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Abstract
We present the exact solution for a set of nonlinear algebraic equations
1
zl

= πd + 2d
n

∑
m �=l

1
zl−zm

. These were encountered by us in a recent
study of the low-energy spectrum of the Heisenberg ferromagnetic chain.
These equations are low-d (density) ‘degenerations’ of a more complicated
transcendental equation of Bethe’s ansatz for a ferromagnet, but are interesting
in themselves. They generalize, through a single parameter, the equations of
Stieltjes, xl = ∑

m �=l 1/(xl − xm), familiar from random matrix theory. It
is shown that the solutions of these set of equations are given by the zeros
of generalized associated Laguerre polynomials. These zeros are interesting,
since they provide one of the few known cases where the location is along a
nontrivial curve in the complex plane that is determined in this work. Using
a ‘Green function’ and a saddle point technique we determine the asymptotic
distribution of zeros.

PACS numbers: 02.10.-v, 05.50.+q, 75.10.Hk, 75.30.-m

1. Introduction

The study of nonlinear algebraic sets of equations that arise in various physical contexts is a
rich field of study. A famous example is the problem of Stieltjes, namely the set of equations
xl = ∑

m �=l 1/(xl − xm), for n variables xl , that arises when we consider the stationary points
of the random matrix Gaussian ensemble ‘action’ 1/2

∑
x2
l − 1/2

∑
l �=m log(|xl − xm|) [2].

In that context, the well known result is that the xl are all real, and further, are the roots of
Hermite’s polynomials of degree n, forming a dense set along the real line with the familiar
semicircular density of states as n → ∞.

In a recent study of the ‘most elementary excitations’ of the Heisenberg ferromagnet in
one dimension [1], we came across a one-parameter generalization of the Stieljes problem

1

zl
= πd +

2d

n

∑
m �=l

1

zl − zm
. (1)
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where the single parameter d (0 � d � 1) has the physical significance of the density of
(hardcore) particles on a lattice. By a simple redefinition of variables (see below), this is
recognizable as a generalized Stieltjes problem βl

1+iλβl
= 1

n

∑
m �=l

1
βl−βm

, where, as the parameter
λ vanishes, it reduces to the standard problem.

We found the equation quite fascinating in its own terms, requiring some new tricks to
solve. It further appears that this problem connects with [4, 8–11] that of the asymptotic
distribution of zeros of the standard polynomials (orthogonal in most instances though not in
the present case). It provides an explicit example of a case where the zeros live on a nontrivial
curve in the complex plane, which is determined here.

The paper is organized as follows. In section 2 we obtain a perturbative solution of
equation (1) while in section 3 we give the exact solution. The construction of the ‘Green
function’ and the determination of the distribution of zeros are described in section 4. We
summarize our results in section 5. Some results of Stieltjes on the properties of zeros of
orthogonal polynomials are described in appendix A. In appendix B we describe a second
method of obtaining the Green function.

2. The perturbative solution

We first present a ‘perturbative solution’ in a parameter displayed below, perturbing around
the Stieltjes example. In equation (1) we make a change of variables zl = (1 + iλβl)/(πd),
with λ = √

2d . The new variable βl satisfies the following equation:

βl

1 + iλβl

= 1

n

∑
m �=l

1

βl − βm

. (2)

We note that for λ = 0, this equation reduces to the well known form whose solution can
be found in terms of the roots of the Hermite polynomials, the example of Stieltjes [3]. The
general formalism for this is summarized and expanded upon in appendix A. Thus one obtains
βl = xl where xl satisfy Hn(

√
nxl) = 0, where Hn is the Hermite polynomial of degree n.

The division by n in equation (2) is our preference, since it enables an easier passage to the
‘thermodynamic limit’ n → ∞, and we discuss this feature later.

One possible approach is to try for a perturbative solution around the known result of
Stieltjes to various orders in the small parameter λ (see below). The perturbation analysis
requires a knowledge of the eigenvectors and eigenvalues of an interesting matrix studied
by Calogero (we call this the Calogero matrix) in which the matrix elements are algebraic
functions of xl , the roots of the Hermite polynomials.

For λ �= 0 we try a perturbation series solution of the form βl = ∑
k β

(k)
l (iλ)k . Putting

this in equation (1) and matching terms order by order we obtain the following set of equations
for the unknown coefficients β(k)

l :

β
(0)
l − 1

n

∑
m �=l

1

β
(0)
l − β

(0)
m

= 0 β
(1)
l +

1

n

∑
m �=l

β
(1)
l − β(1)

m

[β(0)
l − β

(0)
m ]2

= [β(0)
l ]2

β
(2)
l +

1

n

∑
m �=l

β
(2)
l − β(2)

m

[β(0)
l − β

(0)
m ]2

= 2β(1)
l β

(0)
l − [β(0)

l ]3 +
1

n

∑
m �=l

[β(1)
l − β(1)

m ]2

[β(0)
l − β

(0)
m ]3

β
(3)
l +

1

n

∑
m �=l

β
(3)
l − β(3)

m

[β(0)
l − β

(0)
m ]2

= 2β(2)
l β

(0)
l + [β(1)

l ]2 − 3β(1)
l [β(0)

l ]2 + [β(0)
l ]4

+
2

n

∑
m �=l

[β(2)
l − β(2)

m ][β(1)
l − β(1)

m ]

[β(0)
l − β

(0)
m ]3

− 1

n

∑
m �=l

[β(1)
l − β(1)

m ]3

[β(0)
l − β

(0)
m ]4

.

(3)
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As noted above, the lowest-order solution is given by β
(0)
l = xl where Hn(

√
nxl) = 0. It turns

out that it is possible to solve the equations of the perturbative series at every order. To see
this we first define the Calogero matrix [5]:

Tlm = δlm
∑
j �=l

1

(xl − xj )2
− (1 − δlm)

1

(xl − xm)2
. (4)

We then note that the set of equations (3), for k > 0, have the following general structure:

β
(k)
l +

1

n

∑
m

Tlmβ
(k)
m = g

(k)
l (5)

where the function g
(k)
l appearing at kth order in perturbation is a function of lower-order

terms only and so is known. Hence at every stage we have to essentially solve a linear matrix
equation with the same matrix appearing at all orders. This can be done by using some rather
special properties of the Calogero matrix, T . The following result is easily obtained:

Tlmx
r
m = rxr

l − (r − 1)(2n − r)

2
xr−2
l −

[r/2−1]∑
s=1

(r − 2s − 1)

( n∑
m=1

x2s
m

)
xr−2s−2
l (6)

where [p] denotes the largest integer �p. Note that the rhs of equation (6) involves powers of
xl alone. It is also possible to show that at every order the function g

(k)
l is a known polynomial

of degree (k + 1) in the variable xl . Thus it follows that the kth-order solution can be obtained
in the form

β
(k)
l =

k+1∑
r=0

c(k)r xr
l (7)

where the coefficients c(k)r are obtained by inserting the above form into equation (5), using
the property equation (6) of the Calogero matrix T and then comparing the lhs and rhs of the
equation. To second order we get

βl = xl + iλ

[
1

3
x2
l +

1

3

(
1 − 1

n

)]
+ (iλ)2

[
1

36
x3
l +

1

72

(
14 − 11

n

)
xl

]
+ O(λ3). (8)

It is straightforward, though tedious, to carry the perturbation to any order. We have been
unable to find a closed form for the general term.

As an example of this perturbation theory we note that the first-order term in λ is already
enough to compute several objects of interest. In the ferromagnet problem, one needs the
‘energy’ of the state w, defined by w = 4/(nd)

∑
l 1/z2

l (the present w = nε/dJ of [1]). To
obtain this energy to order d2 the perturbation series to first order in λ suffices. In the limit
of large n the xl form a continuum stretching from −√

2 to
√

2 with the familiar semicircular
density of states ρ(x) = 1

π

√
2 − x2. This solution can be used to obtain the energy to order d2.

The energy w for low d can be found as w = 4π2[d −d2{6〈(β(0)
l )2〉+ 4〈β(1)

l 〉}+ O(d3)], where
the averages are normalized sums over the indicated variables. Using the explicit expression
equation (8) and converting the sums to integrals over the semicircular density of states we
finally get the low-density formula

w = 4π2d(1 − d) + O(d3). (9)

3. Exact solution

The exact solution of equation (1) can be obtained using the results of Stieltjes, which
are described in appendix A. We will give two different but related solutions. The first
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one is directly related to the perturbative approach. We first note that after the change
of variables ul = √

nβl , equation (2) becomes of the form equation (A.8) with p(u) =
(1 + i(2d/n)1/2u); q(u) = −2u. The {ul} are then obtained as zeros of the the corresponding
polynomial function g(u), which in this case satisfies the following differential equation:

(1 + iνu)g′′(u) − 2ug(u) + 2ng(u) = 0 (10)

where ν = √
2d/n. For ν = 0 this is just Hermite’s equation and we recover our zeroth-order

perturbative result. For ν �= 0, we obtain the following series solutions (which we denote by
Qn(u)):

Qn(u) =
n∑

k=0

cku
k

with

ck = −(k + 2)(k + 1)

2(n − k)
ck+2 − iνk(k + 1)

2(n − k)
ck+1

cn−1 = −iνn(n − 1)cn
2

cn = 2n.

(11)

To obtain our second solution to equation (1), we make the change of variables zl =
−yl/(πn), so that equation (1) is transformed to

n/d + yl

yl
= 2

∑
m �=l

1

yl − ym
. (12)

This is in a form where we can once again apply Stieltjes’ result. The corresponding differential
equation in this case is the associated Laguerre equation (A.11). Thus {zl} are obtained as zeros
of the associated Laguerre polynomials L(−n/d−1)

n (−nπz) [6]5. Note that the usual orthogonal
Laguerre polynomials La

n(y) have a > −1, while in our case a = −(n/d + 1) < −(n + 1).
In this case it can be proved [4] that for n even there are no real zeros while for odd n there
is a single real zero. Physically this corresponds to the fact that the single-particle potential
(see appendix A) in this case is no longer confining and therefore we cannot get any position
of equilibrium for the particles.

The two solutions described are related as

Qn(x) = (−i)nn!2n/2

(n/d)n/2
L−n/d−1

n (−i(2n/d)1/2x − n/d). (13)

We note that since in the limit d → 0 we get Qn(x) → Hn(x), this leads to the following
interesting identity relating the Hermite and Laguerre polynomials:

lim
d→0

(−i)nn!2n/2

(n/d)n/2
L−n/d−1

n (−i(2n/d)1/2x − n/d) = Hn(x). (14)

Such a relation is of course well known (see e.g. [7]) for the case of large positive order m in
Lm

n .

5 In this paper Muttalib has shown a similar connection between the zeros of Laguerre polynomials and the roots of
a set of equations arising in the context of random matrix theory. However he considers real zeros of the Laguerre
polynomials while we consider complex zeros of the associated Laguerre polynomials and, as we show, this case turns
out to be much more rich and interesting. Also, unlike his case, our equations can be continuously deformed to the
classic Stieltjes problem with Hermite polynomials.
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4. Asymptotic distribution of zeros

In the previous section it was shown that the solutions to equation (1) are the zeros of generalized
associated Laguerre polynomials. Unlike the case of usual orthogonal polynomials where the
zeros are always real, in the present case the zeros are complex. Szego [4] has already noted
that the zeros of L

−|m|
n (z) are in general non-real except for at most one root. We found

numerically that all the complex roots live on a smooth curve in the complex plane; we now
proceed to obtain the distribution of the roots in the complex plane in the asymptotic limit
n → ∞.

Let us define the following Green function (also known as the Stieltjes transform in the
mathematics literature):

G(z) = 1

n

n∑
l=1

1

z − zl
. (15)

An important aspect of our analysis is in the way in which we scale the various arguments
by n, and normalize by n as above. The remaining variables, such as G, z and y below are of
O(1) as n → ∞, whereby various simplifications arise for large n.

Using the results described in appendix A we get

G(z) = 1

nF(z)

dF (z)

dz
= 1

n

d

dz
ln (F (z)) (16)

where, in the present case, we have F(z) = L
−n/d−1
n (−nπz). The usual integral equation

representation of the associated Laguerre polynomial gives

F(z) = 1

2π i

∮ exp (
nπzy

1−y
)

(1 − y)−n/dyn+1
dy = 1

2π i

∮
e−nφ(y,z)

y
dy

where

φ(y, z) = ln (y) − 1

d
ln (1 − y) − πzy

1 − y
. (17)

The contour can be taken as any closed loop around the origin which does not cross the branch
line, which we take as the real line from y = 1 to ∞. In the large-n limit the integral can
be evaluated by a saddle point method, as is standard in statistical physics. The saddle point
of φ is determined for each z We can choose the contour to pass through the appropriate
saddle point. In the usual case, this deformation leads to the asymptotically exact result for
the ‘free energy’; here we show that it leads to the exact Green function. The saddle-points
are determined through ∂φ(y, z)/∂y = 0, which gives

y± = 1 − 2d − πdz ± πd
√
(z − z+)(z − z−)

2(1 − d)

where

z± = 1 − 2d

πd
± i2

π

√
1

d
− 1. (18)

Of the two saddlepoints we choose the one which gives a smaller value for Re [φ(y, z)] since
that gives the dominant contribution to the integral. Further it needs to be ensured that it
is possible to actually draw a contour, enclosing the origin and not crossing the branch-cut,
such that, along the contour, φ(y, z) takes its minimum value at the saddlepoint. We find that
either of the branches can be chosen depending on the location of z in the complex plane. The
condition

Re [δφ] = Re [φ(y−, z) − φ(y+, z)] = 0 (19)
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Figure 1. The curves C1 and C2, in the complex z plane, for density d = 1/2. At this density the
curves are explictly given by the formula in equation (22). The curve C1 corresponds to the true
line of singularities on which the roots lie. There is also a change of branch from y+ to y− as we
cross the vertical lines C±

3 from right to left. But there is no discontinuity of the Green function
across these lines and hence there are no zeros on these lines.

determines the curve in the � z plane on which the roots lie. This condition actually determines
two curves C1 and C2, where C1 concaves towards the negative Re [z] axis (like x = −y2)
and C2 concaves in the other direction. The curves C1 and C2 together form a closed region R

in � z plane surrounding the point (1 − 2d)/(πd) (see figure 1). To the right of the curve C1,
the saddlepoint y+ dominates. As we cross into the region R, the saddlepoint y− takes over.
However when we again cross the curve C2, the saddlepoint y− continues to determine the free
energy even though φ(y+, z) is smaller. This is because it is no longer possible to construct
the necessary contour through y+ (this is illustrated in figure 2) and we remain stuck to y−.
Thus it is the curve C1 which determines the locus of roots of the polynomials.

A brief discussion of the curves is in order. In terms of κ =
√

d
1−d

we replace z by a

variable ψ defined through z = 1
πκ2 [(1 − κ2) + 2κ sinh(ψ)] and hence the branch line of the

square roots is a curve joining the two points ψ = ±iπ/2. The difference in ‘free energies’
can be written as

δφ = iπ + 2ψ +
2

κ
cosh(ψ) − 1 + κ2

κ2
log

{
1 + κ exp(ψ)

1 − κ exp(−ψ)

}
. (20)

A particularly nice case is that of d = 1/2, where we have κ = 1 and hence another
transformation to b = (bre + ibim) defined through sinh(b) sinh(ψ) = −1 gives

δφ = iπ + 2[b − coth(b)]. (21)

The roots thus live on the curve bre = Re coth(bre + ibim), which simplifies to the curve

bim = 1
2 arccos[cosh(2bre) − sinh(2bre)/bre]. (22)
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Re[y]

-φ

+φ

Im[y]

Figure 2. The figure shows, schematically, contours of constant φ+ and φ− in the complex y plane
(with d = 0.6 and z = −0.4 + 0.3i). For this case φ+ < φ−. It is clear that one cannot draw the
appropriate contour through the point y+ and so we are forced to choose the point y− even though
it has a higher value of φ. This illustrates why there is no change in branch when we cross the
curve C2.

Note that z = −2/(π sinh(b)), and bre varies between bl = 0.000 79 and bu = 1.199 68 the
values at which the argument of the arccos hits ±1. By choosing the appropriate branch of the
arccos function we obtain a smooth curve as depicted in figure 1.

In figure 3 we show curves at different densities, obtained by solving equation (19)
numerically. We also plot the roots as obtained from an exact numerical solution of equation (1)
for n = 54.

The asymptotic Green function follows from equation (16):

G(z) = − dφ (y, z)

dz

∣∣∣∣
y±

= πy±
1 − y±

(23)

where either of the branches y± is chosen depending on the value of z. A second method of
deriving the Green function is described in appendix B.

Density of zeros. The Green function contains complete information on the roots and we now
proceed to extract the density of zeros from it. We note that for the case when the roots are
all located on the real axis, the density of zeros is given by the discontinuity in the imaginary
part of the Green function across the branch line formed by the roots. Here we develop a
generalization of this procedure for the case when the roots are distributed on a curve.

We first assume that the curve can be parametrized by a continuous variable s so that
points on it are given by z(s) = (x(s), y(s)). The Green function is given by

G(z) = 1

n

∑
l

1

z − z(sl)
.
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-1

-0.5

0.5

1

Figure 3. The solid curves give the asymptotic distribution of zeros in the complex z-plane obtained
from a numerical solution of equation (19) for d = 0.2, 0.4, 0.6 and 0.8 (extreme left). Also shown
are numerically obtained roots (points) for n = 54.

We now define the following limiting function:

GL(s) = lim
η→0

G(z(s) + η) = lim
η→0

1

n

∑
l

1

z(s) − z(sl) + η
η = ηx + iηy (24)

Expanding around sl we get

lim
η→0

1

z(s) − z(sl) + η
= lim

η→0

1

z′(sl)
1

[(s − sl) + η̂]
where η̂ = η

z′(sl)

= P − iπ
δ(s − sl)

z′(sl)
sign(η̂y) (25)

where P denotes the principal part having a continuous variation across the curve. Putting this
into equation (24) and using the definition ρ(s) = 1

n

∑
δ(s − sl) we get

GL(s) = P − iπ
ρ(s)

z′(s)
sign(η̂y)

= P +
iπρ(s)

x ′(s) + iy ′(s)
sign[ηxy

′(s) − ηyx
′(s)]. (26)

We note that the above result has a simple geometric meaning: the discontinuity is related to
the variation along the normal to the curve. The discontinuity in the Green function across the
curve is thus given by

G+
L(s) − G−

L (s) = ±2π iρ(s)

z′(s)
= 2π(α + iβ) (27)

where α and β define the real and imaginary parts of the jump. Defining the projected densities
ρx(x) = 1

n

∑
δ(x − xl) = ρ(s)/|x ′(s)| and ρy(y) = 1

n

∑
δ(y − yl) = ρ(s)/|y ′(s)| we then

get

ρx(x) = α2 + β2

|β| ρy(y) = α2 + β2

|α| . (28)

In figure 4 we plot the density of zeros, ρ(s), obtained numerically from equations (19) and (28),
with the parameter s chosen as the Euclidean length along the curve.
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Figure 4. The asymptotic density of zeros ρ(s) as a function of the Euclidean length along the
curve for d = 0.2, 0.4, 0.6 and 0.8. The densities are evaluated numerically using the formula in
equation (28).

5. Conclusions

In summary we have studied a set of coupled nonlinear algebraic equations which are essentially
the Bethe ansatz equations for the lowest-energy states of the Heisenberg ferromagnetic chain,
at small densities. Both a perturbative and an exact solution of the equations were obtained. In
the former case we find that due to some very special properties of the Calogero matrix, we are
able to calculate the perturbation series to all orders. The exact solutions of the equations were
obtained following a method due to Stieltjes and these are given by the zeros of generalized
associated Laguerre polynomials. These zeros are distributed on the complex plane and
using Green functions and saddle-point techniques we have obtained the exact asymptotic
distribution. It may be noted that there are other examples in physics where one needs to study
complex zeros of polynomials as for example in the case of the Yang–Lee zeros. However this
is probably one of the few examples where the distribution of zeros in the complex plane has
been computed exactly.

Appendix A

We give an account of Stieltjes electrostatic interpretation of zeros of the orthogonal
polynomials [3, 4]. The case of the Hermite polynomials is widely known in the physics
literature and has been widely applied. This does not seem to be the case for the other
orthogonal polynomials.

We first outline the derivation of the electrostatic interpretation for the Hermite polynomial.
Consider a set of charges in one dimension interacting by a logarithmic repulsive force and
confined within a harmonic potential well. The potential energy of the system is given by

E = 1
2

∑
l=1,n

x2
l − 1

2

∑
l �=m

ln |xl − xm|. (A.1)
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The minimum of the energy is given by

∂E/∂xl = xl −
∑
m �=l

1

xl − xm
= 0. (A.2)

Stieltjes’ result is that the n zeros of the Hermite polynomial Hn(x) satisfy this equation. To
show this, consider the nth-degree polynomial

g(x) =
∏
l=1,n

(x − xl) (A.3)

where xl are the n roots of equation (A.2). Taking derivatives with respect to x we get

g′(x) =
∑
l

∏
m �=l

(x − xm) g′′(x) =
∑
k �=l

∏
m �=k,l

(x − xm). (A.4)

Hence
g′′(xl)
g′(xl)

= 2
∑
m �=l

1

xl − xm
= 2xl (A.5)

since xl satisfy equation (A.2). Thus we have g′′(xl) − 2xlg′(xl) = 0. We further note that
f (x) = g′′(x) − 2xg′(x) is a polynomial of degree n with the same roots as g(x) and so they
must be identical apart from a constant multiplicative factor. This constant factor is determined
by evaluating the coefficient of xn in f (x), which is −2n. We thus obtain f (x) = −2ng(x)
or

g′′(x) − 2xg′(x) + 2ng(x) = 0 (A.6)

which is just the equation for the Hermite polynomials. Thus it has been shown that the energy
function in equation (A.1) is minimized by a configuration in which the n particles are located
at the zeros of the Hn(x).

This result can be generalized by replacing 2xl in equation (A.5) by the expression
−q(xl)/p(xl), where q(x) and p(x) are arbitrary polynomials of degree 1 and 2 respectively.
Taking q(x) = q0 + q1x and p(x) = p0 + p1x + p2x

2 we repeat the previous arguments to
obtain

p(x)g′′(x) + q(x)g′(x) + [−n(n − 1)p2 − nq1]g(x) = 0. (A.7)

Denoting the polynomial solutions of this general equation by gn(x) we have the following
result: the zeros of the polynomial gn(x) correspond to the solution of the set of equations

q(xl)

2p(xl)
+

∑
m �=l

1

xl − xm
= 0. (A.8)

This corresponds to a minimization of the following n-particle potential energy:

E = 1

2

∑
l

∫
q(xl)

p(xl)
+

1

2

∑
l �=m

ln |xl − xm|. (A.9)

We note that these results are valid for arbitrary complex values of the coefficients pi and qi ,
though a physical interpretation cannot be given in all cases. In fact, as we shall now see,
all the cases which give rise to real confining potentials are precisely the ones corresponding
to the classical orthogonal polynomials. Physically we expect that for a confining potential
there will be real solutions to the minimization problem and this is reflected in the fact that all
orthogonal polynomials of the nth degree have exactly n real zeros (this of course also follows
from the Sturm–Liouville theory). We now list the various cases which result in the standard
orthogonal polynomials.
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(i) p2 �= 0. In this case, it can be shown that up to linear and scale transformations of the
variable x, the most general form of the differential equation which leads to a confining
potential is the following:

(1 − x2)g′′(x) + [b − a − (a + b + 2)x]g′(x) + n(n + a + b + 1)g(x) = 0 a, b > −1

(A.10)

The resulting potential V (x) = −(1 + a) ln (1 − x)− (1 + b) ln (1 + x) confines particles
within the domain −1 < x < 1. This is the equation for Jacobi polynomials, P (a,b)

n (x),
of which the Legendre and Chebyshev polynomials are special cases [7].

(ii) p2 = 0, p1 �= 0. In this case the most general form with a bounding potential is

xg′′(x) + (a + 1 − x)g′(x) + ng(x) = 0 a > −1. (A.11)

The resulting potentialV (x) = x−(a+1) ln x confines particles to (0,∞) and corresponds
to the associated Laguerre polynomials, La

n(x) [7].
(iii) Finally we have the case p1 = p2 = 0, p0 �= 0 and this gives rise to Hermite’s equation,

which has the harmonic potential V (x) = x2/2.

We note that apart from these special cases the other cases, where pi, qi are allowed to
take arbitrary complex values, also may give rise to important physical applications as indeed
is so for the example of Bethe roots considered in this paper.

Appendix B

Here we derive a differential equation satisfied by the Green function. We also show how this
can be applied to the case of the other orthogonal polynomials in order to extract the density
of zeros in those cases. We start with equation (16) and take a single derivative to get

n
dG(z)

dz
= − 1

F 2

(
dF

dz

)2

+
1

F

d2F

dz2
. (B.1)

Now F(z) = L
−n/d−1
n (−nπz) and so satisfies the following Second-order equation (which is

equation (A.11) with the substitution y = −nπz and a + 1 = −n/d):

z
d2F

dz2
+ (−n/d + πnz)

dF

dz
− πn2F = 0.

Using this and equation (16) we can eliminate the derivatives on the right-hand side of
equation (B.1) to get our equation for the Green function:

1

n

dG(z)

dz
= −G2(z) −

(−1

dz
+ π

)
G(z) +

π

z
. (B.2)

In the limit n → ∞, the left-hand side vanishes and the roots of the quadratic on the right-hand
side give us the two branches of the Green function. To choose between the branches of course
requires a examination of the saddle points as described in section 4.

This procedure of obtaining the asymptotic Green function is easily generalizable to other
polynomial equations and we briefly discuss a few applications to cases where the zeros are
real.

(1) Associated Laguerre polynomials with a + 1 = pn > 0. The replacement d = −1/p at
once gives us

G(z) = −πz − p ± π
√
(z − x+)(z − x−)

2z
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with

x± = ( − p − 2 ± 2
√
p + 1

)
/π. (B.3)

The roots are located in the region x− < x < x+ and the density of zeros, given by the
discontinuity in the imaginary part of the Green function, is obtained as

ρ(x) = 1

2x

√
(x+ − x)(x − x−). (B.4)

We can also consider the case where the coefficient a does not scale with n but is a finite
constant. The Green function and density of zeros are found to be independent of a:

G(z) = −π

2

[
1 −

√
1 +

4

πz

]

ρ(x) = 1

2

√
4

π |x| − 1 − 4/π < x < 0.

(B.5)

(2) Hermite polynomials. In this case we use scaled variables such that the zeros zl satisfy
Hn(

√
nzl) = 0. Proceeding as before we get the following equation for the Green function:

1

n

dG(z)

dz
= −G2(z) + 2zG(z) − 2.

The asymptotic Green function and the density of zeros follow immediately:

G(z) = z −
√
z2 − 2

ρ(x) = 1

π

√
2 − x2.

(B.6)

(3) Jacobi polynomials. If zl satisfy P (a,b)
n (zl) = 0, then the corresponding equation for the

Green function is
1

n

dG(z)

dz
= −G2(z) − b − a − (a + b + 2)z

n(1 − z2)
G(z) − n + a + b + 1

n(1 − z2)
.

We thus get the following asymptotic Green function and density of states:

G(z) = 1√
z2 − 1

ρ(x) = 1

π
√

1 − x2
− 1 < x < 1.

(B.7)

The results in equations (B.5)–(B.7) are identical to those given in [8], where they have been
obtained by different methods.
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