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We present calculations on a simple spin model which shows the phenomenaeoby projection We
discuss a two-level atomic system coupled to the radiation field to explore the possible relevance of order by
projection in quantum optics. We point out the similarity between the effective Hamiltonian for the two-level
atoms and the reduced BCS Hamiltonian used in the study of the ultrasmall metallic grains, and we present
some calculations to show the transition from a nonsuperconducting to a superconducting ground state in the
grains. We present a sum rule for the interacting electron systems on a lattice, exhibiting order by projection.
This relates a nonextensive change in the “kinetic energy” due to a projection term to the extensive expec-
tation value of the interaction in the ground state without projection.

[. INTRODUCTION model, or the kinetic energy, to which we add a pure repul-
sive BCS-like interaction. The rigorous methods tell us that
There is considerable recent interest in models exhibitinghe extendeds-wave correlation function is bounded from
superconductivity starting from repulsion. While popular below by const/(%p), where p is the filling, and hence
models, such as thieJ and Hubbard models, display super- there is a large “Gutzwiller’-type enhancement.
conducting phases within approximate treatments, such as While the above work gives us an interesting and unique
slave boson mean field theories and the variational wavedirection, several questions concerning the models and their
function approach, these remain somewhat unconvincing duaehavior remain poorly understood. At precisely half-filling,
to the uncontrolled nature of the schemes employed. Onthe rigorous inequalities do not give us any guidance with
may, in fact, argue that apart from the Kohn-Luttingessult ~ reference to the question of whether the correlation function
for repulsivecontinuumelectronic systems, there is no other has actual long-ranged orddrRO), or if it is only critical,
compelling result for superconductivity from repulsion. Ini.e.,«£1*7 (1> 7%>0). We discover here that the solutions
particular, electrons on a lattice have an extra property oflo not have a true long-ranged order, and are superconduct-
being “commensurate” at certain fillings, and it is widely ing only in the sense that thieormalized correlationgsimi-
expected, but never quite proven, that this particular featuréar to the Bragg’s structure function in diffractipfATA)/L
is of great significance, especially for high-systems which  diverge in the thermodynamic limit. Also it is not clear if the
are interesting near half-filling. It is therefore quite importantground-state energy density is affected at half-filling. There
to develop new nonperturbative methods and tools to invess also the issue of energy balance away from half-filling; we
tigate cooperative behavior ddttice fermions In this con-  know from the inequalities that the interaction does not
text, a general idea termeaxtder by projectionhas been in- change the energy density, and yet one expects nonextensive
troduced recently energy corrections both for the potential and the kinetic en-
The models introduced in Refs. 2 and 3 contain pairingergies. Can one say a little more about these?
terms, as in the BCS reduced Hamiltonian, but with large Most of the explicit results obtained so far concern the
and repulsive interactions. When transformed to the Wannierepulsive BCS model with a large repulsive coupling con-
basis in real space, the added term corresponds to an infinigant, for which the variational calculatichisear out rather
ranged hopping of pairs of particles. Such pair hopping termsvell the expectations arising from the general method of
certainly occur in the lattice representation of the Coulomhinequalities? Barring the degeneracies of single-particle lev-
interaction, but are of finite range. The theoretical models arels, the latter model actually maps on to a spin model in
thus in the spirit of mean-field models, the hope being thabne-dimension, where energy plays the role of the single
some features of the solutions are of a general nature thaimension. The model, described more fully later in this
transcend the limitations of the starting models. In summarywork, turns out to be difficult to solve explicitly, and was
it is found that the lattice Fermi system attains enhance@nalyzed numerically in Ref. 2 by means of exact diagonal-
extendeds-wave superconducting fluctuatioAsin the prox- ization for rather short chains, with a view to answer the
imity of half-filling in reaction to the suppression of on-site above questions. In this work we extend the numerical re-
swave fluctuation®B (defined below. The uncertainty prin- sults further to bigger systems and obtain more robust re-
ciple plays a crucial role in this since tleewave and the sults.
extendeds-wave ordering operators are recognized to be In this work we introduce and solve explicitly and exactly
conjugates. Half-filling plays a special role in this enhance-a rather simple model that is inspired by the above spin
ment, since only in its proximity can one supprdssth  model. This spin model consists of a large number of two-
(B'B) and(BB"). level systems; these interact via a spin-flip coupling that has
The above works have used a combination of techniqueshe same form as in the above spin model, and the simplifi-
including rigorous inequalities and variational methods, on aation consists of replacing a gradual variation of energies in
class of models that are typified by either the Hubbardhe Zeeman pafrepresenting the filled Fermi sea in the first
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instance by just a pair of energies. The model contains manytions with a coupling constant @(1/£) so that the energy
elements of the more general models, but not all. The greag extensive in the ordered statét is possiblé to write it in
advantage, however, is that the usual semiclassical methodspin notation using the Anderson mapping of the BCS pair-
su_ch as th?T HoIstein—Primakoff transformation, help' us'so'lvepng operators to pseudospia§=cl¢cik¢ and s*= %(”kﬁ

this S|mpI|f|_ed model _exa(_:tly in the the_zrmo_dynamlc I'r.n't’ +n_y,—1). We find the followinglspin-lllz Hamiltonian:
and also give an estimation of the finite size corrections. i

Variations of this model also arise in the study of two level L L

systems in Quantum Optics, and we explore the connections HZE €(25%+1)+ Usz Si+sj— (model 1. (2)
in this work. i 0

i
We find that a variant of the Feynman-Hellman coupling

constant integration theorem can be utilized to formulate %\/e refer o th|sc?stm3h(1§l LI In tge.siﬂuel. Note tthat index
rather remarkable sum rule in the models considered herec'€: COrrésponas to mode In the momentum space,

The sum rule equates an extensive expectation value to d the t.ransformatlon IS Imeamngful only in the subspace
where pairskT,—k|) are either absent or present. The elec-

weigh lin nstant integral of the kinetic-ener .

srﬁftg; ttr?s Igtc;gf is %oioe;tsln;ivefezgng yz-t ;deds upe tdCu: t?) ?ﬁ/ ons that are not parts of a Cooper pair are thus unaffected

weight factor to an extensive result. While this sum rule is y the interaction and are |gnored. In the literal mapping of

true quite generally for this class of models, the above simIhe BCS model, we would find _each energy Ieylehavmg a

plified model gives us an explicit example of the rule atlarg.e degeneracy, gorrespondlng fo the degeneracies of the

work, and provides a “feel” for the nature of finite size cosine bant_ds, but in the effective model treated here, we
simply consider each energy level as nondegenerate. The en-

corrections. ! dtoh i di : 1 .
The organization of the paper is as follows. In Sec. I webrges are assumeh to avr? a linear |spers|;9n— 5+[(,' ¢
define the general Hamiltonian witkhwave projection and —1/(L-1)], so t“at we have a structureless density o
tates. The linear “ramp” of energies thus represents the

derive the sum rule. We next present numerical results fo > . .

the spin model with a linear dispersion relation at half-filling, 'e'mionic energy levels filled up to a certazln level, and the
and we discuss their implications for the behavior of corre-NUmber of electrons is given Hy=2;(1+ 2sj), which also
lations and energy at half-filing in the general models. IniS twice the number of Cooper pairs. Half-filling clearly cor-
Sec. Ill we present the simplified spin Hamiltonian and pro-résponds to the sectsfy, = 0.

ceed with its exact solution by semiclassical methods. We We finally indicate the simplified model that is obtained
first present some calculations on the spin model with th®Yy further approximating the above model II. We restrict the
interaction being negative and of the order of inverse systerfinergiese; to be —1(+1) for i <L/2(i>L/2) and find

size, as in the usual BCS model. We then discuss the case of L2 L

repulsion in great detail. In Sec. IV we consider the question _ 7 .z b

whether the idea of order by projection can be useful for the H= _Z 2(si _s”L’ZHUS%: S (modelllh.
two-level atoms interacting with the radiation field. Finally, 3)

in Sec. V we present a summary of the results. . . . .
In Sec. lll, we rewrite this model in more convenient ways to

bring out the solvability and we present detailed calculations
in various cases.

We collect together in this section the various models
treated in this paper. To start with, the general Hamiltonian A. Sum rule
for the interacting electrons witkiwave projection, as intro-
duced in Ref. 2, is the following:

Il. THE MODELS AND A SUM RULE

We now present an important sum rule for the general
Hamiltonian equation(1) which relates the nonextensive
change in the expectation value of the Hubbard part of the

H=2 > tijc;racjg+uz nisNj |+ UB'™B  (model ). Hamiltonian equatioiil) due toUg, to the expectation value
Lloo ! of B'B in the ground state with);=0. For convenience, let
(1) us write Eq.(1) asH=T+U.V, whereT stands for the Hub-
The first two terms in Eq(1) with U>0 give the Hubbard bard part and/ stands forB'B. For U=0, T is simply the
model, and the third term is new, and represents the on siténetic energy of the electrons. The expectation values of
swave projection term fotJ>0 and of O(1). Here, the operatorsT andV in the ground state, for a particular value
operatorB=X;c;|C;; is the on-siteswave pairing operator. of Us, are denoted b{f(Us) andV(Uy), respectively.
We refer to this as model | in the following. This added term Let E(U;) be the ground-state energy of the Hamiltonian
is of particular interest for the present work, since it leads teequation(1) for a particular value ofUs. The Feynman-
an enhancement in the extendsdvave correlations. For Hellman theorem states thatAE(Ug)=E(Ug)—E(0)
completeness note that the extendedave pairing operator :fgsd)\v()\)_ From the general arguments of Ref. 2 we
is defined asA=—22€,C_y Cy;, Where g,= —2t[ cosk) know that
+cosky)] on a square lattice, with the momentum label
andt the nearest-neighbor hopping amplitude. Us

The second model considered here corresponds to setting AE(Uy= fo dAV(N)~o(L). (4)
U=0 in model |, whereby it reduces to the repulsive version
of the reduced Hamiltonian of BCS, with a “large” coupling Here,L stands for the system size aa¢lL) implies that the
constantUg (since the latter is written for attractive interac- quantity is nonextensive, unlik&)(L) which says that
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FIG. 1. The extended-wave correlation function(A*A), at half-filling is plotted againsta) L*? and(b) L? for chains of length up
to 22.

the quantity goes likeL. Thus Eq. (4) implies that Ref. 2 and a preliminary numerical investigation of short
AE(Ug)/L—0 asL—o=, i.e., the energy shift is nonexten- chains with L up to 14 were presented for somewhat large
sive. UsingAV(N)=AE(N)—AT(N), and manipulating a values ofUs. In Ref. 2 the numerics was interpreted to be
bit, we derivé the following relation for the change in the consistent with(ATA)~L2. However, the analytical results
ground-state energy, in the presence of¢lveave projection  of Ref. 3 give(ATA)~L%2 In order to resolve this issue we
term: have computed these correlation functions for longer chains.

U We computed ground-state enegy, (ATA), an_d{BTB>

AE(US)ZUS( V(O)_f S—ZAT()\)), (5)  humerically as a function of system sikeat half-filling up

o A to L=22 for U;=0.5,1.0,1.5, and 2.0. The results of these

numerical calculations are shown below. In Fig. 1 we see

whereAT(N)=T(A)—T(0). Equation(5) is true in general . . .
whereas (Eq)(4), (nazmeh(/, )is tgue onI)(/ 120r the Hangiltonian that the data go fairly linearly when plotted agaihst” as

equation(1). These two together imply the following sum compared to when plotted agairist, especially for sTmaII
rule: Us. This favors the theoretical understanding thatf A)

~L%2 In Fig. 2 we have drawn a comparison between two
Usd\ possible behaviors for the ground state energy shift as a func-
V(0)= fo 2ZAT(M)+o(L). (6)  tion of the system sizé. If the system has true LRO then
one expects the shift to be linear in size, whereas with critical
This is quite remarkable as an extensive quariifp) is  correlations the shift should be<LY2 and hence nonexten-
equated by integration over an intensive quansifff(\) in  sive. We see that the data are more consistent Wity
the thermodynamic limit. In Sec. 111 B 3 we will see explic- going asL2 We next examine the coefficients of the lead-
itly how two sides of Eq(6) equate each other, in the ther- ing terms of(ATA) and theAEy, since we have variational
modynamic limit[see Eqs(29) and(30)]. estimates for these in Ref. 3:

B. Numerical results for model Il

Here we present extended numerical results for model 1. —~enon Z—VUSa(O), 7
As mentioned in the Introduction, this model was studied in L VlpalL
(@ (b)
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FIG. 2. The ground-state energy shE, at half-filling is plotted againsta) L2 and(b) L for chains up toL=22.
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FIG. 3. Various estimates of the coefficients of the leading-order term@faxEy(~L?) and (b) (ATA)(~L*3).

1 " A. Attractive case : Us=—17/L
= E“a(o)“”'UsL ' ®) Before considering the repulsive casd&J &0 and
~(0(1)) for Eqg. (9), we briefly discuss the attractive case
Here az(ATA>/(4L) and w;=(1/L)Se(2f—1). The Wwith Us=—1v/L, wherey~O(1) and positive. It is clearly
«(0) is the value ofa for Us=0. For linear dispersion, the case of conventional BCS-type superconductivity.
a(0)=(L+1)/[24(L—1)] andu,;=—L/[4(L—1)]. There- At half-filling (p=1), the spin Hamiltonian equatio(9)
fore, from Egs. (7) and (8) one finds that (ATA) with attractive interaction shows a first-order phase transition
~\JU 2432 and (Eg—Eg)%\/Ws/SLl’Z in the thermody-  from the normal to superconducting ground stateyass
namic limit. We also have a heuristic result fok'A) and ~ Varied. In the thermodynamic limifyEqy=Eq(y) —E4(0) is
AE, in terms of u;,AE,~V2U{uq|L and «
— (1/22)\UJ gL at half-filling, obtained from a func- —2+N2(2—y),
tional integral approach. These are equivalent to replacing
a(0) by |u4]%/2 in the variational results. _ o
In Fig. 3 the numerical estimates of the coefficients of the/Ve also calculate th¢B'B) correlation function in the ther-
leading-order term of ATA) and AE, in L are shown to- Modynamic limit. To the leading order in, atp=1,
gether with the variational and the heuristic results. The lat-
ter is closer to the numerical value. We thus see that the (B'B)— LIN2(2—y), <2
theoretical estimates and the exact numerics for relatively (LI2)1—(21y)?], y=2.
short chains are qualitatively in consonance in suggesting
critical order rather than true LRO at half-filling. Detailed We define an order paramet€r=.(B'B)/L (in analogy
examination shows that there are some discrepancies in thvth usual mean-field theoyyHere, we see that in the ther-
coefficients of the leading behavior; these seem to becommodynamic limit, there is true LRO inBTB>, andAE, is
larger for modestly large values &f¢, implying that the extensive. Figure 4 shows the exact diagonalization and the
values ofUg in Ref. 2 were much too large. It seems that semiclassical results for the change in the ground-state en-
further finites size studies on longer systems may be needestgy in Eq.(10). Figure 5 shows) as a function of. andy.
to be completely sure of the final coefficients. We see that for large enoudh the ground state is supercon-
ducting for y>2 and normal fory<2. Here, atp=1, vy
Il SIMPLIFIED SPIN MODEL =2 i_s spec_ial because the interaction can makg one spin flip
: only if it gains an energy of amount 2 at ledsthich is the
For a fairly simple choice of the dispersion relation, asbandwidth. For smaller systems) is significantly nonzero
mentioned earlier, model IIl is derived from model II. Let us for y<2, and also deviates from its thermodynamic behavior
label the group of spins wita= — 1 asa and withe=1 asb.  in the regiony>2.

Then model IIl can be rewritten in the following convenient It is worth mentioning that the reduced BCS model for
form: studying superconductivity in the ultrasmall metal

particleS~’ can easily be mapped to the model Il with,
_ 7 ez et =—19/L, and can further be approximated by the simpler
H=2(=S:+S) +Us(S +5)(Sa +S). ©) model Il studied here. The results obtained here are in the
qualitative agreement with the experimental observations.
Here, S,=31s and S,=3),,,5. This turns out to be a First, the finite size order parameter is always greater than its
problem of two large spin§, and S, coupled to each other thermodynamic value. Second, the system is superconduct-
antiferromagnetically. The analog sfwave and extended ing for average level spacing,l2/less than interactiony/L .
swave pairing operators for this spin problem &8e S, Issues such as crossover from bulk behavior to small size
+S, andA=2(S5, - S,). behavior cannot be studied rigorously here because of the

'y<2
—L(y/4)(1-2ly)%, y=2.

g (10

(11)
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FIG. 4. Superconducting transition at=1. (8) y=2.4,(b) L = 400.

simple structure of the Hamiltonian, i.e., since the density of L L
states is structureless and independerit. &s S, andS, are n=- 5(1— P)y  Smin<SaS rE
large spins, the quantum fluctuations are also insignificant. (12)
(L L
ma)(sminv|n|_sa)SSbSmm E_Salz )

B. Repulsive caseUs>0 and ~O(1)

wheres,,;, is 0 for evenL/2, and 1/2 for odd./2. Only those
values ofs, are acceptable for which the max(,,|n—s,)
<min(L/2—s,,L/4). Given the values oh,s;, and s,
the running indexm in the basis states is such that max

1. Exact diagonalization (n—s,,—s)<m=min(n+s,,s,). We diagonalize the Hamil-

tonian matrix for fixed values of,s,, ands,. The mini-
We now proceed to solve this model explicitly and ex-mum eigenvalue corresponds t=L/4 and s,=L|2p

actly. Let us note that the operat(ﬁ%and% commute with  —1|/4. This we identify as the ground-state energy and the
the operator§;—"'bz and, therefore, commute with the spin- corresponding eigenvector as the ground state of the system.
Hamiltonian equation(9). The operatorS’=S:+S: also ~ Fillings p=<1/2 are not interesting as the operatérandB
commutes with the same. Thus, we have three conservedhihilates the ground state of the spin-Hamiltonian equation
quantitiess, ands,, the quantum numbers associated with(9)- We confine our calculations close to half-filling < 1)
spinss, andS, , andn, the quantum number associated with asitis Wh(_are one expects large enhancement in the extended
total §*. For the exact diagonalization of the spin- swave pairing correlations.
Hamiltonian equatior(9), we choose the basis states to be
the product states of the two spiSg andS,. We write the
basis states d#,S,,Sp ;M) =|s,,M)|s,,n—m). For a given As we noticed above, the quantum numbgysinds,, for
filing p=N/L, where N is the number of electrons on a the ground state are proportional to system dizeMore

lattice with L number of sites, the allowed values of quantumPrecisely, the ground state fgr>1/2 corresponds te,
numbers are =L(2p—1)/4 and s,=L/4. Therefore, in the thermody-

namic limit we use the Holstein-PrimakdffiP) transforma-

This corresponds to the projection sfvave pairing. In
the following sections we discuss this case in detail.

2. Analytical results in the thermodynamic limit

(@) (b)

0.5 T T T T T
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i . ool 045
04 L Semiclassical ; y> 2 '..o" 4
. . * 1
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[ o 1
03 - » 7
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FIG. 5. Q as a function ofy. Plot (b) shows the deviation i} from its thermodynamic behavior for small system size.
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tion. This semiclassical approximation enables us to get ana-

lytical expressions for various quantities like (ATA), etc.
to the leading order in the system size.

Let a and b be canonical bose operators, then the HP

transformation states

Si=\2s,—a'aa, S} =b"J2s,—b'b,
S, =a'y2s,—a'a, S, =+2s,—b'bb,

Si=s,—a'a, S{=-s,+b'b.

13

For largeL we expand square roots appearing in ELB)
only up to first order ina'a/2s, andb'b/2s,. This trans-
forms the spin-Hamiltonian equatid®) into the following
bosonic Hamiltonian:

H=Ho+Ho+Hs+ O(1L), (14
where
HOZ - 2(5a+ Sb+ 1) + 2US(Sa_ Sb)!
H,=2[(1+s,Uata+Ugys,s,(ab+bTal)
+(1+s,Ug)bb'], (15

H,=—Uga'aaa'+b'b'bb)
(a'aab+b'ata’a)
Sa

b'bba+a’bb'b)
Sp ’

H, is of O(1) [becuasd)s~O(1)] andHy+ H, is of order

Us

s

K
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(ATA)y, (B"B)y,
a=—gr > BT (18
In the limit of largeL andp close to 1,
Eq 2(2p—1 o 1 1
s ey Al 19
2p_1+o(1) (20)
(1-p) L)
B~0. (21)
At p=1,
E J2u, 4+U 1
Lt - 40| =], (22)
L L 2L L 32
1/ [Jus Ug (1+2Uy (1)
a==| \/=— F——>|L¥24 0 =, (23
2 2 2L J2ul L)

pu 1 1 +(9( 1)
ULl 2L L2/

Equation(20) is consistent with enhancement inequality as
mentioned in Ref. 2. Equatiof23) implies that the correla-
tion function(A'A) goes ad %2 and thus affirms that there
exists a quasi-long-range order in the pairing correlation of
an extendeds-wave type at commensurate filling. Another
important point to notice is that both at and away from half-

(24)

L. Therefore;H, can be treated as a small perturbation to thefilling, the ground-state energy density is the same as for the
Ho+H, in the thermodynamic limit and is used to find out case without the projection term; that is, {im.(Eq/L)
the higher-order corrections, and it is not important to con-={T)u_-o/L=—p. However, the leading-order finite size

siderH, for the leading-order calculation.

correction to the energy per site changes fromit/Eq. (19)

The quadratic Hamiltoniafit, is diagonalized by the ca- with a coefficient that diverges near=1, to 1AL atp=1as

nonical transformation of g,b) to a new set of Bose
operators {,y) defined asa=cosh@)zn—sinh()y" and
b'= —sinh() »+cosh@)y'. The quadratic Hamiltoniark,
is diagonal in the operatorgy(y) for the following value of
0:

1 4+Ulp+Ud\2p—1
0= =In = 5| (16
2| J16+8Ulp+U2L%(1—p)

It is interesting to note tha# is singular atp=1 in the

in Eq. (22).

Let us compare the above results with that of variational
calculation on model | witiJ =0, as given in Ref. 3. There,
at p=1E /L~enon+2Va(0)Us/[u]L and (ATA)/L
~2\Uga(0)[u1]L, where a=(A'AYAL and pu,
=3 ex(2f—1)/L. Here, ey, is the noninteracting energy
density, andx(0) is the value ofxr atU,=0. For the present
choice of dispersion relation, that i§=—1(+1) for i
<L/2(>L/2),a(0)=p/2, andu,=—p. At p=1, we obtain
2a~\UJ2LY2 and Ey/L~—1+2U¢/L which is the

thermodynamic limit, and this singularity is carried over to Same as given above. The heuristic results are also the same

other quantities of interest through

1 ++2p—-1
6=z 2P (17
2 1-p

This leads us to expect that=1 is a special filling where
the system undergoes some kind of a transition. Egtoe

in this case. In terms gk, away from half-filling, the lower
bound on(A'A) given by the enhancement inequdlitis
~2u3L/(1-p). We find that the exact result is twice the
value of the lower bound. Thus close to half-filling,
~1/(1-p), which is consistent with Eq20).

Figure 6 compares the results of exact diagonalization
with the semiclassical analytical calculations. One can see a

the ground-state energy and we define two other quantitiegood agreement between the equations of the best-fit curves

a and g, related to the operato/sandB, respectively, such
that

for the exact diagonalization data and the semiclassical
leading-order expressions f&; and(A'A).
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(a) and(c) are atp=0.9 and 0.8, respectively.

3. Variational approach U

L
V,(0)= —— (\2p—1 coshd—sinh§)2. (26)

2

We next perform a variational calculation for the

bosonized Hamiltonian equatiofi4). The motivation for

this digression is that the variational approach, while yieId—'vI.'tr;]ImIZIng ttk;gava_tnanona:henergyEv(6;)=T¥(0)+Vve§2,
ing finally the same result as in the above exact diagonaliza\f\’.I respec gives us the same valué of parameteas

tion, gives additionally a picture of the competing energiesg.'ver? in Eq.(16).h¥Ve 'Sn?z 'that as lang @is Zf 0(1]2’ .
It also gives a useful hint in the cases where exact diagona](-'net'c'energy shitt s IS nongxtenswe. way fronp
=1, we can thus mak¥,(6) vanish by choosing=In[(1

ization is not possiblé.In the thermodynamic limit, we ne- !

glect H, and all higher terms. As we are interested in thet V2P~ 1)/\2(1=p)]. At p=1, we are pushed to a diverg-
ground state, we pu,=L (2p—1)/4 ands,=L/4. Then the "9 6~ O(In L),_ since VU(0)=US_Le /2. This necessa_rlly
kinetic-energy part of the spin-Hamiltonian equatié®), costs more kinetic-energy shift, but fortunately <ifih

viz., T=2(—S+S), becomesT=—Lp+2(ata+b'h) ~O(4/L) so the shift is not extensive. One can see that in the
under the HP transformation and the potential-energy termfnérmodynamic limit, forp<1:

U(Ss +S5)(S, +S,), becomes V=(U,L/2)(y2p—1a 2(2p—1) 2p—1
+b")(V2p—1a'+b). We use|s,)=exd — gb'a’—ab)]|0) Eq=—Lp+ 1, T, B=0. (27)

as the variational ansatz for the ground-state wave function.
Here |0) is the vacuum of operatora and b. A more  Similarly, for p=1, minimizing E,(6) we get 6

general variational ~wave function, viz., |i,) =1In(U4L/2) and so

=exp(—(62L)[T,B'B]|¢) has been discussed for models

exhibiting order by projection in Ref. 3 whele) is the Eq=—L+v2Ud,

ground state of the Hamiltonian without projection. The (28)
variational wave function used in the present work is a spe- 1

cial form of the more general one. The prefactor in the varia- a= EVUSL/Z’ B=1N2UL.

tional wave function generates several Cooper particles and

Cooper hole pairs in the ground sta@®. The expectation It is nice to see that this simple spin model explicitly
values of operatorg andV in this variational wave function verifies the assertions, based on general physical arguments
are made in Ref. 2, namely, in the thermodynamic lirit the

presence of the-wave projection term makes no difference
to the ground-state energy per sité) it leads to the en-
T,()=—Lpt4 sinit e, (25) hancement in the extendedvave pairing correlation func-
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FIG. 7. J=20. (a) €;= €5, (b) €,> €,. The figure withe; # €, gives rise to an antisuperradiant phase with t§a#0.

tion near half-filling, andiii ) there is quasi-long-range order whereJ~ (1) and positive. Here energy is measured in the

in the extended-wave pairing correlation at half-filling. units of photon energye; ande, are the transition energies
As we have explicit expressions fd(Us) andV(Ug) in of the two species of the two-level atoms ands the total

this simple model, we take this opportunity to see how thenumber of atomsof both types. The coupling of the atoms

sum rule stated in the beginniri&q. (6)] is satisfied in the  of different types to the field is assumed to be the same, i.e.,

thermodynamic limit. Setting as given in Eq(16) into Eq. y which is an intensive number proportional to tkie/V,

(26) (and writingUs as)), we get whereV is the volume of the cavity. The operatds$, are
known as the population inversion operators in quantum op-
2(4+\L i + - ;
T(\)=—Lp—2+ ( P) @ tics. The operator§; , andS, , are such that the total electric

dipole operator of the atomic subsystems is proportional to
(S*+S7)1, where the magnitude of the atomic dipole ma-
L Ap+ AL(1—p)? trix element is the proportionality constafthase factor in-
VIN) == —(1-p)|. cluded in the definition o5%). In terms of the Pauli matri-

2| V16+8\Lp+\L*(1-p)? ces, S =30, andS;=3,0%/2, where the index runs over
(30 the atoms of type 1. The operatoj causes the transition of

Integrating AT(A\)/A2 from A=0 to U, and taking limit ith atom from its ground state to its excited state. Similarly,
L— givesV(0) both forp<1 andp=1. The reason why ©n€ can write corresponding operators for atoms of type 2.
the integral of a nonextensive quantityT(\) equals the These operators follovy the angglar—momentum algebra and
extensive quantity Y0) in the thermodynamic limit is that a therefore, are treated like the spin operators. _

very large contribution arises fok~O(1/L) where the The inclusion of exchange interactioll/() S, - S, in the
weight factor 1X2 becomes large. This becomes very clearHamiltonian is purely mathematical with no clear idea of
when one rescalesh as ML in the integral how such an interaction can be realized in real experiments.
JUAN[AT(A\)/NZ] to bring out a factor ofL outside the ~OF =0, this is the Dicke model of superradiafi¢@ for

" 0 S . . two species of atoms. It has a superradiant ground state with
integral. The remaining integral is a number in the thermo-<a>w\/t and (S+ )~ L2, Here are thex.v Compo-
dynamic limit which is precisely¥/(0). Thus, we see that the StS) : Scy Y p

sum rule is saturated for the~ O(1/L). nents ”o_f the total “spln’_’ S +S,. T_hus, “superradiant
phase” is a thermodynamic phase with large number of at-

oms in their excited states, in cooperation with the photons
IV. ORDER BY PROJECTION unlike a “normal” phase where all atoms are in their ground
AND ANTISUPERRADIANCE states. It is a phase where photons condense and two atomic
subsystems develop in-phase macroscopic dipoles. Superra-

In this sectiqn we study a system of two—le\_/el atomsdiance is attained below a certain temperaffidor y?> ¢
coupled to a single-mode radiation field, and |nteract|ng{,\lheree_1_(E_l_i_6_1)/2 Fory2<e, the system is);mrm’al
—\“1 2 ' ! :

among themselves via an “exchange” interaction. The mo—F 120 th h d break th .
tive is to discuss the relationship of order by projection in0" J=0, the exchange term tends to break the cooperation

quantum optics. The model Hamiltonian that we study herdetween the field and atoms. For suitable strengt,dt
is given as drives the systems to a new ground state where two atomic

subsystems develop out of phase dipoles and photons do not
condense. ThugS;+S))=0 and(a)=0. We identify it as

At z 2, Y ot ot the antisuperradiant stafthis term is borrowed from Man-
Hoy=arat e+ aS,+ \/[[(Sl tS)a del and Wolt?). This is in analogy with the states identified
with extremely weak decay which have been observed
experimentally? for a system of low-density excited mol-
ecules enclosed between metallic mirrors. The model equa-

V16+8ALp+A2L%(1—p)?’

J
+aT(s;+sg)]+Esl-sz, (31)
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tion (31) is studied by mean-field methods and by using theATA)~L3? and AE,~L"Y2 Thus the energy density is un-
Holstein-Primakoff transformation. The phase diagram obchanged and there is quasi-LROAmat half-filling. The nu-
tained is shown in Fig. 7. merical results fofATA) andAE, are presented for model II
The coupling of atoms to the radiation can be viewed aswith linear dispersion. They are in agreement with the above
an effective interaction, —(y?/L)(S; +S,)(S; +S,),  behavior of the correlation function and the ground-state en-
among atoms. This is the same as what we studied for thergy. We briefly discuss the attractive case of model IlI
case of superconductivity in the metallic grains in Sec. Ill A.which is equivalent to the reduced BCS model of supercon-
Extending this analogy further, projecting axvave Cooper  ductivity. Finally, we discussed the possible relevance of or-
pairing can be taken as projecting out superradiance in thder by projection in quantum optics. We discussed antisuper-
atom-field system. Under this projection, ordering occurs inradiance and found that it does not necessarily imply order
the operatorA=¢,S; + ¢€,S, , due to antiparallel transverse by projection, though it may be a region of phase diagram to
fluctuations fore; # €, and totalS*=0. Adding an exchange look for order by projection.
term to the Dicke model has a similar effect of suppressing In conclusion, we explicitly showed that the extended
superradiance, though it does not project out superradiance:.wave pairing correlations are enhanced in the close prox-
Thus, it is clear that antisuperradiance does not necessarilgnity of half-filling by suppressings-wave pairing, and the
imply order inA, but the antisuperradiant phase in Figh)7  system attains critical superconducting order in the extended

is a region where one can look for order by projection. s-wave channel at half-filling. Thus, these results support the
possibility of the superconductivity arising from pure repul-
V. SUMMARY AND CONCLUSION sion with no explicit attractive interaction. We have also

. pointed out the similarity of models studied in the case of
In this paper we have explored the phenomenon of “ordekperconductivity in metallic grains and the atom-field sys-
by projection” within a simple and solvable model in detail. tem and the spin model exhibiting order by projection.
We derived a sum rule for the lattice Fermi systems with

s-wave projection which relates the intensive change in the
kinetic energy to the extensive interaction energy. We solved
the simple spin model both exactly and semiclassically. It is
shown explicitly that away from half-filling(ATA)~1/(1 We are grateful to G. S. Agarwal and B. I. Halperin for
—p) and that the energy shifkE, is intensive. Atp=1, useful comments.

ACKNOWLEDGMENTS

1W. Kohn and J.M. Luttinger, Phys. Rev. Lefi4, 524 (1965. 8C.T. Blacket al, Phys. Rev. Lett76, 688(1996.

B.S. Shastry, J. Phys. 80, L635 (1997. 9Y K. Wang and F.T. Hioe, Phys. Rev. A 831(1973.

3B.S. Shastry, J. Phys. B2, L345 (1999. 10K, Hepp and E.H. Lieb, Phys. Rev. & 2517(1973.

4H. Yasuhara, Nuovo Cimentb2, 418 (1975. 1. Mandel and E. WolfOptical Coherence and Quantum Optics
5J. von Delftet al, Phys. Rev. Lett77, 3189(1996. (Cambridge University Press, Cambridge, England, 1995

6K.A. Matveev and A.l. Larkin, Phys. Rev. Left8, 3749(1997. 12K H. Drexhage inCoherence and Quantum Optjedited by L.
7. Dukelsky and G. Sierra, Phys. Rev. L&B3, 172(1999. Mandel and E. WolfPlenum, New York, 1973



