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We present a calculation of the lowest excited states of the Heisenberg ferromagnet in 1D for any
wave vector. These turn out to be string solutions of Bethe’s equations with a macroscopic number of
particles in them. They are identified as generalized quantum Bloch wall states, and a simple physical
picture is provided for the same.
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Introduction.—The question of elementariness of exci-
tations in low dimensional magnetic systems is receiving
much attention currently. It was perhaps first addressed
in the seminal work of Bethe in 1931 [1]. In addition to
providing the celebrated ansatz named after him, Bethe
asked if Bloch’s magnons are the “most elementary” ex-
citations in 1D. He came to the conclusion that they were
not, and instead found that the bound states of spin rever-
sals were. After the original paper of Bethe, the ferromag-
net has received [2–4] comparatively less attention than its
antipode, namely the antiferromagnet [5–7]. One source
of revival of interest in the ferromagnet is in connection
with stochastic dynamical systems, albeit with a complex
Aharonov Bohm magnetic flux [8,9]. Another notable re-
cent exception is a work by Sutherland [4], who shows that
the excited states of the ferromagnet contain a singlet state
at momentum p , with an excitation energy (EE) that is
very low, of O�1�N�, where N is the length of the ring.

At the semiclassical level, domain wall arguments [10]
lead one to expect in dimensions d (with volume � Nd)
the Bloch wall excitations to be of O�Nd22�, and hence to
be among contenders for the lowest EE in d � 1. Such
“large deviation” excitations carry spin as well as momen-
tum as we show below. These configurations of spins will
be discussed within the context of Bethe’s ansatz (BA) for
the s � 1�2 ferromagnet presently.

In this work we ask (and answer) the following ques-
tion: For a given value of the total momentum of the Bethe
ferromagnet, what is the lowest excited state? The non-
triviality of the question arises from the fact that within the
famous Bethe formula for the bound state of n magnons,
vBethe�q� � J

2
n �1 2 cos�q��, the lower limit on the total

momentum q [11] depends implicitly upon n. Its depen-
dence has not been fully explicated earlier, at least as far
as we could find in the literature. In this work, we use a
combination of exact diagonalization and analytic methods
to attack the problem. A new and essential tool that we de-
velop is the argument of continuity of certain regular root
solutions with respect to the density, regarded as a continu-
ous variable, leading to a differential equation formulation
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of Bethe’s equations (BE) that bypasses the knowledge (or
otherwise) of the quantum numbers.

Our findings are readily stated: The lowest excitations
for any momentum q arise from special string solutions of
BE. These special string solutions involve a macroscopic
number of particles in a given string, and hence we call
them macroscopic strings. Sutherland’s solution at mo-
mentum p is a particular case of these. We have found
the lowest solution for every value of the total momen-
tum; these correspond to a definite value of total spin as
well. Such states are of the type that one would expect
from Bethe’s formula for n magnon bound states, with
n of the size of the lattice. The formula of Bethe can-
not, however, be used for such large bound states since
we show that there are significant corrections to the tra-
ditional assumption of a uniformly spaced vertical Bethe
string in the complex plane: The curvature and nonuni-
formity of spacing produces essential differences. Our
states can be represented by a new formula: vBW �q� �
2p

N Jq�1 2 q��2p�� for 0 # q # p . We find that the so-
lution for a given q corresponds to a particular value of
total spin, Stot � N�1�2 2 q�2p�. If we write n the spin
deviation from the saturated ferromagnet (Sz � N�2 2 n)
in terms of the density d as n � d N , the spectrum can
be written as vBW �

4p2

N Jd�1 2 d� with q � 2pd and
Stot � N�1�2 2 d�. We show finally that these states cor-
respond to generalized quantum Bloch walls [12]: thus the
states with lowest EE at any wave vector of O�1� are Bloch
walls [13].

Before presenting our calculations, we note that the
bound states of Bethe for s � 1�2 have been identified
with solitonic excitations [14] of the nonlinear classical,

i.e., large s, Landau Lifschitz equations
��S�x� � �S�x� 3

≠2�≠x2 �S�x�. Several explicit solutions of these are known
[15,16]. We note that Bloch walls form a certain class of
exact solutions [14,16] of the nonlinear classical equations,
namely nonlinear spin waves.

Calculations.—We consider the ferromagnetic
Heisenberg Hamiltonian: H � 2J

P
l�1,N �s2 2 �Sl ?

�Sl11�, with periodic boundary conditions, and where for
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the most part we consider s � 1�2 and �Sl �
1
2 �sl , in

terms of the usual Pauli spin operators.
Our first result is from observations on wave functions

of the energy eigenstates obtained from exact numerical
diagonalization of chains up to length N � 16 in a mo-
mentum resolved basis. We observed that in all cases, the
lowest state at momentum q � 2pn�N has total angular
momentum S � N�2 2 n. This implies that this state can
be obtained in the n particle sector where it is a “maxi-
mal,” i.e., highest weight state. The corresponding Bethe
wave function has all pseudomomenta nonvanishing, and
the momentum and particle density related as q � 2pd.

We next write the BE for the Heisenberg chain in the
Orbach parametrization as

Nf�al� � 2pIl 1
X
mfil

f��al 2 am��2�

l � 1, 2 . . . n , (1)

where f�x� �
1
i log� x1i

x2i � � 2 arccot�x�, al � cot�kl�2�
and �Il� are the Bethe integers, and kl the Bethe pseudomo-
menta. We take the branch cut of f�x� to be on the imag-
inary axis running from 2i to 1i. The energy and total
momentum are given, respectively, by e � J

P
l�1,n

4
11a

2
l

and q �
2p

N

P
l�1,n Il . Let us note that we are interested

in the lowest energy states for a given q, requiring a
knowledge of the integers Il . These integers, as shown
by Bethe, differ by 2 for scattering states, and by either
one or zero for bound states in general. Eliminating
the integer sets with zeros in them, a very plausible
state is one with Il � 1 for 1 # l # n, and we found
from numerical studies of BE for small N and small n
(with n ø N), that this was indeed so: The resulting
state is invariably the lowest energy state for small q.
Emboldened by this exercise we found the following exact
solution analytically in the limit of a thermodynamic n
as well as N , but at low density, i.e., d � n�N ø 1.
Since we are interested in excitation energies that are
vanishing in the thermodynamic limit, the corresponding
variables al scale with system size and it is convenient
to introduce new scaled variables zl � al�n. In terms
of these, the left-hand side of Eq. (1) becomes 2��zld�
on using the large x expansion of f�x� and ignoring
terms of size O�1�N2�. On the right-hand side we cannot
make the expansion in general since, at high densities, a
core is formed [4] where the separations n�zl 2 zm��2
between pairs of particles can become arbitrarily close to
the branch points of f�x�. In the low density limit we find
it is possible to obtain a perturbative solution, using the
crucial observation that the typical interparticle separation
�1�

p
d, and hence we can use the smallness of d as

an expansion parameter in a perturbative sense. Setting
Il � 1 we find the approximate equation:

1
zl

� pd 1
2d
n

X
mfil

1
zl 2 zm

. (2)
2814
Note that Eq. (2) has corrections from the expansion of
the phase shift, that is typically of O�d� smaller than the
least term retained. The solution of the system Eq. (2) can
actually be found exactly [17], but we save it for a future
publication. We find at low densities the following result:

zl �
1

pd
1

i
p

2

p
p

d
xl 2

2
3p

µ
x2

l 1 1 2
1
n

∂
1 O�

p
d � ,

(3)

where xl satisfy Hn�
p

n xl� � 0, Hn being the nth
order Hermite polynomial. In the limit of large n the xj

form a continuum stretching from 2
p

2 to
p

2 with the
familiar semicircular density of states r�x� � 1

p

p
2 2 x2.

This solution can be used to obtain the energy to order d2.
The energy Ne � 4J��nd�

P
i 1�z2

i for low d can be found
as Ne � 4Jp2�d 1 d2�3	�b�1�

i �2
 2 2	b�2�
i 
� 1 O�d3��,

where the averages are normalized sums over the indi-
cated variables. Using the explicit expression Eq. (3) and
converting the sums to integrals over the semicircular
density of states we get finally the low density formula:
Ne � 4Jp2d�1 2 d� 1 O�d3�. Below we will argue
that there are no corrections to the above formula beyond
the first term: it is exact. Thus provisionally we write

Ne � 4Jp2d�1 2 d� � 2Jpq

µ
1 2

q
2p

∂
. (4)

We note that the low density Eq. (2) must be abandoned
once the minimum separation n�zi 2 zj� hits the value 2i,
this happens at 2 � jn�z0 2 zi�j � �

p
2�
p

dp�nj�x0 2

x1�. However, nj�x0 2 x1�j � 1�r�0� � p�
p

2, thus
d � 1�4. Indeed we found for small systems that
d $ 1�4 cannot be treated easily numerically: The new
difficulty is that the quantum numbers are no longer
simple as we discuss below. For d # 1�4 the low density
result Eq. (3) and the full solution of Eq. (2) [17] are
extremely close.

We now discuss the techniques used for solving Eq. (1)
numerically at larger densities. There are two main prob-
lems. One is that the integers jump around in a compli-
cated way that is not known beforehand, and it is clearly
not feasible to try all combinations. The second problem is
the formation of the core [4], i.e., successive roots that are
placed very close to a separation 2i, which causes singular-
ities in the equation and results in numerical inaccuracies.
Our strategy is to start from low densities where we know
the roots, and change d slowly and study the evolution of
the roots. For this we first convert Eq. (1) into a set of first
order ordinary differential equations (ODE) with log�d�
as a timelike flow parameter [18]. Taking the derivative
of Eq. (1) with respect to d and defining new variables
t � logd and fl � zlet we obtain

X
m

Alm
�fm � 2pf2

l
�Il 2

X
m

Alm� fl 2 fm� , (5)

where
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Alm �
2etf2

l

n
1

�4e2t�n2 1 � fl 2 fm�2�
, m fi l ,

All � 1 2
X
mfil

Alm ,

and the derivatives are with respect to the “time” variable
t. The time derivatives of the integers are delta functions
and hence drop out of the equations at almost all times.
Also since the flow of the roots themselves is smooth, we
expect the delta-function singularities to be precisely can-
celed by other terms in the equation. Hence in evolving the
above ODE we can drop the first term on the right-hand
side of the equation. This immediately solves the problem
of our lack of knowledge of the integers since they do not
occur anywhere else in the differential equations. From
these solutions we can recover the integers and use them in
the root finder to get more accurate solutions. We find that
until densities around d � 0.45 the solutions obtained
from the ODE are very accurate. At higher densities,
significant numerical errors show up because of the
singularities associated with the core. In these cases we
correct our ODE solutions by fixing the core by hand
and using the root finder to self-consistently solve for the
roots outside the core. We plot in Fig. 1 the solutions, for
a system of 16 particles, at different densities. The table
below shows the integer sets at four different densities
(since they occur in pairs we show only half of them).

d � 0.2 1 1 1 1 1 1 1 1
d � 0.3 1 1 1 0 1 1 2 1
d � 0.4 1 0 1 0 1 1 2 2
d � 0.5 0 0 0 0 0 0 0 8

We now discuss the energies that we obtain from the
BA solutions. For N # 16, we have verified that all the
solutions obtained from the numerical solutions of the BE
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FIG. 1. The figure shows the Bethe curves for a 16-particle
system at different densities (values indicated along each curve).
The inset compares the numerically obtained roots (points), for a
32-particle system at d � 0.2, with the exact low-density result
(solid line).
using the above scheme, match with those obtained from
exact numerical diagonalization. With the BE we can go
to much larger system sizes. We find that the gap van-
ishes at every finite q, with system size dependence �1�N .
In Fig. 2 we plot the system size dependence of the gap
at two densities, namely at quarter and half fillings. The
latter case corresponds to the q � p state considered by
Sutherland and we verify his result NdE � Jp2. At
d � 1�4 NdE seems to asymptote to the value 3Jp2�4.
Remarkably both these asymptotic values of NdE at den-
sities 1�2 and 1�4 can be obtained from the low density
formula in Eq. (4). In Fig. 2 we also plot the energy-wave-
vector curve, obtained from the solution of the 16-particle
problem, and compare it with Eq. (4). Note that the dis-
crepancies at large q are finite size effects and would van-
ish in the N °! ` limit.

Variational results.—Having found the excited states,
we now turn to the explicit connection with Bloch wall
states. We now show, remarkably enough, that the expres-
sion Eq. (4) for the gap can be obtained from a simple
variational calculation. We work with arbitrary spin s of
the particles. A neat way to generate Bloch walls is via
a unitary rotation operator [19] Q � expi

2p

N

P
m mSz

m act-
ing upon an appropriate state, j0n
 � �Ŝ2

0 �njferro
, where
Ŝ2

q �
P

j exp�iq ? rj�S2
j is a spin wave creation operator

carrying momentum q and jferro
 is the state with all spins
up. Using �H, Ŝ2

0 � � 0, we see that j0n
 is the ground state
in the n-particle sector with zero total momentum. Thus
finally we write the variational Bloch wall state jBW
 �
Qj0n
. Using the quasicommutator QŜ2

q � Ŝ2
q12p�NQ,

we find that jBW
 � �Ŝ2
2p�N �njferro
, and has total mo-

mentum q � 2pd. In the semiclassical limit, s ¿ 1, the
above state is readily visualized as classical spins that
are tipped from the z axis and rotate along a cone. The
variational calculation of the excitation energy dE, i.e.,
	0njQyH Qj0n
 can be done easily by transforming the
rotation onto the spin operators. Writing n � dN , with
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FIG. 2. The gaps at different wave vectors as obtained from
the solution of the BA equations for 16 particles. The gap as
given by Eq. (4) is also shown. The inset shows dependence of
the gap on system size at two different wave vectors.
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0 # d # 2s, we find dE �
4Jp2

N d�2s 2 d�. At s � 1�2
this is also the result of the calculation in Eq. (4).

At this point we admit that we were surprised, as the
reader might well be, that the results of an elaborate
bound state calculation with a macroscopic number of
complex roots agree with the result of a simple look-
ing variational wave function that resembles a Bose
condensate of spin waves. This phenomenon is pre-
sumably a consequence of the shallow nature of the
bound state. We note that the variational states satisfyp

	H 2
 2 	H 
2�	H 
 � O�1�
p

N � which shows that in
the N ! ` limit, these become exact eigenstates, thereby
providing independent evidence for the exactness of the
main result of our work.

For large s, the energy as well as momentum of these
states agrees with the semiclassical estimates [16] using
a Poisson bracket structure to construct a semiclassical
momentum operator. The variational results for all values
of s thus collapse onto the same formula. The conjecture
of [15,16] implies just this kind of a result, but for the
solitons, i.e., for bound states with a small number of spin
deviations. Needless to say, we believe that our variational
results are exact (in the thermodynamic limit) for all spin,
since we have established them at s � 1�2 and also for
very large s.

We note that the Bloch wall states jBW
 carry a total
spin that is easy to calculate using simple extension of the
above calculation: 	S2

tot
 � 	Sz
2 � N2�s 2 d�2. Finally
we note that these variational results for Bloch walls are
generalizable to higher dimensions.

Conclusion.—We finally note in summary that
the Bethe formula for n magnon bound states:
vBethe � J

2
n �1 2 cos�q�� is (a) exact for q ¿ 2pn�N ,

(b) invalid for q , 2pn�N , and (c) has significant
corrections when q � 2pn�N [20]. The evidence for
(a) is in Bethe’s paper itself, the corrections to it are
exponential in N , (b) is numerical. Evidence for (c)
has been presented in this paper, where we find instead:
vBW � 2pJ�N jqj �1 2

jqj
2p �.
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