab- 2
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For N sites with a spiny object at each site, the Hilbert Il. ANTIFERROMAGNETIC SPIN- 3 CHAIN
space clearly has a dimensio.2We now ask what is the
minimum possible dimension which will allow a representa- We will now begin our analysis of a Heisenberg antifer-
tion of the form given in Eqs(1) and (2)? The answer is romagnetic chain. The Hamiltonian is
2N+IN21 \where[ N/2] denotes the largest integer less than or
equal toN/2. This follows from the observation that a rep-
resentation for Eq91) and(2) is given by ..
H=32 S 81, 5
¢ﬁ: Uﬁwn )

where where the exchange constaht 0. We use periodic bound-

(02 4]=0 ary conditions Sy, ;=S;. (We set the lattice spacing
mens a=1.) The spectrum of Eq(5) is exactly solvable by the
and Bethe ansatz; in particular, the ground state energy is given
by Eo=(—In2+1/4)NJ =—0.443NJ. The lowest excita-
{m2 U} =26mn. (3) tions are known to be fourfold degenerate consisting of a
triplet (S=1) and a singlet $=0).* The excitation spec-
The minimum dimension required for a matrix representatiortrum is described by a two-parameter continuum in the
of the spinless anticommuting operatafs is 21N4.° Thus  (q,w) space, where- m<q< . The lower boundary of the
the Majorana representation of sginebjects requires us to continuum is described by the des Cloiseaux-Pearson
enlarge the space of states; the complete Hilbert space @§|ationt®
states is given by a direct product of a “physical” space and
an “unphysical” one. Now suppose that the Hamiltonian is

purely a function of the physical operato%g; it therefore N
only acts on the physical states. Then the unphysical part of w|(q)= 7|smq|, (6)
the Hilbert space simply factorizes out; hence each value of
the energy will have a degeneracy df'3.
As an explicit example, consider the cade-2. The Ma-  whereas the upper boundary is given by
jorana Hilbert space is eight-dimensional, where the extra
factor of 2 arises from the unphysical space. We can denote

the eight states ak1 1, 71/, etc. The physical operatoé_

and§2 only act on the first and second symbols, respectively.
The third symbol, which may bg or |, denotes the unphysi-
cal space. A Hamiltonian of the for&; - S, only acts on the ) ) o
first two symbols; hence the energy levels will be precisely"Ve& can understand this continuum by thinking of these ex-
the ones of a two-site antiferromagnet, but with an additionafitations as being made up of two spin-objects
degeneracy of 2 due to the third symbol. On the other hand;‘spinons”) with the dispersioht

the Majorana operators can be written in the direct product

form

w,(gq)=mJ

sing. (7

md
(51:5_®1®0_X w(q)= > S, (8)
and
where 0<qg< . A triplet (or a single} excitation with mo-
q;)2:1@9(;®Uy_ (4) mentumq is made up of two spinons with momerga and
d,, such that 8<q;=qg,<m, q=Qq,+Qq, If 0<gq=<, and
Hence they act on the third symbol and can therefore mix ugl=01+d,—27 if —7<q<O0; further, »(q)=w(q;)
physical and unphysical states. + w(q,). The two-parameter continuum arises becagse
One might worry that thermodynamic quantities like thecan vary from 0 tog/2 if 0<q<, and from w+q to
entropy will get a spurious contribution proportional kb~ 7+q/2 if —7<q<O0.
due to the unphysical degeneracy df¥2l. On the other
hand, when we make approximations like the HF decompo-
sition discussed later, the physical and unphysical states getlv. HARTREE-FOCK TREATMENT, GROUND STATE,

mixed up in an essential way. This completely changes the AND EXCITATIONS
energy degeneracy; in particular, the HF ground state is ac-
tually unique as we will see. We will now study this system using the Majorana repre-

We can think of¢7 as the fundamental field in our theory. sentation. We write Eq5) in terms of Majorana operators to
Both o2 and ¢, can be written in terms of3, as can be get a quartic expression, and then perform a Hartree-Fock
seen from Eq(1) and ¢,= —i ¢h o) o7, respectively. (HF) decomposition. Thus we write
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J X 1Y 4% y
H=— Z; [¢n¢n¢n+1¢n+1+ cycl. perm-(Xvaz]

J
:Zzn: [Pndn1{ Dhdhs 1) H{(Dndni1) Phdhe1—(Prdns ) Padhi1) + cycl. perm. (x,y,2)]. )

In principle, the HF can be done in three different ways;The HF ground state energy is therefore

however, rotational invariance implies that only one kind of

bilinear can have a nonzero expectation value in the ground 3

state, namely, Eone=— ?NJ= —0.304NJ. (17

— H aa
9=~i(bndn+0). (10 This is greater than the exact value mentioned above; indeed,
whereg has the same value far=Xx,y,z; we also assume it one can show thany HF decomposition must give an esti-
to be translation invariant. The value @fwill be determined mate for the ground state energy which is bounded below by
self-consistently. We now have to diagonalize the quadratithe exact valu€&,. The argument goes as follows. In Sec. Il,
Hamiltonian we have shown that the exact ground state energy within the
Majorana formalism is equal to the exact ground stage
without the Majorana formalism, since the Hamiltonilin
only acts on physical states. Let us therefore prove the upper
bound result in the Majorana Hilbert space which includes
Since ¢y, is Hermitian, its Fourier expansion can be definedpgth physical and unphysical states. Now the HF calculation
as is equivalent to self-consistently finding an ansatz ground
state|0) and caclulating the expectation valuetdfin that.
a_ 2 t 4ign —ign (One can show th is an eigenstate of the Majorana
on \/;0<;<17 [bage™+bage ™11, (12 fermion number opztce?tor. Hence an expectation value of the
form (ABCD) is indeed given by the HF decomposition
where (AB)(CD)—(AC)(BD)+(AD)BC), if the operatorsA,
{b b V= 5,00 (13 B, C, andD are all fermionic) By the variational argument,
aq»~pg'f " “abqq’ the expectation value dfl in any state is bounded below by
A similar half-zone definition of the Fourier transforms is Eo-
possible in higher dimensions as well; for example, on the The “spinon” spectrum has the same form as in E&).
square lattice, we could restrict the sumgp>0. We will ~ but has a different coefficienty..= mJ/2, whereas we find
work with antiperiodicboundary conditions fo? andeven ~ ¢=4J/m from Eq. (16). Note that the self-consistent equa-
values ofN in order to eliminate modes with equal to 0  tion Eq.(10) also leads to Eq(16), since we have
and 7. This simplifies the calculation because the momenta
g and —q are then distinct points in the Brillouin zone ex- _ 2N .
tending from— 7 to 7. In Eq.(12), q=2=(p—1/2)/N, with _'; d’ﬁ‘ﬁﬁﬂ:?_‘lqzo Singbgbxq- (18)
p=1,2,...N/2. In the limitN—~, we get

iJg 3
=52 $adnat NG (1

gz g The ground state is a singlet since it is annihilated by the
- ;), (14 total spinS,==,S,, for instance, by

H=> X (@bl bag+3NJ

a 0<g<mw

where the Majorana fermions have the dispersion , ) . .
. Stot: -1 2 (bxqbyq_ byquq)- (19
w(q)=c sinq, (15 o=a=m

with c=2gJ. The HF ground statf)) is therefore the state We now ask what is the spin of a Majorana fermion? From

annihilated by all théo,,. Note that it is unique unlike the the commutation relations betwe&nand bT we find that

exactground state, which has a degeneracy™f @ithinthe  the one-fermion state] |0> hasS=1. More specmcally, the
Majorana formalism. It is curious that the HF approximation g;,aq bxq+|qu)|0> b |0> and (qu_leq)|0> have

gives a unique ground state which agrees with the degens

1, 0, and-1, res ectlvel
eracy we would have obtainedthoutthe Majorana formal- b Y.

A two-fermion state can therefore ha®e=0, 1, or 2 in

ism. i
We now calculate Eq(10) in the HF ground state and general. However the state createdSjy- =,S;e™'*", where
obtain 0<qg<r, has the form
@l:E (16) S 0y=—i > (blbl, —blbl . D0y, (20
m 4 0<Zqn2 va- xa-
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and can be shown to has&=1. We have thus derived the HF on the basis of certain features, we of course have to
two-parameter continuum of triplet excitations in E¢8) check whether it reproduces other features equally well. We

and(7), with a prefactor 4# instead ofw/2. will see in Secs. V and VI that the translation invariant HF
Finally, we can compute the equal-time two-spin correla-yields reasonable results for the structure functions and sus-
tion function ceptibilites also.
Z for n=0 V. DYNAMIC STRUCTURE FUNCTION

Gn=(0|S; S$,/0) = AND SUSCEPTIBILITY
” - —32—2 [1-(—1)"] for n#0 We recall the definition of the dynamical susceptibility
27N :

(21) X Q1) =i 0(1)([So(1),S3]), (25
This does not agree with the correct asymptotic behavior of to
G, which is known to oscillate as<{1)"/n. In particular, the YAQ,w)= f dt x*4Q,t)expi wt) (26)

HF static structure functio®(q)=3,G,e 9" does not di-

verge asg— 7 in contrast to the correc$(q) which has a

logarithmic divergence atr. Note that=,G,=0, as ex- Y exp — Be,) —exp — Be,)

pected for a singlet ground state. It is interesting to observe €,—€,+1 w+i0*

that the Schwinger fermion representation yields a correla- , ,

tion function which only differs from Eq(21) by a numeri- X[ Sl v)(v[Sgl ). (27)

calgﬁ_ctoli'(see th,i f|r|§t reference |ndl_:|%ef).3 ized to fin The Zeeman coupling of a spin to a magnetic field is given
is Hartree-Fock state Llc, rea C|iy general |Ee toI initey, by g,4sS’B, whereg, and g denote the Landg factor and

;cetmpefratijresfant(r:]e we S|mr:;)y neef trt10 lfDUt in thermal PoPYpe™ Bohr magneton, respectively. The physical response

ation factors for the occupations of the fermions function (i.e., g, ua(S?)) is x=g2u2x?%(Q,w). In the static

limit ®=0, we have the usual thermodynamic argument for

bl Pag)= . (22 determining the susceptibility. If we perturb the system via
< - / 1+exp(pesing) the couplingH=Hy—g,ugBZ, cosQn)$ then the change
Hence the self-consistency condition E0) together with in the free energy issF=—g?u3B?x*(Q, 0)8g, where
Eqgs.(18) and(22) gives us 0o=1/4 if Q+#0,m, and 6,=1/2=6,. (This factor of ¢
) arises because for a fini@ we drop two of the four terms in
g= E _ 4 sing 23) second-order perturbation theory using momentum conserva-

T Nq>o 1+exp(Besing) tion; this neglect is disallowed exactly &= 0,7.) Also re-

) call that the static correlation function is given by
It is easy to see that 86—« we haveg—0, and asT—0

we haveg— (2/7)(1— m?k3T?/6¢?), i.e., a power-law cor- , +edo IMy*4Q,w)

rection to the zero-temperature “bandwidtly’ QSQ> f 71— exp( Bw)’
The HF ground state discussed above is, unfortunately,

not the one with the lowest energy. If we allow a dimerizedWe will now compute the response functions in the HF ap-

expectation valueg, in Eqg. (10), whereg,, can alternate in proximation. We begin by expressing, fo@< i, the op-

strength from bond to bond, we find that the lowest energy I%ratorSf3 in terms of the Majorana fields in the Heisenberg

attained for the fully dimerized state in whigy=1 forn  picture:

even and 0 fon odd (or vice versa This corresponds to a

(28)

dimerized ground state with an energy . .

o)=—1 > a(d,Q-a)bisy o ¢exH(wgtwg-glt

3 0<g<Q
Eo dim= — gNJ: (24 _
=1 E a(QaZW_Q_q)bxqby,Z-n—Q—q

which is substantially lower than the earlier HF value. There moQ=g=m
is a gap equal td above the dimerized ground staf&his
ground state is, of course, exact for the chse2 (Ref. 12.] Xexp—i(wgtwy, g -gt—i > ¥9,9-Q)
The reader may wonder why we are ignoring the dimerized Q=a<m
HF state in the rest of this paper, even though it has the X[quby,q_Q—b;qu,q_Q]expi(wq—wq_Q)t. (29)

lowest HF energy. The reason is that we know by other
methods, both analytical and numerical, that the correctn this equation we have introduced two real phenomeno-
ground state of the spik-chain is translation invariant and logical functions «a(a,b)=a(b,a)=a(w—a,7—b) and

that there is no gap above it. The HF method is, after all,y(a,b) which are, strictly speaking, equal to unity from the
only an approximation, and different approximations canMajorana definition of the spins. These are introduced in
certainly give different results. We should therefore pick theorder to facilitate the comparison of our structure function
HF which agrees qualitatively with other methods; thewith a phenomenological function proposed in Ref. 13. The
ground state energy is not necessarily the best criterion foessential point is that we have assumed that the time evolu-
choosing one HF over another. Having chosen a particulation is given by the bilinear in fermions, our E(L4). The
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representation foSZ,Q is obtained by taking Hermitian con-
jugates. Note thaB; or S%, acting on the ground state
generates two spinons. We insert it in EB6), carry out the

contraction of the fermions by Wick’s theorem, and use Eq.

(22) in the formng=(b ,bg .} andng=1-n, to find

NgNo—-qg— NgNo-
; _ 2 _ aNQ-a~NgMNo-gq
X*4Q,w) O<§q)<Qa(q,Q e p——"
n nQ q —Nn nQ q
I o?
0<;< (@R~ g sFwtior
Ng— n —n _on
4o 2(q.q— 9-QMg"MNg—QMlg
o2 Y(Ea-Q) P ——T

(30

This is seen to be an even function @ by using
g—+Q—q in the last term. Using Eq(28), we deduce
that

G*(Q)=(S2,Sq)
>

0<g<Q

az(an_ q)[nan—q+ nan—q]

+2 2 Y%(6,9-Q)NggNg. (3D
Q<g<m
Let us note that at zero temperature, if we gety=1, we
get G*{Q)=N|Q|/27 and hence the correlation function
quoted in Eqg.(21). At the other extreme limifT—o, we
replacen=n=1/2 and findG?(Q)=N/4. At any tempera-
ture, the relatiomq+n_q= 1 allows us to show that the sum
rule (S;Sh)=1/4 is satisfied.
At zero temperature, we have the static susceptibility

2 _
¥*4Q,00=2 2 a(q'—Qq)

(32
0<qg<Q wq+ wQ—q

which, in the standard situatiom=1, can be evaluated in
the closed form

Q)/4
cog7m+Q)/4

N T—
¥AQ.0= (Cos

7csinQ2)

The uniform value is

) . (33

N
XH0,0=— =5 (34

43
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N a%g*,Q-q*)
IMy*4Q,w)= —
XA )= [oog ) —cos Qa7 )]
X 6(us—u)fu—u.), (36)
where gq* is the solution of sig*+sin(Q—g*)=u which

equalsQ/2 atu=u- . With this we find

%[u—cot(Q/Z)vuz—uz],

sing*

cosy* zg[u cot(Q/2) + \JuZ —u?]. (37)

This implies thatcosg*)—cosQ—q*)|=+uZ —u?, and

Naz(q ,Q—q*)

JuZ —u?
(38)

This susceptibility is very similar to that proposed in Ref. 13
phenomenologically, and also found for the long ranged
spin+ chain**®in Ref. 16, with one important difference.
The spectral weight here is dominatd by the upper threshold
of the two-parameter continuum. , whereas the weight is
peaked at the lower threshald. in Ref. 13. It is straightfor-
ward to see that if we choose

Imy*4(Q,w f(u=—u)f(u—u.).

|sin(Q/2—q)|
Vsing/sin(Q—q)
then on using Eq(37), the weight is shifted to the bottom,
and we get

a?(9,Q-q)=v (39

IMx*1Q,w)= f(u=—u)f(u—u.). (40)

v 1
¢ JuZ-u2
With this choice, the static correlation function can be evalu-
ated from Eq(28). We find

Nv

G*Q)=— (41)

1+sin(Q/2)>
N "cogQr2) )

leading to the asymptotic behavier(—1)"/n at long dis-
tances. Indeed one can use the two parameteand v in
Egs. (40) and (41) together with the various sum rules
known, in order to obtain very realistic structure functions
which mimic the behavior of the nearest neighbor Heisen-
berg antiferromagnet. At finite temperatures, we find from
Eqg. (31 in the usual case ak=y=1

The neutron scattering function which is of particular mteresRN th

is found at zero temperature as

az(un_q)a(a’q_‘_waq_w)
(35

M3 Q,w)=m >,
0<g<Q

z Bc
<S SO>_ Sno~ 16[f ( 2 ) ) (42)
n(ﬂc) f dxsm(nx)tanl’(%smx) (43

leading to an exponentially decaying correlation function
with a correlation lengtté~1/T for T—0. The functionf

for @>0. We can evaluate it in terms of the dimensionlessvanishes for even in contrast to one’s usual expectation. In

energieu=w/c, u-.=2sin(@Q/2) andu_=sinQ, as

the presence of the phenomenologiealone must necessar-
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ily cut off the linear divergence ot atQ=7 andg~0,7. A  This agrees with the result in the previous section. For a

temperature dependent cutoff, such as strong magnetic fiel®>B,, the ground state is fully polar-
5 _ ized withS*=N/2. These results are to be compared with the
a“(a,b)=(|sin(a—b)/2| exact results for the susceptibiligy=N/72J, and the critical
. field B,=2J/g,ug .=
2Ty/[ \/sin(@) + (cons)T c 1B
*+(cons) T)/[ysin(@) + (consyT Since S} has a nonzero expectation value in the ground
X \sin(b) + (consT] state, the above calculation is not entirely self-consistent, i.e.,

_ ) o one should also allow HF decompositions of the form
interpolates nicely between the zero-temperature limit and

the high temperature limit, and again gives a correlation (prepY)=if,
length~1/T.
and

VI. MAGNETIC FIELDS

<¢§¢¥t1>:ift1- (49
We will now discuss the HF ground state of the spin chain )
in the presence of uniform and staggered magnetic fieldd;urther, the expectation values
and calculate the two susceptibilities. < ix )
(bndn1) =(Phdns1)=igr

A. Uniform magnetic field and

For a uniform magnetic fieldBz, we add a term Sy .
—giusB2,SE to the Hamiltonian(5). Since this term com- (ndni)=igL (50)
mutes with Eq.5), we can use the same HF decomposition
as in Eq.(10) with g=2/a. Since the extra term in the
Hamiltonian is quadratic in the Majorana operators, we onl
have to perform a rediagonalization of E1). We find that
modes withS*=+1 have an energy

may be unequal since the magnetic field breaks rotational
invariance. On doing this more general HF calculation, we
¥ind that although the ground state remains the same qualita-
tively (i.e., a number 06°=1 modes have to be filled in the
regions 06<g<q, and m—(y<q<), various numbers

4] change. For instancey is now given by
+(0q)=—sing+gugB, (44)
+ singy( L+ cogyg) = 21488 (51)
while the energy of th&’=0 modes remain unchanged. For o SINo o 2)

B>0, let us define a momentury such that
The HF parameters are

T B
q0=sin_1( Jite ) (45 5 )
4 gT:;COSQO, gL:;:
and 0<qo<m/2. (Such agg exists only if the magnetic field
is less than a critical valuB.=4J/7g,ug). Then the modes 20,0
with S*=1 and momenta lying in the range<@<q, and fo=—, f.1=0. (52)

7—(o<q<m have negative energy, and the ground state of 7

the system is one in which those modes are occupied. Thgince the magnetization is equalNay,/, the susceptibilty
change in the ground state energy is therefore given by a sup , =N/6J. [The critical field for complete polarization is

over all the occupied modes B.=J(1+2/m)/g,ug.] We therefore have the curious result
43 that a completely self-consistent HF calculation does not
AE, HFIE (?sinq—ghuBB) agree with linear response theory for small fields.
- ANJ Ng xgB B. Staggered magnetic field
ol (1~cogjo) ~ T Yo- (46) We now study the situation with a staggered magnetic

_ . _ _ field. We add a term—g,ugB2,(—1)"S; to the Hamil-
The expectation value ¢ in the ground state is obtained (onian and perform a HF decomposition. As in the uniform
either by counting the number of occupied modes, or by.oca we will assume that=g, =2/ and fo=f.,=0 in
differentiating Eq.(46) with respect tag; ugB. Thus Egs. (49) and (50) even though this is not completely self-
N N B consistent. We then find that the dispersion of the longitudi-
a_ Mo N a9k nal modes remain the same as before while those of the
(S% sin . (47) e
™ 4J transverse modes change. To be explicit,

Finally, the (uniform) susceptibility is given by

1 (a<52>) N
X g\ 9B |, 43

43
o (q)= —sing

(48)
and
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1632 ) 5 12 B>0.582B.=0.7422/g,ug . Such a magnetic field lowers
wT(Q)=(75in2CI+9| IU‘BBZ) . (53 the energy of the translation invariant ground state below
—3NJ/8, and does not change the energy of the dimerized
Further, the change in the ground state energy is ground state, foB<J/g,ug, due to the finite gap to spin
excitations.
AEgue= 2 (ﬂsir‘q—wT(q)). (54) It would be interesting to go beyond our Hartree-Fock
o<g<m \ T treatment and study the effects of fluctuations. Besides pro-

ducing more accurate numbers for various quantities such as
the spin wave velocity, such a study could also lead to a
more detailed understanding of the “spinons” in a spin-

On differentiating this with respect tg,ugB, we find the
staggered magnetization to be

2ndq 1 chain in terms of Majorana fermions.
<E (— 1)”S,z,> = NgWBBJ 27 @) (55 It may be instructive to examine models with anisotropy,
n o em wr(d frustration, and higher dimensionality using the Majorana

For small fields, this goes adl@ ugB/4J)In(J/gugB) which representation, _and to compare with knewn results. Amongst
implies that the staggered susceptibility is divergent. This i®ther things, this would help to determine the range of va-
the correct result. For large fields, the staggered magnetizéidity of this way of studying spir systems.

tion approachedl/2 as it should. We have briefly examined the ferromagnetic case in
which the exchange constant in E§) is negative We per-
VIl. DISCUSSION form a nonrotati_on invariant Hartree-Fock decomposition by
allowing o%=—i¢;¢) to take an expectation value. We

To summarize, we have used a Majorana fermion reprethen obtain the correct ground state enefgy=NJ/4, with
sentation to study a nearest neighbor isotropic antiferromaghe total S?= + N/2. However, we get the wrong dispersion
netic sping c_:hain. Within a translation invariant Hartree- re|ation, including a gap, for the low-energy excitations.
Fock approximation, we have found the spectrum of low-Thys the Majorana Hartree-Fock approximation is not a

lying excitations, the two-spin correlation function, the good starting point for studying the spinferromagnet.
structure function, and the magnetic susceptibilities. All of

these agree qualitatively with the results found earlier by a
variety of other methods. The agreement can be made quan-
titative if we introduce some phenomenological functions
within the Majorana formalism. B.S.S. would like to thank several colleagues who have

It is somewhat surprising that a fully dimerized Hartree-encouraged him to publish Ref. 7, particularly P. W. Ander-
Fock approximation leads to a ground state with a lowerson, G. Baskaran, and R. Shankar, which represented a pre-
energy. One way of stabilizing the translation invariantliminary version of this work. This work was supported in
ground state with respect to the dimerized one is to applyart by the National Science Foundation under Grant No.
an uniform  magnetic field with a  strength PHY94-07194.
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