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Models exhibiting order by projection

Brijesh Kumar and B. Sriram Shastry
Department of Physics, Indian Institute of Science, Bangalore 560012, India

~Received 9 August 1999!

We present calculations on a simple spin model which shows the phenomenon oforder by projection. We
discuss a two-level atomic system coupled to the radiation field to explore the possible relevance of order by
projection in quantum optics. We point out the similarity between the effective Hamiltonian for the two-level
atoms and the reduced BCS Hamiltonian used in the study of the ultrasmall metallic grains, and we present
some calculations to show the transition from a nonsuperconducting to a superconducting ground state in the
grains. We present a sum rule for the interacting electron systems on a lattice, exhibiting order by projection.
This relates a nonextensive change in the ‘‘kinetic energy’’ due to a projection term to the extensive expec-
tation value of the interaction in the ground state without projection.
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I. INTRODUCTION

There is considerable recent interest in models exhibi
superconductivity starting from repulsion. While popul
models, such as thet-J and Hubbard models, display supe
conducting phases within approximate treatments, such
slave boson mean field theories and the variational wa
function approach, these remain somewhat unconvincing
to the uncontrolled nature of the schemes employed. O
may, in fact, argue that apart from the Kohn-Luttinger1 result
for repulsivecontinuumelectronic systems, there is no oth
compelling result for superconductivity from repulsion.
particular, electrons on a lattice have an extra property
being ‘‘commensurate’’ at certain fillings, and it is wide
expected, but never quite proven, that this particular fea
is of great significance, especially for high-Tc systems which
are interesting near half-filling. It is therefore quite importa
to develop new nonperturbative methods and tools to inv
tigate cooperative behavior oflattice fermions. In this con-
text, a general idea termedorder by projectionhas been in-
troduced recently.2,3

The models introduced in Refs. 2 and 3 contain pair
terms, as in the BCS reduced Hamiltonian, but with la
and repulsive interactions. When transformed to the Wan
basis in real space, the added term corresponds to an in
ranged hopping of pairs of particles. Such pair hopping te
certainly occur in the lattice representation of the Coulo
interaction, but are of finite range. The theoretical models
thus in the spirit of mean-field models, the hope being t
some features of the solutions are of a general nature
transcend the limitations of the starting models. In summa
it is found that the lattice Fermi system attains enhan
extendeds-wave superconducting fluctuationsA in the prox-
imity of half-filling in reaction to the suppression of on-si
s-wave fluctuationsB ~defined below!. The uncertainty prin-
ciple plays a crucial role in this since thes-wave and the
extendeds-wave ordering operators are recognized to
conjugates. Half-filling plays a special role in this enhan
ment, since only in its proximity can one suppressboth
^B†B& and ^BB†&.

The above works have used a combination of techniqu
including rigorous inequalities and variational methods, o
class of models that are typified by either the Hubb
PRB 610163-1829/2000/61~16!/10716~9!/$15.00
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model, or the kinetic energy, to which we add a pure rep
sive BCS-like interaction. The rigorous methods tell us th
the extendeds-wave correlation function is bounded from
below by const/(12r), where r is the filling, and hence
there is a large ‘‘Gutzwiller’’-type enhancement.

While the above work gives us an interesting and uniq
direction, several questions concerning the models and t
behavior remain poorly understood. At precisely half-fillin
the rigorous inequalities do not give us any guidance w
reference to the question of whether the correlation funct
has actual long-ranged order~LRO!, or if it is only critical,
i.e., }L 11h (1.h.0). We discover here that the solution
do not have a true long-ranged order, and are supercond
ing only in the sense that the~normalized! correlations~simi-
lar to the Bragg’s structure function in diffraction! ^A†A&/L
diverge in the thermodynamic limit. Also it is not clear if th
ground-state energy density is affected at half-filling. The
is also the issue of energy balance away from half-filling;
know from the inequalities that the interaction does n
change the energy density, and yet one expects nonexten
energy corrections both for the potential and the kinetic
ergies. Can one say a little more about these?

Most of the explicit results obtained so far concern t
repulsive BCS model with a large repulsive coupling co
stant, for which the variational calculations3 bear out rather
well the expectations arising from the general method
inequalities.2 Barring the degeneracies of single-particle le
els, the latter model actually maps on to a spin model
one-dimension, where energy plays the role of the sin
dimension. The model, described more fully later in th
work, turns out to be difficult to solve explicitly, and wa
analyzed numerically in Ref. 2 by means of exact diagon
ization for rather short chains, with a view to answer t
above questions. In this work we extend the numerical
sults further to bigger systems and obtain more robust
sults.

In this work we introduce and solve explicitly and exact
a rather simple model that is inspired by the above s
model. This spin model consists of a large number of tw
level systems; these interact via a spin-flip coupling that
the same form as in the above spin model, and the simp
cation consists of replacing a gradual variation of energie
the Zeeman part~representing the filled Fermi sea in the fir
10 716 ©2000 The American Physical Society
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PRB 61 10 717MODELS EXHIBITING ORDER BY PROJECTION
instance! by just a pair of energies. The model contains ma
elements of the more general models, but not all. The g
advantage, however, is that the usual semiclassical meth
such as the Holstein-Primakoff transformation, help us so
this simplified model exactly in the thermodynamic lim
and also give an estimation of the finite size correctio
Variations of this model also arise in the study of two lev
systems in Quantum Optics, and we explore the connect
in this work.

We find that a variant of the Feynman-Hellman coupli
constant integration theorem can be utilized to formulat
rather remarkable sum rule in the models considered h
The sum rule equates an extensive expectation value
weighted coupling constant integral of the kinetic-ener
shift; the latter is not extensive, and yet adds up due to
weight factor to an extensive result. While this sum rule
true quite generally for this class of models, the above s
plified model gives us an explicit example of the rule
work, and provides a ‘‘feel’’ for the nature of finite siz
corrections.

The organization of the paper is as follows. In Sec. II
define the general Hamiltonian withs-wave projection and
derive the sum rule. We next present numerical results
the spin model with a linear dispersion relation at half-fillin
and we discuss their implications for the behavior of cor
lations and energy at half-filling in the general models.
Sec. III we present the simplified spin Hamiltonian and p
ceed with its exact solution by semiclassical methods.
first present some calculations on the spin model with
interaction being negative and of the order of inverse sys
size, as in the usual BCS model. We then discuss the ca
repulsion in great detail. In Sec. IV we consider the quest
whether the idea of order by projection can be useful for
two-level atoms interacting with the radiation field. Finall
in Sec. V we present a summary of the results.

II. THE MODELS AND A SUM RULE

We collect together in this section the various mod
treated in this paper. To start with, the general Hamilton
for the interacting electrons withs-wave projection, as intro-
duced in Ref. 2, is the following:

H5(
i , j

(
s

t i j cis
† cj s1U(

i
ni↑ni↓1UsB

†B ~model I!.

~1!

The first two terms in Eq.~1! with U.0 give the Hubbard
model, and the third term is new, and represents the on
s-wave projection term forUs.0 and of O(1). Here, the
operatorB5( ici↓ci↑ is the on-sites-wave pairing operator
We refer to this as model I in the following. This added te
is of particular interest for the present work, since it leads
an enhancement in the extendeds-wave correlations. For
completeness note that the extendeds-wave pairing operator
is defined asA522Skekc2k↓ck↑ , whereek522t@cos(kx)
1cos(ky)# on a square lattice, withk the momentum labe
and t the nearest-neighbor hopping amplitude.

The second model considered here corresponds to se
U50 in model I, whereby it reduces to the repulsive vers
of the reduced Hamiltonian of BCS, with a ‘‘large’’ couplin
constantUs ~since the latter is written for attractive intera
y
at
ds,
e
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tions with a coupling constant ofO(1/L) so that the energy
is extensive in the ordered state!. It is possible2 to write it in
spin notation using the Anderson mapping of the BCS p
ing operators to pseudospinssi

15cki↑
† c2ki↓

† and si
z5 1

2 (nki↑
1n2ki↓21). We find the following spin-1/2 Hamiltonian:

H5(
i

L

e i~2si
z11!1Us(

i , j

L

si
1sj

2 ~model II!. ~2!

We refer to this as model II in the sequel. Note that indexi,
here, corresponds to thei th k mode in the momentum space
and the transformation is meaningful only in the subsp
where pairs (k↑,2k↓) are either absent or present. The ele
trons that are not parts of a Cooper pair are thus unaffe
by the interaction and are ignored. In the literal mapping
the BCS model, we would find each energy levele i having a
large degeneracy, corresponding to the degeneracies o
cosine bands, but in the effective model treated here,
simply consider each energy level as nondegenerate. The
ergies are assumed to have a linear dispersione i52 1

2 1@( i
21)/(L21)#, so that we have a structureless density
states. The linear ‘‘ramp’’ of energies thus represents
fermionic energy levels filled up to a certain level, and t
number of electrons is given byN5( j (112sj

z), which also
is twice the number of Cooper pairs. Half-filling clearly co
responds to the sectorstotal

z 50.
We finally indicate the simplified model that is obtaine

by further approximating the above model II. We restrict t
energiese i to be21(11) for i ,L/2(i .L/2) and find

H52(
i

L/2

2~si
z2si 1L/2

z !1Us(
i , j

L

si
1sj

2 ~model III!.

~3!

In Sec. III, we rewrite this model in more convenient ways
bring out the solvability and we present detailed calculatio
in various cases.

A. Sum rule

We now present an important sum rule for the gene
Hamiltonian equation~1! which relates the nonextensiv
change in the expectation value of the Hubbard part of
Hamiltonian equation~1! due toUs , to the expectation value
of B†B in the ground state withUs50. For convenience, le
us write Eq.~1! asH5T1UsV, whereT stands for the Hub-
bard part andV stands forB†B. For U50, T is simply the
kinetic energy of the electrons. The expectation values
operatorsT andV in the ground state, for a particular valu
of Us , are denoted byT(Us) andV(Us), respectively.

Let E(Us) be the ground-state energy of the Hamiltoni
equation~1! for a particular value ofUs . The Feynman-
Hellman theorem states thatDE(Us)5E(Us)2E(0)
5*0

UsdlV(l). From the general arguments of Ref. 2 w
know that

DE~Us!5E
0

Us
dlV~l!;o~L !. ~4!

Here,L stands for the system size ando(L) implies that the
quantity is nonextensive, unlikeO(L) which says that
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FIG. 1. The extendeds-wave correlation function,̂A†A&, at half-filling is plotted against~a! L3/2, and ~b! L2 for chains of length up
to 22.
-

e

n

-
r-

l I
i

rt
rge
be
s
e
ins.

se
ee

wo
nc-

n
ical
-

d-
l

the quantity goes likeL. Thus Eq. ~4! implies that
DE(Us)/L→0 asL→`, i.e., the energy shift is nonexten
sive. Using lV(l)5DE(l)2DT(l), and manipulating a
bit, we derive4 the following relation for the change in th
ground-state energy, in the presence of thes-wave projection
term:

DE~Us!5UsS V~0!2E
0

Usdl

l2DT~l! D , ~5!

whereDT(l)5T(l)2T(0). Equation~5! is true in general
whereas Eq.~4!, namely, is true only for the Hamiltonia
equation~1!. These two together imply the following sum
rule:

V~0!5E
0

Usdl

l2 DT~l!1o~L !. ~6!

This is quite remarkable as an extensive quantityV(0) is
equated by integration over an intensive quantityDT(l) in
the thermodynamic limit. In Sec. III B 3 we will see explic
itly how two sides of Eq.~6! equate each other, in the the
modynamic limit@see Eqs.~29! and ~30!#.

B. Numerical results for model II

Here we present extended numerical results for mode
As mentioned in the Introduction, this model was studied
I.
n

Ref. 2 and a preliminary numerical investigation of sho
chains with L up to 14 were presented for somewhat la
values ofUs . In Ref. 2 the numerics was interpreted to
consistent witĥ A†A&;L2. However, the analytical result
of Ref. 3 give^A†A&;L3/2. In order to resolve this issue w
have computed these correlation functions for longer cha

We computed ground-state energyEg , ^A†A&, and^B†B&
numerically as a function of system sizeL at half-filling up
to L522 for Us50.5,1.0,1.5, and 2.0. The results of the
numerical calculations are shown below. In Fig. 1 we s
that the data go fairly linearly when plotted againstL3/2 as
compared to when plotted againstL2, especially for small
Us . This favors the theoretical understanding that^A†A&
;L3/2. In Fig. 2 we have drawn a comparison between t
possible behaviors for the ground state energy shift as a fu
tion of the system sizeL. If the system has true LRO the
one expects the shift to be linear in size, whereas with crit
correlations,3 the shift should be}L1/2, and hence nonexten
sive. We see that the data are more consistent withDEg

going asL1/2. We next examine the coefficients of the lea
ing terms of^A†A& and theDEg , since we have variationa
estimates for these in Ref. 3:

Eg

L
'enon12

AUsa~0!

Aum1uL
, ~7!
FIG. 2. The ground-state energy shiftDEg at half-filling is plotted against~a! L1/2 and ~b! L for chains up toL522.
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FIG. 3. Various estimates of the coefficients of the leading-order terms for~a! DEg(;L1/2) and ~b! ^A†A&(;L3/2).
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Aa~0!um1uUsL

1/2. ~8!

Here a5^A†A&/(4L) and m15(1/L)(kek(2 f k21). The
a(0) is the value ofa for Us50. For linear dispersion
a(0)5(L11)/@24(L21)# andm152L/@4(L21)#. There-
fore, from Eqs. ~7! and ~8! one finds that ^A†A&
'AUs/24L3/2 and (Eg2Eg

0)'A2Us/3L1/2 in the thermody-
namic limit. We also have a heuristic result for^A†A& and
DEg in terms of m1 ,DEg;A2Usum1uL and a
5(1/2A2)AUsum1u3L at half-filling, obtained from a func-
tional integral approach. These are equivalent to replac
a(0) by um1u2/2 in the variational results.

In Fig. 3 the numerical estimates of the coefficients of
leading-order term of̂ A†A& and DEg in L are shown to-
gether with the variational and the heuristic results. The
ter is closer to the numerical value. We thus see that
theoretical estimates and the exact numerics for relativ
short chains are qualitatively in consonance in sugges
critical order rather than true LRO at half-filling. Detaile
examination shows that there are some discrepancies in
coefficients of the leading behavior; these seem to bec
larger for modestly large values ofUs , implying that the
values ofUs in Ref. 2 were much too large. It seems th
further finites size studies on longer systems may be nee
to be completely sure of the final coefficients.

III. SIMPLIFIED SPIN MODEL

For a fairly simple choice of the dispersion relation,
mentioned earlier, model III is derived from model II. Let u
label the group of spins withe521 asa and withe51 asb.
Then model III can be rewritten in the following convenie
form:

H52~2Sa
z1Sb

z!1Us~Sa
11Sb

1!~Sa
21Sb

2!. ~9!

Here, Sa5S1
L/2si and Sb5SL/211

L si . This turns out to be a
problem of two large spinsSa andSb coupled to each othe
antiferromagnetically. The analog ofs-wave and extended
s-wave pairing operators for this spin problem areB5Sa

2

1Sb
2 andA52(Sa

22Sb
2).
g

e

t-
e
ly
g

he
e

t
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A. Attractive case : UsÄÀgÕL

Before considering the repulsive case (Us.0 and
;O(1)) for Eq. ~9!, we briefly discuss the attractive cas
with Us52g/L, whereg;O(1) and positive. It is clearly
the case of conventional BCS-type superconductivity.

At half-filling ( r51), the spin Hamiltonian equation~9!
with attractive interaction shows a first-order phase transit
from the normal to superconducting ground state asg is
varied. In the thermodynamic limit,DEg5Eg(g)2Eg(0) is

DEg5H 221A2~22g!, g,2

2L~g/4!~122/g!2, g>2.
~10!

We also calculate thêB†B& correlation function in the ther-
modynamic limit. To the leading order inL, at r51,

^B†B&5H L/A2~22g!, g,2

~L/2!2@12~2/g!2#, g>2.
~11!

We define an order parameterV5A^B†B&/L ~in analogy
with usual mean-field theory!. Here, we see that in the the
modynamic limit, there is true LRO in̂B†B&, and DEg is
extensive. Figure 4 shows the exact diagonalization and
semiclassical results for the change in the ground-state
ergy in Eq.~10!. Figure 5 showsV as a function ofL andg.
We see that for large enoughL, the ground state is supercon
ducting for g.2 and normal forg,2. Here, atr51, g
52 is special because the interaction can make one spin
only if it gains an energy of amount 2 at least~which is the
bandwidth!. For smaller systems,V is significantly nonzero
for g,2, and also deviates from its thermodynamic behav
in the regiong.2.

It is worth mentioning that the reduced BCS model f
studying superconductivity in the ultrasmall met
particles5–7 can easily be mapped to the model II withUs
52g/L, and can further be approximated by the simp
model III studied here. The results obtained here are in
qualitative agreement with the experimental observation8

First, the finite size order parameter is always greater than
thermodynamic value. Second, the system is supercond
ing for average level spacing, 2/L, less than interaction,g/L.
Issues such as crossover from bulk behavior to small
behavior cannot be studied rigorously here because of
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FIG. 4. Superconducting transition atr51. ~a! g52.4, ~b! L 5 400.
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simple structure of the Hamiltonian, i.e., since the density
states is structureless and independent ofL. As Sa andSb are
large spins, the quantum fluctuations are also insignifica

B. Repulsive case:UsÌ0 and ÈO„1…

This corresponds to the projection ofs-wave pairing. In
the following sections we discuss this case in detail.

1. Exact diagonalization

We now proceed to solve this model explicitly and e
actly. Let us note that the operatorsSa

2 andSb
2 commute with

the operatorsSa,b
6,z and, therefore, commute with the spi

Hamiltonian equation~9!. The operatorSz5Sa
z1Sb

z also
commutes with the same. Thus, we have three conse
quantitiessa and sb , the quantum numbers associated w
spinsSa andSb , andn, the quantum number associated w
total Sz. For the exact diagonalization of the spi
Hamiltonian equation~9!, we choose the basis states to
the product states of the two spinsSa andSb . We write the
basis states asun,sa ,sb ;m&5usa ,m&usb ,n2m&. For a given
filling r5N/L, where N is the number of electrons on
lattice withL number of sites, the allowed values of quantu
numbers are
f

.

ed

n52
L

2
~12r!, smin<sa<

L

4
,

~12!

max~smin ,unu2sa!<sb<minS L

2
2sa ,

L

4D ,

wheresmin is 0 for evenL/2, and 1/2 for oddL/2. Only those
values ofsa are acceptable for which the max(smin,unu2sa)
<min(L/22sa ,L/4). Given the values ofn,sa , and sb ,
the running indexm in the basis states is such that m
(n2sb ,2sa)<m<min(n1sb ,sa). We diagonalize the Hamil-
tonian matrix for fixed values ofn,sa , and sb . The mini-
mum eigenvalue corresponds tosb5L/4 and sa5Lu2r
21u/4. This we identify as the ground-state energy and
corresponding eigenvector as the ground state of the sys
Fillings r<1/2 are not interesting as the operatorsA andB
annihilates the ground state of the spin-Hamiltonian equa
~9!. We confine our calculations close to half-filling (r51)
as it is where one expects large enhancement in the exte
s-wave pairing correlations.

2. Analytical results in the thermodynamic limit

As we noticed above, the quantum numberssa andsb for
the ground state are proportional to system sizeL. More
precisely, the ground state forr.1/2 corresponds tosa
5L(2r21)/4 and sb5L/4. Therefore, in the thermody
namic limit we use the Holstein-Primakoff~HP! transforma-
FIG. 5. V as a function ofg. Plot ~b! shows the deviation inV from its thermodynamic behavior for small system size.
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PRB 61 10 721MODELS EXHIBITING ORDER BY PROJECTION
tion. This semiclassical approximation enables us to get a
lytical expressions for various quantities likeEg ,^A†A&, etc.
to the leading order in the system size.

Let a and b be canonical bose operators, then the
transformation states

Sa
15A2sa2a†aa, Sb

15b†A2sb2b†b,

Sa
25a†A2sa2a†a, Sb

25A2sb2b†bb, ~13!

Sa
z5sa2a†a, Sb

z52sb1b†b.

For largeL we expand square roots appearing in Eq.~13!
only up to first order ina†a/2sa and b†b/2sb . This trans-
forms the spin-Hamiltonian equation~9! into the following
bosonic Hamiltonian:

H5H01H21H41O~1/L !, ~14!

where

H0522~sa1sb11!12Us~sa2sb!,

H252@~11saUs!a
†a1UsAsasb~ab1b†a†!

1~11sbUs!bb†#, ~15!

H452Us~a†aaa†1b†b†bb!

2
Us

2
AsasbF ~a†aab1b†a†a†a!

sa

1
~b†bba1a†b†b†b!

sb
G .

H4 is of O(1) @becuaseUs;O~1!# andH01H2 is of order
L. Therefore,H4 can be treated as a small perturbation to
H01H2 in the thermodynamic limit and is used to find o
the higher-order corrections, and it is not important to co
siderH4 for the leading-order calculation.

The quadratic HamiltonianH2 is diagonalized by the ca
nonical transformation of (a,b) to a new set of Bose
operators (h,g) defined as a5cosh(u)h2sinh(u)g† and
b†52sinh(u)h1cosh(u)g†. The quadratic HamiltonianH2
is diagonal in the operators (h,g) for the following value of
u:

u5
1

2
lnF 41UsLr1UsLA2r21

A1618UsLr1Us
2L2~12r!2G . ~16!

It is interesting to note thatu is singular atr51 in the
thermodynamic limit, and this singularity is carried over
other quantities of interest throughu,

u`5
1

2
lnS r1A2r21

12r D . ~17!

This leads us to expect thatr51 is a special filling where
the system undergoes some kind of a transition. LetEg be
the ground-state energy and we define two other quanti
a andb, related to the operatorsA andB, respectively, such
that
a-

e

-

s,

a5
^A†A&Us

4L
, b5

^B†B&Us

L
. ~18!

In the limit of largeL andr close to 1,

Eg

L
'2r1

2

L S 2r21

12r D1OS 1

L2D , ~19!

a'
2r21

~12r!
1OS 1

L D , ~20!

b'0. ~21!

At r51,

Eg

L
5211

A2Us

L1/2 2
41Us

2L
1OS 1

L3/2D , ~22!

a5
1

2 SAUs

2
2

Us

2AL
1

~112Us!

A2UsL
D L1/21OS 1

L D , ~23!

b5
1

A2UsL
2

1

2L
1OS 1

L2D . ~24!

Equation~20! is consistent with enhancement inequality
mentioned in Ref. 2. Equation~23! implies that the correla-
tion function ^A†A& goes asL3/2 and thus affirms that there
exists a quasi-long-range order in the pairing correlation
an extendeds-wave type at commensurate filling. Anothe
important point to notice is that both at and away from ha
filling, the ground-state energy density is the same as for
case without the projection term; that is, limL→`(Eg /L)
5^T&Us50 /L52r. However, the leading-order finite siz

correction to the energy per site changes from 1/L in Eq. ~19!
with a coefficient that diverges nearr51, to 1/AL atr51 as
in Eq. ~22!.

Let us compare the above results with that of variatio
calculation on model I withU50, as given in Ref. 3. There
at r51,Eg /L'enon12Aa(0)Us /um1uL and ^A†A&/L
'2AUsa(0)um1uL, where a5^A†A&/4L and mn

5(kek
n(2 f k21)/L. Here,enon is the noninteracting energ

density, anda(0) is the value ofa at Us50. For the present
choice of dispersion relation, that ise i521(11) for i
<L/2(.L/2),a(0)5r/2, andm152r. At r51, we obtain
2a'AUs/2L1/2 and Eg /L'211A2Us /L which is the
same as given above. The heuristic results are also the s
in this case. In terms ofm1, away from half-filling, the lower
bound on^A†A& given by the enhancement inequality2 is
;2m1

2L/(12r). We find that the exact result is twice th
value of the lower bound. Thus close to half-filling,a
;1/(12r), which is consistent with Eq.~20!.

Figure 6 compares the results of exact diagonalizat
with the semiclassical analytical calculations. One can se
good agreement between the equations of the best-fit cu
for the exact diagonalization data and the semiclass
leading-order expressions forEg and ^A†A&.
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FIG. 6. Continuous lines are the best-fit lines and the points are the exact diagonalization results.~b! and~d! are at half-filling whereas
~a! and ~c! are atr50.9 and 0.8, respectively.
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3. Variational approach

We next perform a variational calculation for th
bosonized Hamiltonian equation~14!. The motivation for
this digression is that the variational approach, while yie
ing finally the same result as in the above exact diagonal
tion, gives additionally a picture of the competing energi
It also gives a useful hint in the cases where exact diago
ization is not possible.3 In the thermodynamic limit, we ne
glect H4 and all higher terms. As we are interested in t
ground state, we putsa5L(2r21)/4 andsb5L/4. Then the
kinetic-energy part of the spin-Hamiltonian equation~9!,
viz., T52(2Sa

z1Sb
z), becomes T52Lr12(a†a1b†b),

under the HP transformation and the potential-energy te
Us(Sa

11Sb
1)(Sa

21Sb
2), becomes V5(UsL/2)(A2r21a

1b†)(A2r21a†1b). We useucv&5exp@2u(b†a†2ab)#u0&
as the variational ansatz for the ground-state wave funct
Here u0& is the vacuum of operatorsa and b. A more
general variational wave function, viz., ucv&
5exp(2(u/2L)@T,B†B#uf& has been discussed for mode
exhibiting order by projection in Ref. 3 whereuf& is the
ground state of the Hamiltonian without projection. T
variational wave function used in the present work is a s
cial form of the more general one. The prefactor in the va
tional wave function generates several Cooper particles
Cooper hole pairs in the ground stateu0&. The expectation
values of operatorsT andV in this variational wave function
are

Tv~u!52Lr14 sinh2u, ~25!
-
a-
.
l-

,

n.

-
-

nd

Vv~u!5
UsL

2
~A2r21 coshu2sinhu!2. ~26!

Minimizing the variational energy,Ev(u)5Tv(u)1Vv(u),
with respect tou gives us the same value of parameteru as
given in Eq.~16!. We see that as long asu is of O(1), the
kinetic-energy shift sinh2u is nonextensive. Away fromr
51, we can thus makeVv(u) vanish by choosingu5 ln@(1
1A2r21)/A2(12r)#. At r51, we are pushed to a diverg
ing u;O(ln L), since Vv(u)5UsLe2u/2. This necessarily
costs more kinetic-energy shift, but fortunately sinh2u
;O(AL) so the shift is not extensive. One can see that in
thermodynamic limit, forr,1:

Eg52Lr1
2~2r21!

12r
, a5

2r21

12r
, b50. ~27!

Similarly, for r51, minimizing Ev(u) we get u
5 1

4 ln(UsL/2) and so

Eg52L1A2UsL,
~28!

a5
1

2
AUsL/2, b51/A2UsL.

It is nice to see that this simple spin model explicit
verifies the assertions, based on general physical argum
made in Ref. 2, namely, in the thermodynamic limit~i! the
presence of thes-wave projection term makes no differenc
to the ground-state energy per site,~ii ! it leads to the en-
hancement in the extendeds-wave pairing correlation func-
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FIG. 7. J520. ~a! e15e2, ~b! e2@e1. The figure withe1Þe2 gives rise to an antisuperradiant phase with totalSz50.
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tion near half-filling, and~iii ! there is quasi-long-range orde
in the extendeds-wave pairing correlation at half-filling.

As we have explicit expressions forT(Us) andV(Us) in
this simple model, we take this opportunity to see how
sum rule stated in the beginning@Eq. ~6!# is satisfied in the
thermodynamic limit. Settingu as given in Eq.~16! into Eq.
~26! ~and writingUs asl), we get

T~l!52Lr221
2~41lLr!

A1618lLr1l2L2~12r!2
, ~29!

V~l!5
L

2 F 4r1lL~12r!2

A1618lLr1l2L2~12r!2
2~12r!G .

~30!

IntegratingDT(l)/l2 from l50 to Us , and taking limit
L→` givesV(0) both forr,1 andr51. The reason why
the integral of a nonextensive quantityDT(l) equals the
extensive quantity V~0! in the thermodynamic limit is that a
very large contribution arises forl;O(1/L) where the
weight factor 1/l2 becomes large. This becomes very cle
when one rescales l as l/L in the integral
*0

Usdl@DT(l)/l2# to bring out a factor ofL outside the
integral. The remaining integral is a number in the therm
dynamic limit which is preciselyV(0). Thus, we see that the
sum rule is saturated for thel;O(1/L).

IV. ORDER BY PROJECTION
AND ANTISUPERRADIANCE

In this section we study a system of two-level atom
coupled to a single-mode radiation field, and interact
among themselves via an ‘‘exchange’’ interaction. The m
tive is to discuss the relationship of order by projection
quantum optics. The model Hamiltonian that we study h
is given as

HDJ5a†a1e1S1
z1e2S2

z1
g

AL
@~S1

11S2
1!a

1a†~S1
21S2

2!#1
J

L
S1•S2 , ~31!
e

r

-

g
-

e

whereJ;O(1) and positive. Here energy is measured in t
units of photon energy,e1 ande2 are the transition energie
of the two species of the two-level atoms andL is the total
number of atoms~of both types!. The coupling of the atoms
of different types to the field is assumed to be the same,
g which is an intensive number proportional to theAL/V,
whereV is the volume of the cavity. The operatorsS1,2

z are
known as the population inversion operators in quantum
tics. The operatorsS1,2

1 andS1,2
2 are such that the total electri

dipole operator of the atomic subsystems is proportiona
(S11S2)1,2 where the magnitude of the atomic dipole m
trix element is the proportionality constant~phase factor in-
cluded in the definition ofS6). In terms of the Pauli matri-
ces,S1

15( is i
1 andS1

z5( is i
z/2, where the indexi runs over

the atoms of type 1. The operators i
1 causes the transition o

i th atom from its ground state to its excited state. Similar
one can write corresponding operators for atoms of type
These operators follow the angular-momentum algebra
therefore, are treated like the spin operators.

The inclusion of exchange interaction, (J/L)S1•S2, in the
Hamiltonian is purely mathematical with no clear idea
how such an interaction can be realized in real experime
For J50, this is the Dicke model of superradiance9,10 for
two species of atoms. It has a superradiant ground state
^a&;AL and ^Sx

21Sy
2&;L2. Here,Sx,y are thex,y compo-

nents of the total ‘‘spin’’ S11S2. Thus, ‘‘superradiant
phase’’ is a thermodynamic phase with large number of
oms in their excited states, in cooperation with the photo
unlike a ‘‘normal’’ phase where all atoms are in their grou
states. It is a phase where photons condense and two at
subsystems develop in-phase macroscopic dipoles. Sup
diance is attained below a certain temperatureTc for g2.e,
wheree215(e1

211e2
21)/2. Forg2,e, the system is normal

For J.0, the exchange term tends to break the coopera
between the field and atoms. For suitable strength ofJ, it
drives the systems to a new ground state where two ato
subsystems develop out of phase dipoles and photons do
condense. Thus,̂Sx

21Sy
2&50 and^a&50. We identify it as

the antisuperradiant state~this term is borrowed from Man-
del and Wolf11!. This is in analogy with the states identifie
with extremely weak decay which have been observ
experimentally12 for a system of low-density excited mo
ecules enclosed between metallic mirrors. The model eq
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tion ~31! is studied by mean-field methods and by using
Holstein-Primakoff transformation. The phase diagram
tained is shown in Fig. 7.

The coupling of atoms to the radiation can be viewed
an effective interaction, 2(g2/L)(S1

11S2
1)(S1

21S2
2),

among atoms. This is the same as what we studied for
case of superconductivity in the metallic grains in Sec. III
Extending this analogy further, projecting outs-wave Cooper
pairing can be taken as projecting out superradiance in
atom-field system. Under this projection, ordering occurs
the operator,A5e1S1

11e2S2
1 , due to antiparallel transvers

fluctuations fore1Þe2 and totalSz50. Adding an exchange
term to the Dicke model has a similar effect of suppress
superradiance, though it does not project out superradia
Thus, it is clear that antisuperradiance does not necess
imply order inA, but the antisuperradiant phase in Fig. 7~b!
is a region where one can look for order by projection.

V. SUMMARY AND CONCLUSION

In this paper we have explored the phenomenon of ‘‘or
by projection’’ within a simple and solvable model in deta
We derived a sum rule for the lattice Fermi systems w
s-wave projection which relates the intensive change in
kinetic energy to the extensive interaction energy. We sol
the simple spin model both exactly and semiclassically. I
shown explicitly that away from half-fillinĝ A†A&;1/(1
2r) and that the energy shiftDEg is intensive. Atr51,
e
-

s

he
.

e
n

g
ce.
ily

r

e
d
s

^A†A&;L3/2 andDEg;L1/2. Thus the energy density is un
changed and there is quasi-LRO inA at half-filling. The nu-
merical results for̂A†A& andDEg are presented for model I
with linear dispersion. They are in agreement with the abo
behavior of the correlation function and the ground-state
ergy. We briefly discuss the attractive case of model
which is equivalent to the reduced BCS model of superc
ductivity. Finally, we discussed the possible relevance of
der by projection in quantum optics. We discussed antisup
radiance and found that it does not necessarily imply or
by projection, though it may be a region of phase diagram
look for order by projection.

In conclusion, we explicitly showed that the extend
s-wave pairing correlations are enhanced in the close pr
imity of half-filling by suppressings-wave pairing, and the
system attains critical superconducting order in the exten
s-wave channel at half-filling. Thus, these results support
possibility of the superconductivity arising from pure repu
sion with no explicit attractive interaction. We have al
pointed out the similarity of models studied in the case
superconductivity in metallic grains and the atom-field s
tem and the spin model exhibiting order by projection.
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