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Equilibrium and dynamical properties of the axial next-nearest-neighbor Ising chain
at the multiphase point

Abhishek Dhar, B. Sriram Shastry, and Chandan Dasgupta
Physics Department, Indian Institute of Science, Bangalore 560012, India

~Received 28 December 1999!

We study the equilibrium and dynamical properties of the axial next-nearest-neighbor Ising chain at the
multiphase point. An interesting property of the system is the macroscopic degeneracy of the ground state
leading to finite zero-temperature entropy. In our equilibrium study we consider the effect of softening the
spins. We show that the degeneracy of the ground state is lifted and there is a qualitative change in the
low-temperature behavior of the system with a well-defined low-temperature peak of the specific heat that
carries the thermodynamic ‘‘weight’’ of the ground state entropy. In our study of the dynamical properties, the
stochastic Kawasaki dynamics is considered. The Fokker-Planck operator for the process corresponds to a
quantum spin Hamiltonian similar to the Heisenberg ferromagnet but with constraints on allowed states. This
leads to a number of differences in its properties, which are obtained through exact numerical diagonalization,
simulations, and by obtaining various analytic bounds.

PACS number~s!: 05.50.1q, 02.50.Ey, 05.40.2a
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I. INTRODUCTION

The axial next-nearest-neighbor Ising~ANNNI ! chain is
one of the simplest systems with competing interactions.
defined by the following Ising spin Hamiltonian:

H5(
i 51

L

~J1sisi 111J2sisi 12!, si561. ~1!

For J2.0, the interactions are competing and one can h
different ground states depending on the relative strength
the interactions. An especially interesting case is the p
J152J2, the so-called multiphase point, where the grou
state is no longer unique. It can be shown that any s
configuration that does not have three consecutive spin
the same sign is a ground state. For a chain of lengthL, the
number of ground states;mL, wherem5(A511)/2 is the
golden mean@18#. Thus there are an exponentially larg
number of degenerate ground states and the system has
zero-temperature entropy per spin. The model has been
tensively studied in both one and higher dimensions an
known to have a rich and interesting phase diagram@1#. In
this paper we consider some aspects of the equilibrium
dynamical behavior of the ANNNI chain at the multipha
point.

In our equilibrium study we consider the effect of softe
ing the spins, that is, allowing them to take continuous
stead of discrete values. It is usual in the study of spin m
els to consider soft-spin versions of discrete spin models
well-known example is the Ginzberg-Landau Hamiltonia
which is a continuum version of the discrete Ising mod
Other examples occur in the study of spin glass models.
instance, the soft-spin version of the Sherrington-Kirkpatr
~SK! @2# model was studied@3# in the context of dynamics
The reason for going to soft-spin versions is that they
often more amenable to theoretical approaches. It is usu
expected that qualitatively the soft and hard spin versi
should show similar behavior.
PRE 621063-651X/2000/62~2!/1592~9!/$15.00
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For models with multiple ground states, arising out
frustration, softness may, however, change the degene
completely, as may be seen in a three-spin example, or a
the present case as we shall show here. The effect of
softening in systems with competing interactions has b
studied earlier by several authors. Seno and Yeomans@4#
have looked at the effect of softening spins at the multiph
point of a clock model. They find, using a perturbati
method, that as a softness parameter is varied the sy
goes through a series of different ground states. In this w
we use a similar perturbative method to prove that the m
roscopic degeneracy of the ground state in the ANN
model is lifted by the smallest amount of softness. We th
show explicitly how the release of the zero-temperature
tropy results in qualitative differences in the low-temperatu
properties of the system. This is similar to the recently o
served phenomena of entropy release in spin-ice systems@5#.
We also construct an effective hard-spin Hamiltonian to
scribe the low-temperature properties of the soft-spin mo
We have also performed Monte Carlo simulations on
soft-spin model and verified the low-temperature predictio
of the effective Hamiltonian.

In the second part of the paper we look at the dynam
properties of the system. As noted before, the ANNNI mo
at the multiphase point has a large number of degene
ground states. It is, therefore, of interest to look at dynam
properties of the system at low temperatures. Here we
Kawasaki dynamics to evolve the system and consider z
temperature properties only. Thus two nearest-neighbor s
flip with a rateg, provided both magnetization and energ
are conserved. This dynamics was studied earlier by Das
Barma@6#. In this paper we extend their studies by using t
correspondence betweenW matrices for stochastic process
and quantum spin chains.

The correspondence between the stochastic Fok
Planck operator and quantum chains has often been explo
to derive dynamical properties. For instance, the scaling w
system size of the first excited state of the quantum Ham
tonian gives the dynamical exponent of the stochastic p
1592 ©2000 The American Physical Society



h

se
e

ely
is

w
b
ng
re

pi
th
n
ce
he
re
t
e
s

av

on
o
g
c
th
th
ls

th
o
r
n

Th
de

ec
e
in
d

e

th

ty

in
-

l is
er

bed

it

g to
ons

d
g

PRE 62 1593EQUILIBRIUM AND DYNAMICAL PROPERTIES OF THE . . .
cess. A well-known example where this correspondence
been used is in exclusion processes@7#, which are stochastic
models of hard-core diffusing particles. For such proces
it has been possible to calculate the dynamic exponent
actly by solving the corresponding quantum model, nam
the Heisenberg model@8#. The dynamics considered by us
very similar to the symmetric exclusion process~SEP! but
with added restrictions on allowed moves. To see this
first note that with the present dynamics nearest-neigh
spins with opposite signs flip, provided that the resulti
configuration satisfies the ground state constraint of no th
successive spins having the same sign. Identifying up s
with particles and down spins with holes, we see that
dynamics is equivalent to hard-core particles diffusing o
lattice with the constraint that there cannot be three suc
sive particles or holes. An interesting question is whet
these rather strong constraints make the system diffe
from the SEP. Earlier numerical work@6# seems to sugges
that the dynamics still behaves like a SEP. We note that th
have been some other recent studies on exclusion proce
with constraints on allowed configurations@9#. These cases
are solvable by the Bethe ansatz and show the same beh
as the unconstrained model.

Here we address this question of the effect of the c
straints by studying the quantum Hamiltonian. By means
exact numerical diagonalization for finite chains and throu
analytic bounds, we have tried to understand the differen
and similarities between the present Hamiltonian and
Heisenberg Hamiltonian for the SEP. We also discuss
different symmetry properties of the two quantum mode
The Heisenberg model has full rotational symmetry and
has several important implications, some of which are
direct relevance in understanding the original stochastic p
cess. For example, it implies that two-point time correlatio
in the SEP do not depend on the number of particles.
present model, on the other hand is only invariant un
rotations in theX-Y plane.

The rest of the paper is divided into two sections. In S
II, we consider equilibrium properties of the soft-spin mod
while in Sec. III we consider the dynamics of the hard-sp
model. Sec. IV contains a summary of our main results an
few concluding remarks.

II. SOFT-SPIN ANNNI MODEL

We consider the following soft-spin version of th
ANNNI model:

Hs5(
i

J~2sisi 111sisi 12!1ag~si
4/42si

2/2!,

~2!
siP~2`,`!,

where a is a dimensionless parameter that controls
amount of softness. In the limita→` we get the hard-spin
model. We will setg51 since there is no loss of generali
in doing so.

Let us first look at the ground states of the soft-sp
Hamiltonian given by Eq.~2!. To do so we look at the ex
trema ofHs which are obtained by setting]H/]si50 for all
i. This gives
as
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2J~si 111si 21!1J~si 121si 22!1a~si
32si !50. ~3!

Solving this set of coupled nonlinear equations in genera
very difficult. However, for small values of the paramet
1/a we can obtain the solutions perturbatively. Fora→` all
configurations$si% with si50,61 are solutions. Those with
$si561% correspond to the minima. For finite but largea we
try to obtain the solutions perturbatively with 1/a acting as
the perturbation parameter. We denote the unpertur
minima by the set$t i561%. Let us try the following pertur-
bative expansion:

si5 (
n50

`

t i
(n)S 1

aD n

, ~4!

where the coefficientst i
(n) are independent ofa and t i

(0)[t i

561 correspond to the unperturbed solutions in the lim
a→`. Substituting this into Eq.~3!, we get

J@2~ t i 111t i 21!1~ t i 121t i 22!#

1
J

a
@2~ t i 11

(1) 1t i 21
(1) !1~ t i 12

(1) 1t i 22
(1) !#12t i

(1)

1
1

a
@3t i~ t i

(1)!212t i
(2)#1OS 1

a2D 50.

Equating different powers of 1/a to zero we then get

t i
(1)5

2J

2
@2~ t i 111t i 21!1~ t i 121t i 22!#1OS 1

aD ,

t (2)5
2J

2
@2~ t i 11

(1) 1t i 21
(1) !1~ t i 12

(1) 1t i 22
(1) !#2

3

2
t i~ t i

(1)!2,

and so on. Thus we get 2L perturbed minima given by the
above perturbation series. The energies correspondin
these minima can now be found by putting these soluti
into the expression for energy in Eq.~2!. We thus get

E5E01E11E21O~1/a2!,

where

E05
2La

4
,

E15(
i

J~2t i t i 111t i t i 12!,

E25
1

a (
i

@~ t i
(1)!212J~ t i t i 11

(1) 1t i 11t i
(1)! ~5!

1J~ t i t i 12
(1) 1t i 12t i

(1)!]

5
2J2

2a (
i

~514t i t i 1114t i t i 1214t i t i 13

1t i t i 14!.

In the above expansion,E0 corresponds to the unperturbe
energy, whileE1 and E2 represent the corrections resultin
from the perturbation. In thea→` limit the termE1 causes



gy

ra

t
tio

o
g

th
is

ts

fo

w
re
ta
gh
in

a-

o
th

pe
ifi
w
rd

by
ari-
the
gral
we
e

ses:
-

e-
nd
d-
m-
ther
li-
in-
s
the

ous
.

del
ract
the
w-

the
ing

on
t
y in
er-
nu-

act
pin

e

d
For
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the energy levels of the 2L minima to split, with separation
between them;O(J). We recognizeE1 as the Hamiltonian
for the hard-spin ANNNI model. Thus the lowest ener
level is still mL-fold degenerate. The termE2 then causes a
further splitting of the ground states into levels with sepa
tion ;O(J2/a).

To see whether or not the macroscopic degeneracy of
ground state survives, we need to consider the interac
Hamiltonian corresponding to the energy termE2. Since we
are interested in the splitting of the lowest energy level
E1, we consider only the restricted subspace of spin confi
rations that are ground states ofE1. In this subspace the
Hamiltonian corresponding toE2 can be rewritten as

H25
23LJ2

2a
2

J2

2a (
i

~2t i t i 1214t i t i 131t i t i 14!. ~6!

Thus all the interactions are ferromagnetic. However,
ground state ofH2 is not the state with all spins up, since th
does not belong to the subspace of ground states ofE1. To
find the ground state, we write the second term inH2, which
we denote byh2, in the following form~the constant factor
J2/(2a) is suppressed!:

h252(
i

~2t i t i 1214t i t i 131t i t i 14!

52 (
i 5(4n11)

e~ t i ,t i 11 ,t i 12 ,t i 13ut i 14 ,t i 15 ,t i 16 ,t i 17!

where

e~ t1 ,t2 ,t3 ,t4ut5 ,t6 ,t7 ,t8!5t1t31t2t412t3t512t4t61t5t7

1t6t812t1t414t2t514t3t6

14t4t712t5t81t1t51t2t6

1t3t71t4t8 ~7!

and the indexn runs from 0 to (L/421) ~we takeL to be an
integral multiple of 4). By enumerating the matrix elemen
e(t1 ,t2 ,t3 ,t4ut5 ,t6 ,t7 ,t8) for all allowed spin configurations
we find that the lowest energy configuration is obtained
the periodic sequence (↑↑↓↑↑↓ . . . ) and the fiveother con-
figurations obtained by translating and flipping this. Thus
find that the infinite degeneracy of the ground state is
moved and instead we get a sixfold degenerate ground s
We note that the procedure just outlined provides a strai
forward method of finding the ground state of any sp
Hamiltonian. By numerically solving Eq.~3! for small lattice
sizes (L512) and finding the minimum energy configur
tions for a large enough (a550), we have verified that the
perturbative solutions are quite accurate.

The fact that softening of the spins results in removal
the exponential degeneracy of the ground state means
the finite zero-temperature entropy is released and we ex
it to show up in the behavior of the low-temperature spec
heat. This leads to the soft-spin model having lo
temperature properties very different from those of the ha
spin version as we shall now see.
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We note that the hard-spin model is easily solvable
transfer-matrix methods and one can exactly compute v
ous thermodynamic properties. In the soft-spin case
transfer-matrix eigenvalue equation becomes an inte
equation which we have not been able to solve. Hence
have studied the model by Monte Carlo simulations. W
have used a dynamics that allows three kinds of proces
~i! single spin-flip moves,~ii ! moves in which two nearest
neighbor spins are simultaneously flipped, and~iii ! moves
that change the length of a spin.

All three kinds of processes occur with the usual M
tropolis rates. The reason for allowing both single a
double spin flips is the following. We find that in the har
spin case equilibration times, with a single-spin-flip dyna
ics, become very large at low temperatures. On the o
hand, allowing for two spin flips results in very fast equi
bration. This is related to the fact that while the single-sp
flip dynamics atT50 is nonergodic, including double flip
makes it ergodic. We expect a similar situation even in
case of soft spins and so have included both~i! and ~ii !.
Finally, ~iii ! is necessary since the spins are now continu
variables and we need to be able to change their lengths

In order to compare the properties of the soft-spin mo
with those of the hard-spin one, it is necessary to subt
from the soft-spin free energy a part corresponding to
continuum degrees of freedom. We thus look at the follo
ing free energy:

F5~21/b!@ ln Tr e2bHs1L ln~2!2 ln Tr e2bHg#, ~8!

whereHs is as in Eq.~2!, Hg5( ia(si
4/42si

2/2), and Tr in-
dicates integration over all spin variables. We note that
above expression for the free energy is equivalent to writ
the partition function in the form

Z5Tr e2bHP~ s̄!

with

P~ s̄!5)
i

2e2ba(si
4/42si

2/2)

E dsie
2ba(si

4/42si
2/2)

, ~9!

H being the original hard-spin Hamiltonian andP( s̄) a prob-
ability distribution over the spin variables. In the limita
→` this exactly reduces to the hard-spin partition functi
while atT→` one getsZ52L. From our simulations we ge
properties corresponding to the first part of the free energ
Eq. ~8!. The second part simply corresponds to a nonint
acting system and its properties can easily be computed
merically.

In Fig. 1 we plot the specific heat dataC(T) for both the
soft-spin and hard-spin models. The hard-spin result is ex
and corresponds to infinite system size while the soft-s
data are from simulations on a chain of lengthL524. The
values of various parameters used in the simulation wera
550 andJ51. The high-temperature (T.1) data were ob-
tained by averaging over 106 Monte Carlo steps while the
low-temperature data are over 107 steps. As expected we fin
a second peak in the specific heat at low temperatures.
the hard-spin case the total area under the curve forC(T)/T
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is equal to ln(2/m). The ground state entropy ln(m), which is
released when the spins are softened, is mostly accounte
by the area under the low-temperature peak.

The low-temperature properties are quite well reprodu
by the effective HamiltonianH2, which describes the energ
levels in the lowest band. The thermodynamic properties
H2 can be exactly calculated by transfer-matrix metho
both for finite system sizes and in the infinite size limit.
Fig. 2 we plot the soft-spin low-temperature simulation d
C(T) for two system sizes and compare them with resu
obtained from the effective Hamiltonian. We see good agr
ment between the two. We also show the infinite system

FIG. 1. Simulation dataC(T) for the soft-spin model on a lattice
of sizeN524. A low-temperature peak can be seen. For comp
sion we have also plotted the hard-spin results. Most of the entr
released (;85%) is contained within the low-temperature pe
while the rest occurs in the high-temperature region~shaded por-
tion!.

FIG. 2. The plot ofC(T) at low temperatures as obtained fro
simulations and from the effective Hamiltonian for different syste
sizes. We also show the effective Hamiltonian result for infin
system size.
for

d

f
,

a
s
e-
e

C(T) curve obtained from the HamiltonianH2. It is interest-
ing to note that the peak value of the specific heat first
creases with system size and then starts decreasing beyo
certain size.

III. KAWASAKI DYNAMICS OF THE HARD-SPIN ANNNI
MODEL AT THE MULTIPHASE POINT

As for the usual exclusion process, the quantum Ham
tonian corresponding to our process can be easily written
is given by

H5PS (
k51

L

2@~sk
1sk11

2 1sk
2sk11

1 !

1 1
2 ~sk

zsk11
z 21!#PkDP, ~10!

wheresk
a are the usual Pauli matrices,Pk are local projec-

tion operators given by

Pk5~12sk22
z sk21

z !~12sk12
z sk13

z !/4, ~11!

andP5)k51
L Pk is a global projection operator that projec

onto the space of allowed states, i.e., those that satisfy
ground state constraint. The spin-flip rateg has been set to
unity. Alternatively, we can write the Fokker-Planck oper
tor in the following form:

H52 (
k51

L

~uk1uk
2!,

where

uk5P~sk
1sk11

2 1sk
2sk11

1 !P. ~12!

The term(kuk
2 is the diagonal term since it corresponds

flipping an unequal pair twice. It is important to write th
diagonal part carefully. For instance, if in Eq.~10! the local
projection operatorsPk were not present, the off-diagona
elements ofH would still be correct but the diagonal one
would be wrong.

We now study the properties of this quantum Ham
tonian. Our interests are~a! to compare the symmetry prop
erties and conservation laws of the present Hamiltonian w
those of the Heisenberg model and~b! to obtain results on
the energy gap and hence the dynamical exponent.

A. Symmetry properties and conservation laws
of the quantum model

We first observe that thez component of the total spinSz

commutes withH. This simply implies conservation of spi
or number of particles in the stochastic model. Thus we
classify energy states into sectors labeled by the numbe
particlesn. The constraints on allowed configurations me
that for a lattice of lengthL the number of particles can var
over the range@L/3#<n<L2@L/3#, where @L/3# denotes
the smallest integer greater than or equal toL/3. It can be
shown that, except in the lowest and highest sectors, in e
other case the dynamics is ergodic. It then follows from d
tailed balance that the steady state is one in which all

i-
y
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lowed configurations in a given sector occur with equal pr
ability. For the quantum model this means that the grou
state in any sector is an equally weighted sum over all st
~for the special case whereL is a multiple of 3, the lowest
and highest sectors have threefold degenerate ground st!.

The other components of the total angular momentumSx

andSy, however, do not commute withH. Thus the presen
Hamiltonian has U~1! symmetry instead of the SU~2! sym-
metry of the Heisenberg model. Also, even though
ground states are degenerate, with one state in everySz sec-
tor, there is no analog of the raising/lowering operatorS6. If
there were such an operator then the entire eigenvalue s
trum in the n-particle sector would be a subset of then
21)-particle sector~for n,L/2). By looking at the spectrum
for finite sized lattices we have verified that this is not so

To study the presence of long-range order in the gro
state, we have calculated the two-point static correlat
functionscz(r )5^s0

zs r
z& andc6(r )5^s0

1s r
2& in the ground

state for the half-filled sector. The simple characterization
the ground states in terms of disallowed subsequences
ables calculation of the ground state expectation of any
erator by means of transfer matrices. The transfer-ma
method sums over all the different particle sectors, but in
thermodynamic limit the half-filled sector dominates, and
we get correct results~to compute expectation values in oth
sectors one would need to introduce a chemical potent!.
Thus we find thatcz(r )5A cos(f22pr/3)e2r /j, where j
51/ln$@31A(5)#/2%51.039 04 . . . and A and f are con-
stants that have different values on odd and even s
Fourier transforming c(r ) gives the structure facto
^sz(2q)sz(q)&, which has the form shown in Fig. 3. W
note that it is nonvanishing at allq. The off-diagonal corre-
lation can similarly be obtained using transfer matrices
the calculation becomes extremely cumbersome. Instead
have computed this correlation numerically for finite lattic
and find that it saturates, for larger, to a constant value
which is given bŷ s2&250.029 17 . . . ~which was obtained
by using the transfer-matrix method!.

Thus we find that ground state correlation functions sh
the same behavior as in the Heisenberg chain. For

FIG. 3. The diagonal structure factor plotted as a function of
total wave numberq.
-
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Heisenberg modelcz(r ) is d correlated whilec6(r ) satu-
rates to the value 1/4~which is much larger than its value i
the present model!. The presence of off-diagonal long-rang
order means that U~1! symmetry is broken in the groun
state. This is analogous to the breaking of SU~2! symmetry
in the ground state of the Heisenberg model. On the ot
hand, consider the XXZ chain@10# defined by the Hamil-
tonian

H5 (
k51

L

2~sk
1sk11

2 1sk
2sk11

1 !2
D

2
sk

zsk11
z . ~13!

Away from the two isotropic points (D561), this has the
same symmetry as the present model. It has no long-ra
order in the gapless phase (21,D,1) and all correlations
^sa(0)sa(r )& have power law decays. In the ferromagne
phase (D.1), the model has a gap and full ferrromagne
long-range order in the ground state, with ultralocal longi
dinal correlations, namely,cz(r )51/4. Thus we see that a
far as ground state correlations are concerned the pre
model is different from the anisotropicXXZ chain even
though they have the same symmetry properties. Our mo
is more similar in properties to the ferromagnet (D51) but
has a nontrivial depletion of the condensate, as well a
nontrivial ^s0

zs r
z& correlation.

Finally, we note that rotational invariance of the Heise
berg model means that two-point time correlations are co
pletely determined by single magnon excitations and so h
the same behavior in anySz sector@8,11#. This result does
not hold in the case of the present model.

A second conserved quantity in the model is the to
linear momentum. This follows from the translation inva
ance ofH. The momentum operator commutes with bothH
andSz so that in eachSz sector energy states can be label
by their momentum. Clearly the ground state has zero m
mentum.

B. Results on the energy gap

As is well known the first excited state ofH determines
the decay of correlations for the stochastic process. Thus
energy gapD;1/Lz and this determines the dynamic exp
nent z. For the SEP, which corresponds to the Heisenb
ferromagnet, it is known thatz52. This simply reflects the
diffusive modes in the dynamics. The dynamics studied h
is very similar to the SEP but with constraints on the allow
number of successive particles and holes. An interes
question is whether these rather strong constraints chang
dynamical exponent. Unlike the Heisenberg model where
Bethe ansatz is applicable and yields information on the
genvalue spectrum, the Hamiltonian in Eq.~10! is much
more complicated and we have not been able to use
Bethe ansatz. We have looked at the eigenvalue spectrum
numerical diagonalization ofH for small system sizes an
also through Monte Carlo simulations. We also obtain va
ous analytic bounds on the energy levels.

1. Results of numerical diagonalization ofH
and Monte Carlo simulations

We have carried out exact diagonalization of the Ham
tonian in Eq.~10! for chains of length up toL522 at half

e
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filling. The diagonalization has been done in the moment
basis. This makes the Hamiltonian block diagonal and
ables us to go to quite large chain sizes. We find that
small L the first excited state occurs at total linear mome
tum q5p and the gap seems to decreases as;1/L. How-
ever, fromL522 onward, the first excited state shifts toq
52p/L and the gap at this momentum decreases as;1/L2.
In Fig. 4 we show the numerically obtained gaps at the t
momenta as a function of system size. We also plot co
sponding upper bounds on the gaps~to be derived in the nex
section!.

We note here that, although it is usually the first excit
state that determines the decay of correlations in the stoc
tic process, it is possible to construct correlation functio
whose decay is governed by some other eigenvalue. A
example, consider the operatorQ5exp@(ip/L)(kksk

z#. This is
the so-called twist operator, first studied by Lieb, Schu
and Mattis @12#. In this case, the decay of the correlatio
^Q(0)Q(t)& is determined by the lowest eigenvalue at m
mentump since the operator carries momentump. In Fig. 5
we show the decay constant as determined from the cor
tion decay for different system sizes and compare them w
those obtained from exact diagonalization. The correlat
function is obtained from Monte Carlo simulations and c
also be used for larger system sizes at which numerica
agonalization becomes too difficult.

2. Exact bounds

We now find upper bounds on the first excited state. C
sider the sector with states that haven overturned spins. The
bounds are obtained by constructing trial wave functions
thogonal to the ground state in each sector. Thus, cons
the operatorssz(q)5(1/AL)(ksk

zeikq and the twist operato
Q defined in the previous section. Under translation th
operators transform as

Tsz~q!T†5
1

AL
(

k
sk11eikq5e2 iqsz~q!,

FIG. 4. In this figure the exact energy gapsD at the two mo-
mentap and 2p/L are plotted against inverse system size. A
plotted are exact bounds on the two momenta.
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TQT†5expF ~ ip/L !(
k

ksk11
z G5ei2pdQ,

whered5n/L is the filling fraction of particles. Ifu0n& is the
ground state in then-particle sector, then the state
sz(q)u0n& and Qu0n& have momentaq and 2pd, respec-
tively, and for qÞ0 are orthogonal to the ground stat
which has zero momentum. Hence the following expectat
values give us two different upper bounds on the gap:

~a! ez5
^sz~2q!Hsz~q!&

^sz~2q!sz~q!&
, ~14!

~b! eQ5^Q†HQ&, ~15!

where ^•••& denotes ground state expectations. We n
evaluate~a! and~b!. We shall henceforth restrict ourselves
the half-filled sector only, though extensions to other sect
can be made.

~a! To evaluateez we first note that the numerator an
denominator in Eq.~14! can be written in the following
equivalent form:

^sz~2q!Hsz~q!&5
1

2 (
l

eiql^†s1
z ,@H,s l 11

z #‡&,

^sz~2q!sz~q!&5(
l

eiql^s1
zs l 11

z &. ~16!

The commutator occurring in the above equation can
evaluated and gives

†s1
z ,@H,s l 11

z #‡524P@~s1
1s2

21s1
2s2

1!p1~2d l ,L1d l ,1!

14~sL
1s1

21sL
2s1

1!pL~d l ,L212d l ,L!#P †.

~17!

FIG. 5. The energy gap, as obtained from the decay of
correlation function̂ Q(0)Q(t)&, is plotted as a function of inverse
system size. Also plotted are the results from exact numerical
agonalization and the upper bound. The diagonalization was
formed up to system sizeL522 while the^Q(0)Q(t)& data are
from Monte Carlo simulations for system size up toL536.
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Inserting this in Eq.~16! and using translational invarianc
of the ground state, we finally obtain

^sz~2q!Hsz~q!&

54@12cos~q!#^PP1~s1
1s2

21s1
2s2

1!P †&

52@12cos~q!#^PP1~12s1
zs2

z!P&, ~18!

where the last step has been obtained using the fact
^0uHu0&50. As noted before, ground state expectations
any operator can be computed using transfer matrices.
expectation value on the right-hand side of Eq.~18! is thus
found to have the limiting value (asL→`) ^PP1(1
2s1

zs2
z)P&58216/A5. The Fourier transform ofcz(r ),

which gives the structure factor^sz(2q)sz(q)&, has already
been obtained and was plotted in Fig. 3. We note that i
nonvanishing at allq. Finally, from Eqs.~14! and~16! we get
ez , which is plotted in Fig. 6 along with the exact resu
from finite size diagonalization. Puttingq52p/L and put-
ting in all numerical factors, we get the following result:

D<19.78
p2

L2
. ~19!

~b! We now obtain the other bound using the twist opera
Q. We first note the following properties ofQ:

Q†s l
1s l 11

2 Qu$s%&5ei2p/Ls l
1s l 11

2 u$s%&,
~20!

Q†s l
2s l 11

1 Qu$s%&5e2 i2p/Ls l
2s l 11

1 u$s%&.

Using these relations we obtain

FIG. 6. The gap upper boundez plotted as a function of tota
momentumq. The exact eigenvalues for a system of sizeL518 are
also shown.
at
f
he

is

r

^0uQ†HQu0&52(
k

^0uQ†P~sk
1sk11

2 1sk
2sk11

1 !PkPQu0&

2(
k

1

2
^0uQ†P~sk

zsk11
z 21!PkPQu0&

52cos~2p/L !(
k

^0uP~sk
1sk11

2

1sk
2sk11

1 !PkPu0&

2(
k

1

2
^0uP~sk

zsk11
z 21!PkPu0&

5
L

2
@12cos~2p/L !#^0uP

3~12sk
zsk11

z !PkPu0&, ~21!

where in the last step we have again used^OuHu0&50 and
translational invariance of the ground state. The expecta
value above has already been obtained so that we get
large L, the following bound for the gap at momentumq
5p:

D<0.845
p2

L
. ~22!

In Fig. 4 we have plotted both the bounds and the exact fi
size results atq52p/L andq5p as functions of the system
size.

IV. SUMMARY

In summary, we have studied a one-dimensional s
model with competing interactions, in particular, its low
temperature equilibrium and dynamical properties. In
equilibrium case we have shown that low-temperature pr
erties of the soft-spin and hard-spin versions of the mo
can be very different. The hard-spin version of the model
an infinitely degenerate ground state. Through a perturba
calculation we have shown that, as soon as we introduce
slightest amount of softness, the degeneracy is lifted.
ground state energy levels split to form a band that is se
rated from higher levels byDE5O(J). The energy levels
within this lowest band are described by an effective ha
spin Hamiltonian, containing ferromagnetic interactions
to fourth-neighbor terms. This can be used to approxima
derive the low-temperature properties of the model. We fi
reasonably good agreement with results from Monte Ca
simulations of the soft-spin model.

Our results indicate that the fixed-length (a→`) limit is a
singular one in our model at low temperatures. Since
ground state of the soft-spin model for large but finitea is
only sixfold degenerate, it would order into one of these
states asT→0. This implies the occurrence of a zero
temperature phase transition and the existence of an ap
priately defined correlation length that diverges asT goes to
zero. In the fixed-length (a→`) limit, on the other hand,
averaging over all the degenerate ground states leads
finite correlation length even atT50. These results sugges
that it would be interesting to study the effects of softeni
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the spins on the thermodynamic behavior of two- and high
dimensional hard-spin models with extensive ground s
entropy. A well-known model of this kind is the neares
neighbor Ising antiferromagnet on a triangular lattice@13#.
This model does not exhibit any phase transition at a nonz
temperature. The degeneracy-lifting effect of introduci
magnitude fluctuations found in our study suggests that s
spin versions of this and other similar models may exh
finite temperature phase transitions. Further investigation
this question would be very interesting.

We believe that the removal of the exponential grou
state degeneracy by the introduction of spin softness in
model studied here is a special case of a more general
nomenon in which the presence of additional degrees of f
dom allows the system to relieve frustration and thus red
the number of degenerate ground states. Coupling the
spins to other degrees of freedom, such as elastic varia
describing possible deformations of the underlying latti
would probably have similar effects on the degeneracy of
ground state. It is interesting to note in this context tha
‘‘deformable’’ Ising antiferromagnet on a triangular lattice
which the Ising spins are coupled to elastic degrees of f
dom exhibits@14# a Peierls-type phase transition at a nonz
temperature. The ordering of the spins at this transition
accompanied by a distortion of the lattice. In general, it
expected that in real, physical systems, such coupling
other degrees of freedom, however weak, would induce s
kind of ordering of the spins as the temperature is redu
toward zero, thereby avoiding the unstable situation of h
ing a nonvanishing entropy per spin atT50.

Many disordered spin systems, such as spin glasses@16#,
exhibit a large number of nearly degenerate metastable s
arising out of frustration. To take an example, the SK mo
@2# of infinite range Ising spin glass is known@16# to have an
exponentially large number of local minima of the free e
ergy ~locally stable solutions of the Thouless-Anderso
Palmer equations@15#! at sufficiently low temperatures
These local minima of the free energy become local mini
of the energy atT50. The presence of a large number
nearly degenerate metastable states~divergent in the thermo-
dynamic limit! is crucial in the development of the prese
understanding@16# of the equilibrium and dynamic proper
ties of this system at low temperatures. Our results about
lifting of degeneracy by the introduction of spin softne
raise the following interesting question: would the low
temperature properties of a soft-spin version of the SK mo
differ in any significant way from those of the origina
model? While soft-spin versions of the SK model have be
used in studies@3# of the dynamics, questions about how t
number and properties of the metastable states of this m
r-
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change as the spins are made soft have not been addres
detail. Further investigation of these issues would be m
interesting.

Finally, it is interesting to note that a similar way of low
ering frustration is to make the coupling constants soft wh
keeping the spins hard. For example, in the case of
Edwards-Anderson Ising spin glass model, two versio
have been studied@17#. One is the6J model where the
nearest-neighbor coupling constants randomly take the
crete values6J with equal probability. In the other case, th
J’s are chosen from a Gaussian distribution. Ind52, both
these cases are believed to have zero-temperature phase
sitions, but the nature of the transition is different in the tw
cases. This difference again arises because of the diffe
ground state degeneracies in the two cases. In the6J model,
the ground state is exponentially degenerate, while it
unique ~modulo a global inversion of all the spins! in the
Gaussian case. However, in higher dimensions where
transition temperature is finite, critical properties near
transition appear to be the same in both cases.

In our nonequilibrium studies we considered Kawas
dynamics and studied the quantum Hamiltonian correspo
ing to the Fokker-Planck operator for a stochastic proce
The spectrum of the Hamiltonian is obtained by numeri
diagonalization of finite chains. An interesting crossover
the first excited state from momentump to 2p/L is ob-
served with increase in system size. We have found ana
upper bounds on the gaps at these two momenta. Th
along with our numerical diagonalization results, sugg
that the gap vanishes as;1/L2 and so the dynamics is dif
fusive as in SEP. We have also compared the symm
properties of our Hamiltonian with those of the Heisenbe
model. We find that, while the model has the symmetry
theXXZ model, its ground state properties are closer to th
of the ferromagnetic isotropic point. In summary, we ha
shown that our model is a very nontrivial cousin of th
Heisenberg ferromagnet. The exclusion of three adjacent
spins essentially changes the model dynamics, and resu
a nontrivially depleted condensate in^s0

xs r
x& and a nontrivial

gapped ^s0
zs r

z& correlation function. The existence of
ground state in everySz sector is quite obvious from the
stochastic point of view, but nontrivials within the frame
work of the quantum system~e.g., the absence of as2 op-
erator!, and requires a deeper understanding.
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