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Spin ordering and partial ordering in holmium titanate and related systems
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We take another look at two compounds which have been discussed as possible realizations of ‘‘spin ice,’’
namely holmium titanate and dysprosium titanate. As we have earlier observed, holmium titanate does not
display icelike behavior at low temperatures because the long-ranged dipolar interactions between spins are
strong compared to the nearest-neighbor interactions. We show, exactly, that the true ground state of this
system must be fully ordered, but simulations only reach partially ordered states because there are infinite
energy barriers separating these from the true ground state. We also show that the true ground state of our
model of dysprosium titanate is also fully ordered, and offer some explanations as to why simulations and
experiments show icelike behavior. We discuss the effect on these systems of an applied magnetic field.
Finally, we discuss several other models which show similar partial or full ordering in their ground states,
including the well-known Ising model on the fcc lattice.

DOI: 10.1103/PhysRevB.63.184412 PACS number~s!: 75.10.Hk, 75.25.1z, 75.40.Mg, 75.50.Lk
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I. INTRODUCTION

With the wide interest in the physics of disorder and fru
trated magnetism, pyrochlore magnets have attracted g
attention in recent years,1 and it is especially interesting t
consider pyrochlores well approximated by the Ising mod
We recently discovered2 that dysprosium titanate, an Isin
pyrochlore, exhibits a ground-state entropy very much l
that of ice. Anderson3 had long ago predicted that this shou
happen for a nearest-neighbor Ising pyrochlore. Howe
the story is not quite so simple here: the dominant interac
is really a long-ranged dipole-dipole interaction. There is
global Ising axis; instead each spin is constrained to p
along the axis joining the centers of the two adjoining tet
hedra, so that there are local Ising axes in four possible
rections. This leads to the interesting observation th
though for an effective Ising Hamiltonian an antiferroma
netic J (J.0) is frustrating, if we think of the Hamiltonian
as a more physical-looking classical Heisenberg interac
(^ i j &JSi•Sj , with the directions of the spins constrained
point along their respective Ising axes, it is theferromagnet
(J,0, the state in which each tetrahedral unit has a
magnetic moment! which is frustrated. This observation wa
made by Harris and co-workers4 who called the system
‘‘spin ice.’’ The presence of multiple Ising axes also h
consequences for the effect of long-ranged interactions: t
is heavy cancellation of interactions from distant spi
which would not happen with a uniform Ising axis. Mor
over, the similar Ising pyrochlore holmium titanate has ve
different low-temperature behavior. We had explored
reasons for this in our earlier papers;2,5 here we take those
arguments further.

We observed earlier5 that simulations of a model of th
Ising pyrochlore holmium titanate suggest that it has a p
tially ordered ground state, which is degenerate but has
entropy per particle~the degeneracy being of the order 2L

where L is the system length, rather than 2L3
), and there

appears to be a first-order phase transition from the h
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temperature paramagnetic phase to the above partially
dered phase. In this article we clarify the nature of this par
ordering, and explain it without recourse to simulations. A
tually, we show that the ordering of the true ground st
here is in fact complete, but there are numerous low-ly
partially ordered metastable states which are separated
the true ground state by infinite energy barriers. It is easy
the simulation~and, presumably, the real compound! to get
stuck in one of these states on cooling, and impossible
reach the true ground state in finite time thenceforth. Mo
over, this is also the true ground state of our model of d
prosium titanate; but both the model and the experimen2

suggest a finite ground-state entropy characteristic
nearest-neighbor spin ice. This, we suggest, is because
system has stronger nearest-neighbor interactions and s
into an icelike state at a higher temperature~over 1 K!, and
cannot then be easily dislodged from this into the tr
ground state. Our exact results, and also our simulatio
support and substantiate our original suggestions of a tra
tion to partial ordering, in contrast to recent suggestions
the contrary,6 namely that that our model for holmium titan
ate should have an icelike ground state.

We also substantiate the major results and the underly
model from our earlier work,2 namely that there is a low
temperature entropy observed in dysprosium titanate, i
decreased in the presence of a magnetic field, and the in
actions in the system are dipole-dipole magnetic interacti
and an isotropic superexchange. The fact that our simulat
with a magnetic field reproduce experimental results qu
well, qualitatively and quantitatively, confirms our calcul
tion of the dipole moment~which is the only thing that
couples with the field! and our estimate of the supere
change. Moreover, the ground state in the presence
strong field is not the same as the zero-field ground st
While the experiments were done on powdered samp
simulations suggest that the behavior of dysprosium titan
in a magnetic field is very direction dependent. A strong
direction dependent ordering was initially suggested on
basis of the specific-heat measurement done on a powd
©2001 The American Physical Society12-1
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sample.2 We compare the experimental data on powd
samples with simulations averaged over large numbers
directions, compare sharp features in both, and make im
tant predictions for possible future experiments on sin
crystals.

Next, we use the insight from the ground-state analysi
progressively reduce the pyrochlore Ising model to a
quence of simpler models which display similar behavi
namely, a six-vertex model on the ‘‘diamond lattice’’ wit
nonlocal interactions, which reproduces all the essential
havior of holmium titanate, and has a fully ordered grou
state and several metastable partially ordered low-ly
states~Sec. IV!; a six-state magnetic model on the fcc lattic
which actually has the sort of partially ordered ground st
that the simulations had suggested for holmium titanate,
also reproduces the important behavior of holmium titan
~Sec. VI!; and the well-known Ising model on the fcc lattic
which has been studied before7 and is known to have exactl
the same sort of partial ground-state ordering that conc
us here~Sec. VII!. Along the way, we also introduce
square-lattice vertex model, by analogy with the abo
diamond-lattice model, which may be worthwhile to study
its own right.

Actually, the simplest example of partial ordering in a
Ising system is perhaps the triangular lattice antiferromag
with interactionJ1 along bonds in one direction~say parallel
to thex axis!, J2,J1 along bonds in other directions~Fig. 1!,
andJ1 ,J2 positive~antiferromagnetic!. Then we have perfec
antiferromagnetic order along a line of sites in thex direc-
tion, but each atom on an adjacent chain is frustrated so
adjacent chain~which also has perfectly antiferromagnet
order! has two possible configurations with respect to
first, and the system as a whole has a degeneracy 2L whereL
is the number of chains. This system is exactly solvable,8 and
has no finite-temperature phase transition. This situatio
quite relevant to what happens in our system. The analog
model in three dimensions, the fcc Ising model, is discus
at the end of the paper and in the cited references.

II. ORDERING IN OUR MODEL OF Ho 2Ti2O7

We briefly recapitulate our model of holmium titanat
The underlying lattice is the pyrochlore lattice, a lattice

FIG. 1. Anisotropic triangular lattice, with antiferromagnet
Ising interactionJ1 along solid lines andJ2,J1 along dashed lines
In the ground state, each chain along the solid lines is ordered
there is no order along the dashed lines.
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corner-sharing tetrahedra of two possible orientations, wh
is well visualized as an fcc lattice of tetrahedra~Fig. 2!. It
may be generated by taking a single tetrahedron of one
entation and translating it by the primitive basis vectors
the fcc lattice~Fig. 3!; the tetrahedra of the other orientatio
emerge automatically by this procedure—see Fig. 3. T
we use the lattice vectors

a15~r ,A3r ,0!,

a25~2r ,A3r ,0!,

a35~0,2r /A3,22rA2/3! ~1!

with a basis of atoms located at

x05~0,0,0!

x15~r ,0,0!,

ut

FIG. 2. The conventional unit cell of the pyrochlore, a lattice
corner-sharing tetrahedra with fcc symmetry.

FIG. 3. The pyrochlore lattice can be generated by translatin
tetrahedron along vectorsa1 , a2 , a3. Tetrahedra of the opposite
orientation are formed from the corners of these~thin black lines!.
2-2
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x25S 1

2
r ,

A3

2
r ,0D ,

x35S 1

2
r ,

1

2A3
r ,A2

3
r D . ~2!

In this systemr is around 3.54 Å.
We have Ising spins~the f electron states of the holmium

atoms! located at these points. The local Ising axis is the l
joining the centres of the two adjoining tetrahedra: thus e
spin points directly out of one tetrahedron, and into the n
one. The spins carry magnetic moments correspondingJ
58, gs ~the Lande´ factor! 51.25. Based on this, the ex
pected nearest-neighbor dipole-dipole interaction has an
ergy of 62.35 K, the sign depending on the alignment
the spins: one pointing out, one in is preferred. However,
experimental compound~unlike its cousin, dysprosium titan
ate! has properties which we can only explain by postulat
a significant nearest-neighbor superexchange, which we
mate from high-temperature expansions for the susceptib
to be around 1.9 K with opposite sign to the dipolar inte
action. So, with the convention that an Ising spinS51 if it
points out of an ‘‘up’’ tetrahedron andS521 otherwise, we
write the Hamiltonian as follows:

H5(
i , j

Ji j SiSj , ~3!

Ji j 50.45 K, for nearest-neighbor spins, ~4!

Ji j 5
m0

4p
gs

2mb
2J2Fni•nj

r i j
3

23
~ni•r i j !~nj•r i j !

r i j
5 G ,

further neighbors, ~5!

whereni is a unit vector pointing along the Ising axis at s
i in the outward direction from an ‘‘up’’ tetrahedron. Thu
this system has a drastically reduced nearest-neighbor i
action energy, which means the importance of the furth
neighbor interactions increases. We saw that with onl
long-ranged dipole-dipole interaction between these Is
spins, the behavior seems to change little from the near
neighbor Ising model which has a finite ground state entro
we speculate that the substantially different behavior of h
mium titanate is due to the significantly greater importan
of further-neighbor interactions. As noted earlier, simu
tions of such a model do predict a freezing of the system
around 0.7 K, in agreement with experiment.

We now find the ground state~GS! for this system. For
clarity we refer to the two different orientations of tetrahed
that occur as ‘‘up’’ and ‘‘down:’’ each ‘‘up’’ tetrahedron
shares corners with only ‘‘down’’ tetrahedra, and vice ver
Consider a single tetrahedron: it has six possible gro
states, each of which has two spins pointing out and two
We label these statesA, A8, B, B8, C, C8 whereA8 is A with
the directions of all spins reversed, and similarlyB8 andC8
~Fig. 4!. Consider a particular cluster of sites from the fu
lattice consisting of a single ‘‘up’’ tetrahedron and its tran
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lation by the three primitive lattice vectors of the fcc lattic
~as in Fig. 3!, and long-ranged dipole-dipole interaction
spanning the entire cluster plus a nearest-neighbor supe
change, as described above. We find the GS of this ‘‘te
hedron of tetrahedra’’ by the unobjectionable method of e
merating each of the 216 allowed states on a computer, an
picking out the lowest-energy ones.

We find that the GS of this cluster is 12-fold degenera
Two are shown in Fig. 5. All others are rotations/reflectio
of these~which are reflections of each other!. In each GS, as
one might expect, only states satisfying the ice rule occ
Furthermore, only two kinds of icelike configurations occu
A andA8, or B andB8, or C andC8. They occur twice each
In the case shown in the figure, once the configuration
tetrahedron at the origin is fixed asC, the tetrahedron ata3
must have the opposite configuration (C8); and the tetrahe-
dron at a2 may have either configuration (C or C8), but
tetrahedrona1 must have the opposite configuration toa2.
With the previously quoted values for the dipole and sup
exchange interactions, the configurations in Fig. 5 have
energy27.5 K, and the next lower energy configuratio
have an energy26.9 K.

If we note that each tetrahedron in its ground state ha
dipole moment, which is perpendicular to two possible l
tice translation vectors, the rule is this: in every GS on
configuration of two opposite kinds occur~say C and C8),
which therefore have antiparallel magnetic moments, a
two tetrahedra separated by a vector perpendicular to th
moments must have opposite configurations. These are
12 ground states allowed for this cluster, but we are mak
no theoretical argument for this; this is what we learn fro
brute-force enumeration of states. In any of these sta
moreover, the included ‘‘down’’ tetrahedron also has an ic
ruled configuration.

Now consider the entire fcc lattice of tetrahedra~that is,

FIG. 4. Three possible ground-state configurationsA, B, C of a
tetrahedron. We will denote byA8, B8, C8 these respective con
figurations with all spins reversed. ‘‘1 ’’ indicates a spin pointing
out of the tetrahedron, ‘‘2 ’’ a spin pointing into the tetrahedron.

FIG. 5. Two of the 12 allowed ground states for a cluster of fo
tetrahedra. Each of the 12 states is related to the others by rota
or reflections. This consideration by itself leads to partial order
in the ground state of the full system, as described in the text.
2-3
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the pyrochlore lattice!. Once we fix the configuration of a
single ‘‘up’’ tetrahedron~say, asC) each of its neighboring
tetrahedra, with which it forms part of a cluster of the abo
sort, must have the same or opposite configuration~sayC or
C8); and by extending further from each of these, this m
be true for the entire lattice. We can also see that if we tra
in either of the two lattice directions perpendicular to t
magnetic moment of these tetrahedron configurations,
must have a perfectly alternating sequence~say C, C8, C,
C8, . . . ); butwhen traveling in a third direction we have n
ordering rule. So we get a ground-state ordering in two
rections but not in the third, and a degeneracy exponentia
L ~the system length! rather thanL3 ~the system volume!,
precisely as the simulations suggested. Such a ‘‘partially
dered’’ state ensures that every cluster of tetrahedra is i
vidually in its ground state, and any other arrangem
would involve putting some local cluster of tetrahedra in
higher-energy state, suggesting that this is the true gro
state for the whole lattice.

This is not the whole story, though. The system can
equally well described in terms of ‘‘down’’ tetrahedra, so t
same sort of ordering should be evident if we describ
ground-state configuration using ‘‘down’’ tetrahedra. S
only two configurations for these tetrahedra should be
lowed, each of which is the other with all spins reversed. B
we note immediately that the two ‘‘down’’ tetrahedra di
played as gray lines in the two clusters in Fig. 5 do not ha
opposite configurations. It follows that the two cluster co
figurations in that figure cannot both occur in the grou
state: only one can.This immediately implies that the orde
ing sequence in a third direction is not random, but const
~say,C, C, C, . . . ).

So the true ground state for our model of holmium titan
is only 12-fold degenerate, and viewed in terms of config
rations of either upward or downward tetrahedra, consist
alternating ordering of opposing configurations in two dire
tions but a constant configuration in a third direction. Ho
ever, the partially ordered states are also very low in ene
and, moreover, a system stuck in such a state can only
out by flipping entire planes of tetrahedron configuratio
which is impossible in the thermodynamic limit. So simul
tions tend to get stuck in such states and in other ‘‘doma
ized’’ states and the chances of a given simulation actu
hitting a true ground state are very small—unless we
some sort of specialised ‘‘cluster’’ algorithm which may n
imitate the dynamics of the real system very well.

This is exact except for one thing: by only considering t
energies of clusters of four adjacent tetrahedra, we have
nored interactions between further-neighbor tetrahedra
effectively confined our interaction range to the fifth neig
bor, which is the maximum separation of spins in two ad
cent tetrahedra. Luckily, in the presence of long-ranged
teractions, the nature of the system~with four different local
z directions! is such that the effects of the more distant t
rahedra cancel heavily and have little effect on the energ
a single cluster. Thus if one take a particular ‘‘up’’ tetrah
dron in the ground state, its energy turns out to be221 K
because of interactions with the immediately neighbor
‘‘up’’ tetrahedra~to which the cluster argument applies!, but
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only 20.12 K because of interactions with all other tetrah
dra in the system. Thus the additional energy from the in
actions we have ignored is not only negligibly small, b
actually tends to stabilize this order.~With a random icelike
configuration, this additional energy averages to zero,
fluctuates considerably from site to site.! Recall furthermore
that the cost of disturbing a single four-tetrahedron clus
from its ground state~Fig. 5! is at least 0.6 K, and in fac
much more since each tetrahedron is shared by four s
clusters.

To provide an analogy: in a system with a neare
neighbor ferromagnetic Heisenberg interaction, we wo
expect a uniform magnetization because each pair of s
would be satisfied, just as each cluster of tetrahedra is s
fied here. However, with such a uniformly magnetized sta
the dipole-dipole interactions of infinitely far spins will i
fact have a significant contribution, causing the system
break into domains; such a thing does not happen in
pyrochlore, because there is no net magnetization, and
cause there is large cancellation of the interactions from
spins beyond the fifth neighbor.

So we can be satisfied that the long-ranged interacti
will not disturb our fully ordered ground state. In fact, th
simulations too do not show much dependence on the ra
of the interaction, provided it extends to at least the th
neighbor ~Fig. 6!, as indeed we had argued in our earli
paper, where we cut off the interaction at the fifth-neighb
distance.5 The suggestion6 that icelike behavior is restore
by cutting off after the tenth neighbor seems untenable to
and we do not observe it in our simulations even on exte
ing the interaction to the 12th neighbor~which is halfway
across our sample!. Possibly the different results obtained
Ref. 6 is due to additional approximations involved, such

FIG. 6. The simulated specific heat when the interaction is
off at the third (R<2r ), fifth (R<2.646r ), and 12th (R<4r ) near-
est neighbor distances (r 53.54 Å, roughly!. The position of the
phase transition and the plot of the specific heat near the trans
hardly change at all on increasing the range of the interaction;
one needs longer equilibriation times with increased interac
ranges. The simulations show a significant energy drop at the t
sition, suggesting that it is first order.
2-4
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SPIN ORDERING AND PARTIAL ORDERING IN . . . PHYSICAL REVIEW B63 184412
Ewald sums, and a somewhat smaller sample size; our s
lations use no approximations in calculating the energy
cept the cutoff, which as we have seen, is quite justifiab
Longer simulations on bigger systems may throw more li
on this question, but we now turn to some other interest
aspects of the problem.

This true ground-state ordering is more easily visualis
~though less easily analyzed! with the cubic unit cell rather
than our parallelepiped; this is discussed in Sec. VI.

III. DYSPROSIUM TITANATE

Dysprosium titanate, which we earlier reported as sho
ing icelike behavior experimentally and in simulations, a
pears to have a much weaker superexchange between ne
neighbors. With a nearest-neighbor-only model of the sup
exchange, we find we need a superexchange of aro
11.1 K, that is, the nearest-neighbor interaction is arou
21.25 K compared to the bare dipole-dipole value
22.35 K. With these numbers, we get a reasonable ag
ment of the simulation with experiment~Fig. 7!. However,
we get even better agreement by uniformly scaling down
long-ranged dipole-dipole interaction by roughly the sa
factor of 1.25/2.35.~This is what was reported in our earlie
paper.! This suggests that the superexchange is not stri
nearest-neighbor but extends over to further neighbors.

We need to understand why Ho2Ti2O7-like behavior is
not observed in this case. With either of the two mod
above ~small nearest-neighbor-only superexchange, or u
formly scaled-down dipole-dipole interaction! the ground
state for the cluster of four tetrahedra remains the sam
before, the difference in energy from the next-lowest st
too remains roughly the same, and the above argum
should still go through.

The difference is that, because of the stronger near
neighbor interactions here, this system undergoes a cross

FIG. 7. A comparison with experimental data for dysprosiu
titanate of a simulation using nearest-neighbor superexchange
long-ranged dipole-dipole interactions, and a simulation us
uniformly scaled down dipole-dipole interactions~as was done
in Ref. 2!.
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from a paramagnetic phase to an ice-ruled phase at a co
erably higher temperature~greater than 1 K); and by the
time it cools down to the temperature (,0.7 K) where we
expect a transition of the sort described here, it is alre
stuck in a disordered icelike state and~because of the stron
ger nearest-neighbor interactions! cannot easily break out o
this state to access other states. It appears that the tem
ture of the crossover to the icelike phase is dictated by
nearest-neighbor interactions. In dysprosium titanate th
have an energy of around 1.3 K, and hence the ice rul
already in place by the time we go down to 0.7 K and t
spins are almost frozen, thus the ordering transition
longer has a chance to occur. In holmium titanate, on
other hand, the nearest-neighbor interaction is around 0.4
thus at 0.7 K the system is in no sense frozen, plenty of s
flips take place and the ordering transition occurs~Fig. 8!.

So while our arguments show that the true ground s
here is ordered and only 12-fold degenerate, the system t
to get stuck in fairly generic icelike states. We have check
that the energy of the disordered low-temperature state of
system in our simulations is always slightly but significan
higher ~by around 0.5–1%! than the energy of the fully or-
dered state if we include the full long-ranged interactions
calculating the energy.

The low-temperature states we see are governed ma
by the ice rule~though evidence of some local ordering
four-clusters can be seen! and are probably macroscopic i
number. This is why we observe an anomaly in the in
grated entropy which we earlier attributed to a possi
ground-state entropy. This low-temperature ‘‘entropy’’~as
estimated from Fig. 9! is around 10% lower than 1/2 ln(3/2)
which is itself an underestimate by around 10%. Very mu
the same thing is likely to be true in the real system~dyspro-
sium titanate! too: its true ground state is ordered but t

nd
g

FIG. 8. Specific heat curves of dysprosium titanate~experimen-
tal, and simulations give excellent agreement! and holmium titanate
~experimental, and a simulation retaining dipole-dipole interactio
to 12 nearest-neighbor distances!. By the time the ordering tempera
ture is reached~which is expected to be the same for both system!
dysprosium titanate is already frozen into an icelike configurat
from which it would find it hard to locate a lower-energy state.
2-5
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system can almost never access this ground-state. The
sured ground state entropy here is closer to 1/2 ln(3/2)
fact a bit more; it is probably a bit less than the true grou
state entropy of nearest-neighbor spin ice, though.

In the presence of a magnetic field, some interest
things happen. As reported earlier,2 some of the observed
ground-state entropy is recovered experimentally; we see
also in simulations~Fig. 9!. Since only the dipole momen
couples to the field, the quantitative agreement in this cu
is an additional confirmation of our model of co-existin
dipole-dipole interactions and superexchange. The curves
similar in features and the amount of entropy recovered
also roughly the same. In stronger fields, sharp spikelike
tures start to show up in the experimental specific-h
curves at low temperatures. Here, too, we find reason
qualitative and quantitative agreement between simulat
and experiment. All this confirms that our calculation of t
dipole moment of thef electrons and our supposition that th
reduced energy scales are due to another interaction~super-
exchange! are correct, since the interaction with a magne
field is purely magnetostatic. The experiments were d
using powder samples, and the simulations show that
behavior is strongly dependent on the direction of the fi
~see Fig. 10!. To compare with powder averaged experime
tal results, we would need a very large number of simu
tions in random directions, which we have not done to o
satisfaction.

The nature of the ground state also depends on the
direction, and with a sufficiently strong field and a suitab
field direction the ground state may not even satisfy the
rule. For instance, with a field along thez axis in Fig. 3
~which corresponds to the@111# direction with the conven-

FIG. 9. The integrated specific heat per unit temperature
simulations without a magnetic field and with a half-tesla magn
field. This shows the entropy gained over the ground-state entr
The entropy is expected to beR ln 2 ~dotted line! at high tempera-
tures; the integrated value falls short of this, indicating a grou
state entropy, but the ground-state entropy is reduced in the p
ence of a magnetic field. Both the experimental data, taken from
earlier paper,2 and the simulation results are plotted here for ea
comparison. Based on simulations, we suggest that a magnetic
of around 3 T should recover all or nearly all the ground-sta
entropy.
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tional unit cell! the ground state consists of three spins poi
ing into each upward tetrahedron and one pointing out o

It is interesting to ask how the transition to a differe
ground state occurs as one slowly turns on a magnetic fie
low temperatures. Figure 11 shows the result of doing this
a simulation at 0.2 K, for a field in the@11̄A2# and @111#
direction. The system seems to go through several magn
transitions before reaching its fully polarized state.

All these features would be averaged over in the exp
ments on the powder samples, and single crystals of th
materials could turn out to be worth studying in their ow
right.

IV. AN ANALOGOUS SIX-VERTEX MODEL

If we examine the nature of states just above the transi
in simulations of our holmium titanate model, we find tha
large fraction of the tetrahedra are already in the ice-ru

n
c
y.

-
s-

ur
y
eld

FIG. 10. Specific heat in the presence of a 2-T magnetic fie
for various directions of the field.

FIG. 11. The growth of magnetization in the simulation samp

for magnetic field in the@11̄A2# and @111# directions, at a tem-
perature of 0.2 K.
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state. This suggests that the sharp transition here is no
transition from paramagnetism to an icelike phase, bu
phase transition from a disordered icelike state to an orde
or partially ordered state.

To check that this is the case, we can try putting the
constraint in by hand, and check that the phase transitio
still reproduced at the same temperature. The model we
then is a form of six-vertex model on the ‘‘diamond’’ lattice
whose sites are the centers of the tetrahedra in the pyroch
lattice. The six-vertex model has been widely studied on
square lattice; the diamond lattice, like the square lattice,
a coordination number of four and can be divided in tw
sublattices, but is three dimensional. So we study a sys
where one assigns arrows to bonds on the diamond lat
such that each site~or ‘‘vertex’’ ! has two arrows pointing in
at it and two pointing away: so six kinds of vertices a
possible. But unlike conventional six-vertex models, we
not assign different weights to these six vertices, since a
them are really equivalent here; instead, the thermodynam
comes from interactions between different vertices. In ot
words, we have a Hamiltonian of the sort

H5(
i , j

[(
i , j

J„c~ i !,c~ j !,r i2r j…, ~6!

whereci is the configuration~a six-valued variable! of the
i th vertex, andJ is the interaction energy of verticesi and j,
which depends not only on their configurations but on
vector joining them~thanks to the underlying direction
dependent dipole-dipole interaction!. We have to calculate
the pairwiseJ’s appropriately.

What we do is the following: we note that the sites on t
diamond lattice fall into two sublattices, corresponding to
and down tetrahedra. First consider adjacent vertices~adja-
cent corner-sharing tetrahedra!. The internal interactions be
tween these spins can be separated into nearest-neighb
teractions, which we can assume has already been taken
account via the ice rule, and next-neighbor interactio
which we can equally include by considering only ne
neighbor vertices~that is, nearest-neighbor tetrahedra of li
orientation!. We thus ignore interactions between neare
neighbor vertices and consider interactions only betw
next-neighbor vertices, or nearest-neighbor vertices o
single sublattice. The interaction between two such verti
is the energy of interaction between the two correspond
tetrahedra, as given by the sum of interaction energies o
pairs of spins. We ignore all further-range interactions. B
the interactions already included, if carried out over all v
tices over both sublattices, will actually double count t
pairwise spin-spin interactions: we therefore also insert a
tor of half.

Formally, we can write

H5(
$ i , j %

Ei j [(
$ i , j %

E~Si ,Sj ,r i2r j ! ~7!

and then break this sum up into nearest-neighbor terms, n
neighbor terms, and so on; throw out the nearest-neigh
terms because we have used them in enforcing the ice
straint; and group the next few terms into pairs where o
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spin belongs to one ‘‘up’’ tetrahedron, the other spin belon
to an adjacent ‘‘up’’ tetrahedron;

H5 (
$a,b%

(
m51

4

(
n51

4

E~Sam ,Sbn ,Ra2Rb1xm2xn!

1other terms, ~8!

where the sum is over neighboring ‘‘up’’ tetrahedra at si
a and b, and we sum the interaction of each of the fo
spins ata with each of the four spins atb. Ra is the position
of spin 1 on tetrahedrona, likewise Rb , andxm are as in
Eq. ~2!. All the ‘‘other terms’’ involve spins separated b
three times the nearest-neighbor distance or more, so
drop them. We can do precisely the same grouping of te
for the ‘‘down’’ tetrahedra; we do both, and insert a factor
half. Thus our Ising spin Hamiltonian is reduced to the v
tex Hamiltonian~7! with appropriately chosen interaction en
ergiesJ, extending only to the nearest neighbor on the sa
sublattice.

As before, we simulate this Hamiltonian. First, a word
how we do this. Flipping a single bond will not do: it wil
destroy the ice constraint on both adjoining vertices. W
must find a closed loop, a set of bonds whose arrows l
from vertex to vertex and return to the starting vertex, a
flip the whole loop at one go. Such ‘‘loop algorithms’’ hav
been discussed previously9 and it has been pointed out tha
in a six-vertex model, every line of arrows if followed mu
return to the starting vertex and every configuration is acc
sible via loop flips alone, so a random loop-flip algorithm
ergodic. The earlier algorithms have several improveme
and optimizations; however, they are concerned with c
ventional vertex models where different vertices have diff
ent weights but do not interact, and cannot be comple
translated to this situation. We found it sufficient to mere
pick up random starting sites, form loops randomly, calcul
the energy difference, and flip them according to the M
tropolis algorithm.

The results are shown in Fig. 12. It exhibits a phase tr
sition at exactly the point where both the real system, a
our model for it, do. This is a distinctly first-order phas
transition. Thus we have verified that the phenomenon d
ing this phase transition is not the formation of icelike tet
hedra, but the further ordering of tetrahedra that have alre
attained ice-rule configurations; and we have displaye
fairly simple vertex model which shows the same features
our Ising pyrochlore.

The ground state of this system would be expected to
fully ordered, but typically only partially ordered states a
accessible. The argument is similar to that in the case
holmium titanate, and the simulations bear this out.

V. A SQUARE LATTICE VERTEX MODEL

The sort of physics involved can perhaps be better see
a square-lattice vertex model. Such models have been ex
sively studied,10 but the thermodynamics has typically arise
from assigning different weights to different vertices; inste
we give the same weight to all vertices, but consider int
actions between diagonally opposite vertices~the gray lines
2-7
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in Fig. 13!. We ignore nearest-neighbor interactions for t
same reason as earlier, i.e., that is taken care of by assig
an ice rule.

The possible interactions are shown in Fig. 14; for sy
metry reasons, we need have only three interaction par
eters, all other nonzero interactions can be obtained f
these by rotation, reflection, or inversion of one or both v
tices~inverting a single vertex will simply change the sign
the interaction energy!. If we calculate the interaction param
eters from an assumed dipole-dipole interaction betw
magnets aligned along the edges connecting the respe
vertices, we obtainA528.6678, B510.753, andC5
210.345 ~arbitrary units!. The ground state then looks a
shown on the left of Fig. 15; but a very slight alteration
the choice ofA, B, andC will give a ground state as show
on the right of Fig. 15, and the choiceA2B52C may lead

FIG. 12. Comparison of specific-heat curves for holmium tita
ate~the real system!; our model of holmium titanate; the six-verte
model of Sec. IV; and the six-state spin model of Sec. VI

FIG. 13. An ice model on the square lattice, with similar pro
erties to the earlier, diamond-lattice model. Interactions are betw
diagonally-opposite vertices~gray lines!.
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to rather interesting results. The model is probably wo
studying both in its own right and because of the long h
torical interest square-lattice vertex models have held;
since it is not really related to the rest of this paper,
postpone further discussion of it to a future work.

VI. MULTISTATE SPIN MODEL ON AN FCC LATTICE

In our vertex model earlier, we had two sublattices, a
interactions only within a single sublattice. Apart from th
ice-rule constraint, the two sublattice could just as well
noninteracting. So the next logical step is to separate the
sublattices. We consider an fcc lattice, with a six-valu
variable at each site. Only nearest-neighbor interactions
considered, and as before, the value of the interaction is
termined from the underlying pyrochlore Ising variables. T
major difference with the vertex model case is that we ha
now forgotten about the ‘‘down’’ tetrahedra: an arbitra
configuration of four neighboring ‘‘up’’ tetrahedra would no
satisfy the ice rule for the enclosed ‘‘down’’ tetrahedron, b
we are no longer worrying about that now.

It turns out that the dynamics of interaction between th
‘‘up’’ tetrahedra takes care of that for us. The system d
plays a phase transition at very nearly the same tempera
as the vertex model and the Ising pyrochlore~Fig. 12!, and at
temperatures just above the transition the configuration
such that nearly all the ‘‘down’’ tetrahedra in the corr
spondingly configured pyrochlore would satisfy the ice ru
at zero temperature the system is partially ordered, in exa
the way we observed in holmium titanate, but the partia
ordered states in this case really are the ground states.

FIG. 14. The three possible interactions between neighbo
vertices. All other possibilities are symmetry related, or zero.
particular, reversing all arrows on a single vertex will simp
change the sign of the interaction.

FIG. 15. With interaction energiesA, B, andC between vertices
calculated from dipole-dipole interactions between spins alig
along their edges, we obtain a ground state as on the left. B
slightly different choice of weights will yield a ground state as
the right, and there is the possibility of a ‘‘level crossing’’ betwe
the ground states for a choiceA2B52C.
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The partial ordering is now more easily visualized w
the conventional cubic unit cell rather than the parallelepip
which we used. Note first that each ice-ruled state of a te
hedron has a dipole moment, perpendicular to the side c
necting the two inward-pointing spins and to the side c
necting the two outward-pointing spins. If one looks at t
cubic unit cell, we can see that the six allowed values of t
dipole moment are along the three edges of this cube
what we have is a six-state magnetic model on an fcc lat
where each spin can point along one of the Cartesian axe
the ground state, one of these axes is picked out, so that
spin points along the same line in one of two opposite dir
tions; each plane perpendicular to this direction is antifer
magnetically ordered; and perpendicular to this plane,
ordering is random.

It is tempting to use the total dipole moments of the t
rahedra as the site variables, and for the interaction simp
use their mutual magnetic interactions, since we know t
the dipole-dipole interaction favors antiferromagnetic ord
ing in planes perpendicular to the spins; but it turns out t
this is not the ground state of such a system. Only by us
the actual interaction energies of the tetrahedra do we ob
such a ground state. However, there is an obvious connec
between this system and a well studied problem, which
turn to in the next section.

VII. ISING MODEL ON THE FCC LATTICE

The nearest-neighbor antiferromagnetic Ising model
the fcc geometry has been studied by several authors, an
ground state is known to have exactly the sort of ordering
are considering.

The ordering is easy to understand if there is a bit
anisotropy in the system: consider Fig. 16, where we have
fcc crystal, and within thex-y plane and planes parallel to
there is an antiferromagnetic interactionJ between neares
neighbors, but out of the plane there is an interactionJ8
,J. Then the planes prefer to order antiferromagnetica
but adjacent planes have zero interaction energy regard

FIG. 16. Ising antiferromagnet on an fcc lattice, with neare
neighbor interactionJ ~solid gray lines! in the plane andJ8,J
~dotted lines! between planes. Each plane orders antiferromagn
cally but they stack up in a random manner. Surprisingly, this
also the ground state whenJ85J.
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of their relative ordering, so the ordering along thez axis is
random. The interesting thing is that this remains true e
when J85J: the only change is a new factor of 3 in th
degeneracy because of the new rotational symmetry of
system.

The order of the transition is also of interest. In the is
tropic case, it is a first-order transition. With strong anis
ropy ~a weak interplane coupling!, however, we would ex-
pect a second-order transition because the system effect
is like weakly interacting two-dimensional Ising system
which have a second-order transition at the Onsager temp
ture. In fact, simulations suggest that forJ8 close toJ, the
transition is first order, but forJ8 somewhat less it is secon
order, and forJ850.6J the transition temperature is almo
exactly the Onsager temperature. Since the planes ha
zero interaction energy in the ground state and a very sm
interaction energy at low tempratures, they behave like
most uncoupled 2D Ising systems. Thus this system seem
exhibit either a first-order transition or a second-order tr
sition with the same sort of ground state, depending on
parameters.

VIII. CONCLUSION

We have clarified the true nature of the ground states
the Ising pyrochlores holmium titanate and dysprosium tit
ate. We have pointed out that the icelike behavior of dysp
sium titanate seems to arise not from a macroscopic de
eracy of the true ground state, but from its inaccessibility
practice, and consequently the tendency of the system to
into one of a large number of slightly excited icelike state
In holmium titanate, the ordering temperature is higher th
the expected ice-formation temperature; here, too, the sys
gets stuck into excited states, but these are partially orde
states and the model system shows a clear phase trans
By rigidly enforcing the ice constraint, we show that th
transition exists independently of the broad ice-state cro
over in spin ice, and we exhibit several models, including
well-known fcc Ising model and a diamond lattice vert
model, which undergo a similar phase transition. Analogo
to this vertex model we also exhibit a square lattice ver
model which has differently ordered ground states depend
on what interaction parameters we choose, and which
hope to examine further sometime in the future.

In addition, we have looked at what happens to dysp
sium titanate when a magnetic field is applied, and compa
our conclusions to available experimental data; we have
produced earlier experimental data for a weak field and
similarities in our simulations and the strong-field data, fu
ther confirming our underlying model. We see strongly a
isotropic behavior in these systems and predict some in
esting results for possible experiments on single-cry
samples.

This work appears as part of the Ph.D. thesis of R.S.11

Note added.After this manuscript was prepared, w
learned that the ordering discussed by us has recently b
observed in simulations by den Hertoget al.12
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