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Majorana fermion representation for an antiferromagnetic spin-12 chain
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We study the one-dimensional Heisenberg antiferromagnet withs5
1
2 using a Majorana representation of

the s5
1
2 spins. A simple Hartree-Fock approximation of the resulting model gives a bilinear fermionic

description of the model. This description is rotationally invariant and gives power-law correlations in the
‘‘ground state’’ in a natural fashion. The excitations are a two-parameter family of particles, which are spin-
1 objects. These are contrasted to the ‘‘spinon’’ spectrum, and the technical aspects of the representation are
discussed, including the problem of redundant states.@S0163-1829~97!01805-5#
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I. INTRODUCTION

The study of various representations of spins in terms
bosonic or fermionic operators is an old and well-stud
problem, reviewed nicely, for example, in Ref. 1. The ne
for exploring various representations has received a fur
impetus from the recent interest in the Heisenberg antife
magnet, as a standard model in the resonating valence
theories,2 i.e., models where states with no long ranged N´el
order play an important role. The Schwinger boson repres
tation is of very general validity, i.e., for anys, but the

Schwinger fermionic representation is only valid fors5 1
2

and gives si
a5 1

2(s,s8cis
† taci ,s8, with the constraint

(scs
†cs51.3,4 The constraint is not very easy to deal wit

except in an averaged sense. Hence one may look for un

strained representations. Fors5 1
2 such unconstrained repre

sentations can be found. The so-called ‘‘drone fermio
representation5,6,1 is one of the possibilities, where we writ
si

15ai
†f i , si

25f iai , and si
z5ai

†ai2
1
2, where thea’s are

canonical anticommuting variables, andf i is a real fermion
with f†5f andf251. Thusf is a ‘‘drone’’ whose only
‘job’ is to make spins at different sites commute, rather th
anticommute. In single-site problems like the Kondo pro
lem, these are useful.6 However, this representation violate
rotation invariance, since our choice of thez axis was arbi-
trary. A fully rotation invariant scheme does exist, and c
for example, be derived from the above, by simply rewriti
the complex fermiona in terms of its two real components a
a}fx1 ify . This leads to a representation with three Ma
rana fields, and is studied in this paper, in the context of
one-dimensional Heisenberg model.

The plan of this paper is as follows. In Sec. II, we discu
the Majorana representation and the need for enlarging
Hilbert space of states in order to obtain a representatio
the Majorana algebra. We introduce the spin-1

2 antiferromag-
netic chain and its low-lying excitations in Sec. III. In Se
IV, we use the Majorana representation to study the ch
within a rotationally invariant Hartree-Fock~HF! approxima-
550163-1829/97/55~5!/2988~7!/$10.00
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tion. Since the HF approximation is not unique in the gene
case, we require that the susceptibility calculated by t
methods, namely, from the energy change and from the fl
tuation spectrum, should agree. This requirement, inter
ingly, rules out several possibilities, and leads to a particu
scheme which is implemented. We obtain a spectrum of lo
lying excitations which bears a strong resemblance to the
discussed in Sec. III.

We also discuss the spin of the Majorana fermion. In S
V, we compute the dynamic structure function and susce
bility, at both zero and finite temperatures, and contrast th
with previously known results. In Sec. VI, we study the r
sponse of the model to uniform and staggered magn
fields. We end with some concluding remarks in Sec. VII

II. MAJORANA REPRESENTATION

At each site n, we can write the spin operator
SW n5sW n /2 in terms of three Majorana operatorsfW n as

7–9

sn
x52 ifn

yfn
z , sn

y52 ifn
zfn

x ,

and

sn
z52 ifn

xfn
y . ~1!

~We set Planck’s constant equal to 1.! The operatorsfn
a

~with a5x,y,z) are Hermitian and satisfy the anticommut
tion relations

$fm
a ,fn

b%52dmndab . ~2!

It is interesting to note that the relationSW n
253/4 automati-

cally follows from Eqs.~1! and ~2!; one does not have to
impose any additional constraints at each site unlike
Schwinger representation.3 There is a localZ2 gauge invari-
ance since changing the sign offW n does not affectSW n . @The
Schwinger representation has a local U~1! gauge invariance#.
2988 © 1997 The American Physical Society
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55 2989MAJORANA FERMION REPRESENTATION FOR AN . . .
For N sites with a spin-12 object at each site, the Hilber
space clearly has a dimension 2N. We now ask what is the
minimum possible dimension which will allow a represen
tion of the form given in Eqs.~1! and ~2!? The answer is
2N1[N/2], where@N/2# denotes the largest integer less than
equal toN/2. This follows from the observation that a re
resentation for Eqs.~1! and ~2! is given by

fn
a5sn

acn ,

where

@sm
a ,cn#50,

and

$cm ,cn%52dmn . ~3!

The minimum dimension required for a matrix representat
of the spinless anticommuting operatorscn is 2[N/2].9 Thus
the Majorana representation of spin-1

2 objects requires us to
enlarge the space of states; the complete Hilbert spac
states is given by a direct product of a ‘‘physical’’ space a
an ‘‘unphysical’’ one. Now suppose that the Hamiltonian
purely a function of the physical operatorsSW n ; it therefore
only acts on the physical states. Then the unphysical pa
the Hilbert space simply factorizes out; hence each valu
the energy will have a degeneracy of 2[N/2].

As an explicit example, consider the caseN52. The Ma-
jorana Hilbert space is eight-dimensional, where the ex
factor of 2 arises from the unphysical space. We can den
the eight states as↑↑↑, ↑↑↓, etc. The physical operatorsSW 1
andSW 2 only act on the first and second symbols, respectiv
The third symbol, which may be↑ or ↓, denotes the unphysi
cal space. A Hamiltonian of the formSW 1•SW 2 only acts on the
first two symbols; hence the energy levels will be precis
the ones of a two-site antiferromagnet, but with an additio
degeneracy of 2 due to the third symbol. On the other ha
the Majorana operators can be written in the direct prod
form

fW 15sW ^1^ sx

and

fW 251^ sW ^ sy. ~4!

Hence they act on the third symbol and can therefore mix
physical and unphysical states.

One might worry that thermodynamic quantities like t
entropy will get a spurious contribution proportional toN
due to the unphysical degeneracy of 2[N/2]. On the other
hand, when we make approximations like the HF decom
sition discussed later, the physical and unphysical states
mixed up in an essential way. This completely changes
energy degeneracy; in particular, the HF ground state is
tually unique as we will see.

We can think offn
a as the fundamental field in our theor

Both sn
a andcn can be written in terms offn

a , as can be
seen from Eq.~1! andcn52 ifn

xfn
yfn

z , respectively.
-
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III. ANTIFERROMAGNETIC SPIN- 1
2 CHAIN

We will now begin our analysis of a Heisenberg antife
romagnetic chain. The Hamiltonian is

H5J(
n

SW n•SW n11 , ~5!

where the exchange constantJ.0. We use periodic bound

ary conditions SWN115SW 1. ~We set the lattice spacing
a51.! The spectrum of Eq.~5! is exactly solvable by the
Bethe ansatz; in particular, the ground state energy is gi
by E05(2 ln211/4)NJ 520.4431NJ. The lowest excita-
tions are known to be fourfold degenerate consisting o
triplet (S51) and a singlet (S50).11 The excitation spec-
trum is described by a two-parameter continuum in
(q,v) space, where2p,q<p. The lower boundary of the
continuum is described by the des Cloiseaux-Pear
relation10

v l~q!5
pJ

2
usinqu, ~6!

whereas the upper boundary is given by

vu~q!5pJUsinq2 U. ~7!

We can understand this continuum by thinking of these
citations as being made up of two spin-1

2 objects
~‘‘spinons’’! with the dispersion11

v~q!5
pJ

2
sinq, ~8!

where 0,q,p. A triplet ~or a singlet! excitation with mo-
mentumq is made up of two spinons with momentaq1 and
q2, such that 0,q1<q2,p, q5q11q2 if 0,q<p, and
q5q11q222p if 2p,q,0; further, v(q)5v(q1)
1v(q2). The two-parameter continuum arises becauseq1
can vary from 0 toq/2 if 0,q,p, and from p1q to
p1q/2 if 2p,q,0.

IV. HARTREE-FOCK TREATMENT, GROUND STATE,
AND EXCITATIONS

We will now study this system using the Majorana rep
sentation. We write Eq.~5! in terms of Majorana operators t
get a quartic expression, and then perform a Hartree-F
~HF! decomposition. Thus we write
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H52
J

4(n @fn
xfn

yfn11
x fn11

y 1 cycl. perm.~x,y,z!]

.
J

4(n @fn
xfn11

x ^fn
yfn11

y &1^fn
xfn11

x &fn
yfn11

y 2^fn
xfn11

x &^fn
yfn11

y &1 cycl. perm. ~x,y,z!#. ~9!
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In principle, the HF can be done in three different way
however, rotational invariance implies that only one kind
bilinear can have a nonzero expectation value in the gro
state, namely,

g52 i ^fn
afn11

a &, ~10!

whereg has the same value fora5x,y,z; we also assume i
to be translation invariant. The value ofg will be determined
self-consistently. We now have to diagonalize the quadr
Hamiltonian

H5
iJg

2 (
a,n

fn
afn11

a 1
3

4
NJg2. ~11!

Sincefn
a is Hermitian, its Fourier expansion can be defin

as

fn
a5A2

N (
0,q,p

@baq
† eiqn1baqe

2 iqn#, ~12!

where

$baq ,bbq8
† %5dabdqq8. ~13!

A similar half-zone definition of the Fourier transforms
possible in higher dimensions as well; for example, on
square lattice, we could restrict the sum toqx.0. We will
work with antiperiodicboundary conditions forfn

a andeven
values ofN in order to eliminate modes withq equal to 0
andp. This simplifies the calculation because the mome
q and2q are then distinct points in the Brillouin zone e
tending from2p to p. In Eq. ~12!, q52p(p21/2)/N, with
p51,2, . . . ,N/2. In the limitN→`, we get

H5(
a

(
0,q,p

v~q!baq
† baq13NJS g24 2

g

p D , ~14!

where the Majorana fermions have the dispersion

v~q!5c sinq, ~15!

with c52gJ. The HF ground stateu0& is therefore the state
annihilated by all thebaq . Note that it is unique unlike the
exactground state, which has a degeneracy of 2N/2 within the
Majorana formalism. It is curious that the HF approximati
gives a unique ground state which agrees with the deg
eracy we would have obtainedwithout the Majorana formal-
ism.

We now calculate Eq.~10! in the HF ground state an
obtain

g5
2

p
. ~16!
;
f
d

ic

e

a

n-

The HF ground state energy is therefore

E0 HF52
3

p2NJ520.3040NJ. ~17!

This is greater than the exact value mentioned above; ind
one can show thatanyHF decomposition must give an est
mate for the ground state energy which is bounded below
the exact valueE0. The argument goes as follows. In Sec.
we have shown that the exact ground state energy within
Majorana formalism is equal to the exact ground stateE0
without the Majorana formalism, since the HamiltonianH
only acts on physical states. Let us therefore prove the up
bound result in the Majorana Hilbert space which includ
both physical and unphysical states. Now the HF calculat
is equivalent to self-consistently finding an ansatz grou
stateu0& and caclulating the expectation value ofH in that.
~One can show thatu0& is an eigenstate of the Majoran
fermion number operator. Hence an expectation value of
form ^ABCD& is indeed given by the HF decompositio
^AB&^CD&2^AC&^BD&1^AD&^BC&, if the operatorsA,
B, C, andD are all fermionic.! By the variational argument
the expectation value ofH in any state is bounded below b
E0.

The ‘‘spinon’’ spectrum has the same form as in Eq.~8!
but has a different coefficientcexact5pJ/2, whereas we find
c54J/p from Eq. ~16!. Note that the self-consistent equ
tion Eq. ~10! also leads to Eq.~16!, since we have

2 i(
n

fn
xfn11

x 5
2N

p
24(

q.0
sinqbxq

† bxq . ~18!

The ground state is a singlet since it is annihilated by
total spinSW tot5(nSW n , for instance, by

Stot
z 52 i (

0,q,p
~bxq

† byq2byq
† bxq!. ~19!

We now ask what is the spin of a Majorana fermion? Fro
the commutation relations betweenSW andbaq

† , we find that
the one-fermion statebaq

† u0& hasS51. More specifically, the
states (bxq

† 1 ibyq
† )u0&, bzq

† u0&, and (bxq
† 2 ibyq

† )u0& have
Sz51, 0, and21, respectively.

A two-fermion state can therefore haveS50, 1, or 2 in
general. However the state created bySq

z5(nSn
ze2 iqn, where

0,q,p, has the form

Sq
zu0&52 i (

0,k,q/2
~bxk

† by,q2k
† 2byk

† bx,q2k
† !u0&, ~20!
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and can be shown to haveS51. We have thus derived th
two-parameter continuum of triplet excitations in Eqs.~6!
and ~7!, with a prefactor 4/p instead ofp/2.

Finally, we can compute the equal-time two-spin corre
tion function

Gn[^0uSW 0•SW nu0&5H 3

4
for n50,

2
3

2p2n2
@12~21!n# for nÞ0.

~21!

This does not agree with the correct asymptotic behavio
Gn which is known to oscillate as (21)n/n. In particular, the
HF static structure functionS(q)5(nGne

2 iqn does not di-
verge asq→p in contrast to the correctS(q) which has a
logarithmic divergence atp. Note that(nGn50, as ex-
pected for a singlet ground state. It is interesting to obse
that the Schwinger fermion representation yields a corr
tion function which only differs from Eq.~21! by a numeri-
cal factor~see the first reference in Ref. 3!.

This Hartree-Fock state is readily generalized to fin
temperatures, since we simply need to put in thermal po
lation factors for the occupations of the fermions

^baq
† baq&5

1

11exp~bc sinq!
. ~22!

Hence the self-consistency condition Eq.~10! together with
Eqs.~18! and ~22! gives us

g5
2

p
2
4

N(
q.0

sinq

11exp~bcsinq!
. ~23!

It is easy to see that asT→` we haveg→0, and asT→0
we haveg→(2/p)(12p2kB

2T2/6c2), i.e., a power-law cor-
rection to the zero-temperature ‘‘bandwidth’’g.

The HF ground state discussed above is, unfortunat
not the one with the lowest energy. If we allow a dimeriz
expectation valuegn in Eq. ~10!, wheregn can alternate in
strength from bond to bond, we find that the lowest energ
attained for the fully dimerized state in whichgn51 for n
even and 0 forn odd ~or vice versa!. This corresponds to a
dimerized ground state with an energy

E0 dim52
3

8
NJ, ~24!

which is substantially lower than the earlier HF value. The
is a gap equal toJ above the dimerized ground state.@This
ground state is, of course, exact for the caseN52 ~Ref. 12!.#
The reader may wonder why we are ignoring the dimeriz
HF state in the rest of this paper, even though it has
lowest HF energy. The reason is that we know by ot
methods, both analytical and numerical, that the corr
ground state of the spin-12 chain is translation invariant an
that there is no gap above it. The HF method is, after
only an approximation, and different approximations c
certainly give different results. We should therefore pick t
HF which agrees qualitatively with other methods; t
ground state energy is not necessarily the best criterion
choosing one HF over another. Having chosen a partic
-
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HF on the basis of certain features, we of course have
check whether it reproduces other features equally well.
will see in Secs. V and VI that the translation invariant H
yields reasonable results for the structure functions and
ceptibilites also.

V. DYNAMIC STRUCTURE FUNCTION
AND SUSCEPTIBILITY

We recall the definition of the dynamical susceptibility

xzz~Q,t !5 iu~ t !^@S2Q
z ~ t !,SQ

z #&, ~25!

xzz~Q,v!5E
2`

1`

dt xzz~Q,t !exp~ ivt ! ~26!

5(
m,n

exp~2ben!2exp~2bem!

em2en1v1 i01

3^muS2Q
z un&^nuSQ

z um&. ~27!

The Zeeman coupling of a spin to a magnetic field is giv
by glmBS

zB, wheregl andmB denote the Landeg factor and
the Bohr magneton, respectively. The physical respo
function ~i.e., glmB^Sz&) is x5gl

2mB
2xzz(Q,v). In the static

limit v50, we have the usual thermodynamic argument
determining the susceptibility. If we perturb the system v
the couplingH5H02glmBB(ncos(Qn)Sn

z , then the change
in the free energy isdF52gl

2mB
2B2xzz(Q,0)uQ , where

uQ51/4 if QÞ0,p, and u051/25up . ~This factor of u
arises because for a finiteQ we drop two of the four terms in
second-order perturbation theory using momentum conse
tion; this neglect is disallowed exactly atQ50,p.! Also re-
call that the static correlation function is given by

^S2Q
z SQ

z &5E
2`

1`dv

p

Imxzz~Q,v!

12exp~2bv!
. ~28!

We will now compute the response functions in the HF a
proximation. We begin by expressing, for 0,Q,p, the op-
eratorSQ

z in terms of the Majorana fields in the Heisenbe
picture:

SQ
z ~ t !52 i (

0,q,Q
a~q,Q2q!bxq

† by,Q2q
† expi ~vq1vQ2q!t

2 i (
p2Q,q,p

a~q,2p2Q2q!bxqby,2p2Q2q

3exp2 i ~vq1v2p2Q2q!t2 i (
Q,q,p

g~q,q2Q!

3@bxq
† by,q2Q2byq

† bx,q2Q#expi ~vq2vq2Q!t. ~29!

In this equation we have introduced two real phenome
logical functions a(a,b)5a(b,a)5a(p2a,p2b) and
g(a,b) which are, strictly speaking, equal to unity from th
Majorana definition of the spins. These are introduced
order to facilitate the comparison of our structure functi
with a phenomenological function proposed in Ref. 13. T
essential point is that we have assumed that the time ev
tion is given by the bilinear in fermions, our Eq.~14!. The
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representation forS2Q
z is obtained by taking Hermitian con

jugates. Note thatSQ
z or S2Q

z acting on the ground stat
generates two spinons. We insert it in Eq.~26!, carry out the
contraction of the fermions by Wick’s theorem, and use E
~22! in the formnq5^bq,a

† bq,a& and n̄q512nq to find

xzz~Q,v!5 (
0,q,Q

a2~q,Q2q!
n̄qn̄Q2q2nqnQ2q

vq1vQ2q2v2 i01

1 (
0,q,Q

a2~q,Q2q!
n̄qn̄Q2q2nqnQ2q

vq1vQ2q1v1 i01

12 (
Q,q,p

g2~q,q2Q!
nq2Qn̄q2n̄q2Qnq

vq2vq2Q2v2 i01 .

~30!

This is seen to be an even function ofv by using
q→p1Q2q in the last term. Using Eq.~28!, we deduce
that

Gzz~Q![^S2Q
z SQ

z &

5 (
0,q,Q

a2~q,Q2q!@ n̄qn̄Q2q1nqnQ2q#

12 (
Q,q,p

g2~q,q2Q!nq2Qn̄q . ~31!

Let us note that at zero temperature, if we seta5g51, we
get Gzz(Q)5NuQu/2p and hence the correlation functio
quoted in Eq.~21!. At the other extreme limitT→`, we
replacen5n̄51/2 and findGzz(Q)5N/4. At any tempera-
ture, the relationnq1n̄q51 allows us to show that the sum
rule ^Sn

zSn
z&51/4 is satisfied.

At zero temperature, we have the static susceptibility

xzz~Q,0!52 (
0,q,Q

a2~q,Q2q!

vq1vQ2q
~32!

which, in the standard situationa51, can be evaluated in
the closed form

xzz~Q,0!5
N

pc sin~Q/2!
lnS cos~p2Q!/4

cos~p1Q!/4D . ~33!

The uniform value is

xzz~0,0!5
N

pc
5

N

4J
. ~34!

The neutron scattering function which is of particular inter
is found at zero temperature as

Imxzz~Q,v!5p (
0,q,Q

a2~q,Q2q!d~vq1vQ2q2v!

~35!

for v.0. We can evaluate it in terms of the dimensionle
energiesu[v/c, u.[2sin(Q/2) andu,[sinQ, as
.

t

s

Imxzz~Q,v!5
N

c

a2~q* ,Q2q* !

ucos~q* !2cos~Q2q* !u

3u~u.2u!u~u2u,!, ~36!

where q* is the solution of sinq*1sin(Q2q* )5u which
equalsQ/2 atu5u. . With this we find

sinq*5
1

2
@u2cot~Q/2!Au.

2 2u2#,

cosq*5
1

2
@u cot~Q/2!1Au.

2 2u2#. ~37!

This implies thatucos(q* )2cos(Q2q* )u5Au.
2 2u2, and

Imxzz~Q,v!5
N

c

a2~q* ,Q2q* !

Au.
2 2u2

u~u.2u!u~u2u,!.

~38!

This susceptibility is very similar to that proposed in Ref.
phenomenologically, and also found for the long rang
spin-12 chain14,15 in Ref. 16, with one important difference
The spectral weight here is dominatd by the upper thresh
of the two-parameter continuumu. , whereas the weight is
peaked at the lower thresholdu, in Ref. 13. It is straightfor-
ward to see that if we choose

a2~q,Q2q![n
usin~Q/22q!u

AsinqAsin~Q2q!
, ~39!

then on using Eq.~37!, the weight is shifted to the bottom
and we get

Imxzz~Q,v!5
Nn

c

1

Au22u,
2

u~u.2u!u~u2u,!. ~40!

With this choice, the static correlation function can be eva
ated from Eq.~28!. We find

Gzz~Q!5
Nn

p
lnS 11sin~Q/2!

cos~Q/2! D , ~41!

leading to the asymptotic behavior;(21)n/n at long dis-
tances. Indeed one can use the two parametersc and n in
Eqs. ~40! and ~41! together with the various sum rule
known, in order to obtain very realistic structure functio
which mimic the behavior of the nearest neighbor Heis
berg antiferromagnet. At finite temperatures, we find fro
Eq. ~31! in the usual case ofa5g51

^Sn
zS0

z&5
1

4
dn,02

1

16F f nS bc

2 D G2, ~42!

with

f nS bc

2 D5
2

pE0
p

dxsin~nx!tanhS bc

2
sinxD , ~43!

leading to an exponentially decaying correlation functi
with a correlation lengthj;1/T for T→0. The functionf n
vanishes for evenn in contrast to one’s usual expectation.
the presence of the phenomenologicala, one must necessar
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ily cut off the linear divergence ofa atQ5p andq;0,p. A
temperature dependent cutoff, such as

a2~a,b!5~ usin~a2b!/2u

1~const!2T!/@Asin~a!1~const!T

3Asin~b!1~const!T#

interpolates nicely between the zero-temperature limit
the high temperature limit, and again gives a correlat
length;1/T.

VI. MAGNETIC FIELDS

We will now discuss the HF ground state of the spin ch
in the presence of uniform and staggered magnetic fie
and calculate the two susceptibilities.

A. Uniform magnetic field

For a uniform magnetic fieldBẑ, we add a term
2glmBB(nSn

z to the Hamiltonian~5!. Since this term com-
mutes with Eq.~5!, we can use the same HF decompositi
as in Eq. ~10! with g52/p. Since the extra term in the
Hamiltonian is quadratic in the Majorana operators, we o
have to perform a rediagonalization of Eq.~11!. We find that
modes withSz561 have an energy

v6~q!5
4J

p
sinq7glmBB, ~44!

while the energy of theSz50 modes remain unchanged. F
B.0, let us define a momentumq0 such that

q05sin21S pglmBB

4J D , ~45!

and 0,q0,p/2. ~Such aq0 exists only if the magnetic field
is less than a critical valueBc54J/pglmB). Then the modes
with Sz51 and momenta lying in the range 0,q,q0 and
p2q0,q,p have negative energy, and the ground state
the system is one in which those modes are occupied.
change in the ground state energy is therefore given by a
over all the occupied modesq,

DE0 HF5(
q

S 4Jp sinq2glmBBD
5
4NJ

p2 ~12cosq0!2
NglmBB

p
q0 . ~46!

The expectation value ofSz in the ground state is obtaine
either by counting the number of occupied modes, or
differentiating Eq.~46! with respect toglmBB. Thus

^Sz&5
Nq0
p

5
N

p
sin21S pglmBB

4J D . ~47!

Finally, the~uniform! susceptibility is given by

x5
1

glmB
S ]^Sz&

]B D
B50

5
N

4J
. ~48!
d
n

n
s,

y

f
he
m

y

This agrees with the result in the previous section. Fo
strong magnetic fieldB.Bc , the ground state is fully polar
ized withSz5N/2. These results are to be compared with t
exact results for the susceptibilityx5N/p2J, and the critical
field Bc52J/glmB .

13

SinceSn
z has a nonzero expectation value in the grou

state, the above calculation is not entirely self-consistent,
one should also allow HF decompositions of the form

^fn
xfn

y&5 i f 0

and

^fn
xfn61

y &5 i f 61 . ~49!

Further, the expectation values

^fn
xfn11

x &5^fn
yfn11

y &5 igT

and

^fn
zfn11

z &5 igL ~50!

may be unequal since the magnetic field breaks rotatio
invariance. On doing this more general HF calculation,
find that although the ground state remains the same qua
tively ~i.e., a number ofSz51 modes have to be filled in th
regions 0,q,q0 and p2q0,q,p), various numbers
change. For instance,q0 is now given by

q01sinq0~11cosq0!5
pglmBB

2J
. ~51!

The HF parameters are

gT5
2

p
cosq0 , gL5

2

p
,

f 05
2q0
p

, f6150. ~52!

Since the magnetization is equal toNq0 /p, the susceptibilty
is x5N/6J. @The critical field for complete polarization i
Bc5J(112/p)/glmB .# We therefore have the curious resu
that a completely self-consistent HF calculation does
agree with linear response theory for small fields.

B. Staggered magnetic field

We now study the situation with a staggered magne
field. We add a term2glmBB(n(21)nSn

z to the Hamil-
tonian and perform a HF decomposition. As in the unifo
case, we will assume thatgT5gL52/p and f 05 f6150 in
Eqs. ~49! and ~50! even though this is not completely sel
consistent. We then find that the dispersion of the longitu
nal modes remain the same as before while those of
transverse modes change. To be explicit,

vL~q!5
4J

p
sinq

and
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vT~q!5S 16J2p2 sin
2q1gl

2mB
2B2D 1/2. ~53!

Further, the change in the ground state energy is

DE0HF5 (
0,q,p

S 4Jp sinq2vT~q! D . ~54!

On differentiating this with respect toglmBB, we find the
staggered magnetization to be

K (
n

~21!nSn
zL 5NglmBBE

0

2p dq

2p

1

vT~q!
. ~55!

For small fields, this goes as (NglmBB/4J)ln(J/glmBB) which
implies that the staggered susceptibility is divergent. This
the correct result. For large fields, the staggered magnet
tion approachesN/2 as it should.

VII. DISCUSSION

To summarize, we have used a Majorana fermion rep
sentation to study a nearest neighbor isotropic antiferrom
netic spin-12 chain. Within a translation invariant Hartree
Fock approximation, we have found the spectrum of low
lying excitations, the two-spin correlation function, th
structure function, and the magnetic susceptibilities. All
these agree qualitatively with the results found earlier by
variety of other methods. The agreement can be made qu
titative if we introduce some phenomenological function
within the Majorana formalism.

It is somewhat surprising that a fully dimerized Hartree
Fock approximation leads to a ground state with a low
energy. One way of stabilizing the translation invaria
ground state with respect to the dimerized one is to ap
an uniform magnetic field with a strength
is
a-

e-
g-

-

f
a
n-

-
r
t
ly

B.0.5829Bc50.7422J/glmB . Such a magnetic field lowers
the energy of the translation invariant ground state belo
23NJ/8, and does not change the energy of the dimeriz
ground state, forB,J/glmB , due to the finite gap to spin
excitations.

It would be interesting to go beyond our Hartree-Foc
treatment and study the effects of fluctuations. Besides p
ducing more accurate numbers for various quantities such
the spin wave velocity, such a study could also lead to
more detailed understanding of the ‘‘spinons’’ in a spin-1

2

chain in terms of Majorana fermions.
It may be instructive to examine models with anisotrop

frustration, and higher dimensionality using the Majoran
representation, and to compare with known results. Amon
other things, this would help to determine the range of v
lidity of this way of studying spin-12 systems.

We have briefly examined the ferromagnetic case
which the exchange constant in Eq.~5! is negative. We per-
form a nonrotation invariant Hartree-Fock decomposition b
allowing sn

z52 ifn
xfn

y to take an expectation value. We
then obtain the correct ground state energyE05NJ/4, with
the totalSz56N/2. However, we get the wrong dispersio
relation, including a gap, for the low-energy excitation
Thus the Majorana Hartree-Fock approximation is not
good starting point for studying the spin-1

2 ferromagnet.
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