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Exact spectral functions of a non-Fermi liquid in one dimension
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We study the exact one-electron propagator and spectral function of a solvable model of interacting electrons
due to Schulz and Shastry. The solution previously found for the energies and wave functions is extended to
give spectral functions that turn out to be computable, interesting, and nontrivial. They provide one of the few
examples of cases where the spectral functions are known asymptotically as well as exactly.
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[. INTRODUCTION is realized here for the particular model of SS. We are able to
see how the Luttinger-liquid spectral function evolves from a
The excitations of a one-dimensionélD) interacting  noninteracting free fermion case by switching on some inter-
Fermi system cannot be explained using quasiparticles of thaction parameter.
Fermi-liquid picture. For example, the momentum distribu- We first write down the basic lattice Fermi model in 1D
tion function has a cusp at the Fermi momentlggnrather ~ and outline the pseudounitary transformation that eliminates
than a Jump as in a Fermi ||qu|:b|2 This behavior is of the the gauge interactions in favor of a twisted boundary condi-
kind first found by Luttinger in the context of his study of an tion (Sec. 1). Using this transformation we formulate the
exactly solvable one-dimensional modelThe fermionic ~Problem of calculating the one-electron Green’s function in
Green's functions are nontrivial, and the asymptotic long-Sec. .
distance behavior has characteristic singularities that are
popularly known as the Tomonaga-Luttinger liquid
behavio® On the other hand, very little is known beyond
the asymptotic or low-energy regime. A few exact analytical et us write the model for two-component electrons hop-
calculations of the spectral function for model systems arging and interacting via the Hamiltonian
available in literature, and they are all in the strongly corre-
lated limit, where the double occupancy of a site is projected Lo1
out: this includes the Hubbard model in the limit of infinitely _ - S S
large repulsiofi” and the 7?2 exchange-J model®?® T= t,Zo ; expliraln; o+ N4 1,1)C) 4C 1107 H-Cy
Recently Schulz and Shastfyintroduced a new class of (1)
gauge coupled 1D Fermi systems, which make it possible to
study the behavior of the spectral function starting from ayhere for concreteness we have simplified the original
weakly interacting limit. These models are sir_nilar in naturemodel presented in Ref. 10. Hekedenotes the number of
to those of Ref. 11, and are non-Fermi liquids due to thesjtes in the chaincJTU creates a fermion with spio=1,| at
gauge coupling. Details of the various inter-relationships are.., . . ~ __ + . h i i ity —
reviewed in Ref. 12. The model introduced by Schulz andsr[e R R '? the occupation operator wi .
Shastry(SS is in fact intimately connected to the original — ¢+ @nd byN, we will denote the total number af spin
Luttinger model, and is best viewed as its reinterpretation afermions, which is the eigenvalue of the operatgy. Fi-
a gauge theory. Particles of different species exert a mutudlally, t is the hopping parameter and the gauge interaction is
gauge potential on each other and this is sufficient to destrogontrolled by the dimensionless parameter in our model,
the Fermi liquid. The asymptotic long-distance behavior ofThe unitary transformation
the one-electron correlation function is knowsee below
by one of several arguments, including Luttinger’s original
one using the asymptotic properties of Toeplitz determinants. ulzexr( i > [N N =Ny ] 2
Our motivation in the present work is to compute the I=m
exact one-electron Green'’s function for the SS model, utiliz-
ing our knowledge of the complete spectrum of the sametransforms Eq(1) into a simple hopping Hamiltonian with
and using techniques familiar from Anderson’s treatment ofwisted boundary conditiorn’$. To regain a translational in-
the orthogonality catastrophe issue in the x-ray edgeariant Hamiltonian we apply a second unitary transforma-
problem?® This is of great interest since usually one does notion
have access to the exact Green’s function even in 1D and one
has to be content with the asymptotic behavior. For interpret- L-1
ing experiments, such as those on photoemission, one wants Uy= H exp(
to know more than just the asymptotics, and this possibility =0
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The combined transformatiob'=4,14;, commutes with7,
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try is conserved In the ground state the gauge interaction

whereTis the translational operator that shifts one site to theact like a vector potential and generates currents that flow in

right (e.g., 7n;7'=n;, ). The effect of{ on the fermion
operators is

quT’ (YZ/{T =g laoNggiaon; ;CJT’ .

-1

o [2ie(—jen s
<[ exp2iaon ) [] exp —————2,
=0 T i=0 L

t_ aiaoNgn—iaon; o
ucj JU'=e*Noe 1 *Miog; o
-1 L-1

X [I exp—2iaon ;) []
=0 =0

p(—zia(l—j)aﬁ.;>
Xex L f

while the density operatorétﬁJ U= nJ - as well as thes
spin operator are invariafthe S+ andS;” spin operators are
not invariant under the transformat)onThe transformed

HamiltonianH=UHu" reads

(4)

7-£=—t2 E (5

2Io’oznoC CJ+1O.+HC)

wheren, =N, /L is the density operator af spin fermions.
In a fixed number subspace, we may treatas a “‘c num-

ber.” Thus we see that the transformed hopping has a dybe
namically generated” gauge field. In the eigenvalue problem,

H|d)=E[$); (6)

the eigenstates*,}}) are products of noninteracting one—

particle states with momentak created with cka

=L"'23,e ¢/ operator,|¢)= Hkgckg|0> The momenta
are quantlzed alskw 277 ., 1j,, being an integer. The
total energy and momentum of the states is

N(f
E= Z E (r(k] (r) PZ; jgl kj,(rv

(7
o j=1
and the one-particle energy is
e,(k)=—2tcogk+20any). (8)
Thus we must have the eigenstatesHif
|6)=UT[4), )

with the energy and momentum given also by Ef. In the
ground state thé states between the Fermi momekia,,
andk; , are filed kg ,==mn,—2aony). In the thermo-
dynamlc limit the energye does not depend on and is
equal to the energy of the noninteractiag=0 case. For
finite-size systems enters only through th&(1/L) correc-
tions.

For generalkr the Hamiltonian breaks both the parity)
and time inversior{T) symmetry(the combined® T symme-

the opposite directions for opposite spins. As a consequence
the Fermi momenta are also shifted. For e = 7 case
both P and T are restored and the Fermi momenta again
coincide for the two spin directions.

Ill. SPECTRAL FUNCTIONS

Our goal is to calculate the spectral functions, which we
define as

Aslk,0) =2 (flei,|G)Fa(w—Ef ™+ Eeg) (10

B, (k@)= [flce,|G)P8(w—EgstEN 1),

f

11)

where|G) denotes the ground state. The locklgveraged
spectral functions are defined as

2 A, (K o), (12

Ag(w)=

Bo(w)= iE B, (K, ®). (13)

We concentrate o (k,w), since B,(k,w) is calculated
analogously.

As mentioned in the Introduction, 1D interacting fermions
have as Tomonaga-Luttinger liquids, which are character-
ed, among others, by the power-law behavior of the corre-
lation function for small energies. In our case, as we will see

later, the main contribution for € a<<w comes from

- 2
[(w—ep)?—u2(k—k{~D)?](/m
w—ep—u(k—k{™b)

AT(k,w)~01

2
[(w—gF)Z_ u?(k— k%l))z](a/w)
w—ep+t u(k—k%l))

C1

[(w—ep)2—Uu?(k— k%l))z](a/ﬂrrfl)z
w_gF_u(k_k(Tl))

%)

[(w—ep)2—u?(k— k%3))2](a/frr71)2
(1)_8|:+u(|(—k(T3))

C2

(14

where k(") =van,—20an_, are the(Ferm) momenta of

the singularities¢, andc, are constants, andglis the veloc-

ity of the excitations. In the usual Tomonaga-Luttinger lig-
uids the velocities of the spin and charge excitations are dif-
ferent and they both appear in spectral functions. In our case,
however, due to the gauge origin of the interaction, the spin
and charge velocities are equal to the Fermi velogity The
spectral function has a nonanalytical, branch cut structure not
only at the Fermi momenta, but for a higher multiple of the
Fermi momenta I(f)) as well. The latter corresponds, e.g.,
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to the &g singularity, e.g., in the Hubbard model,but  convenient for operators in site representation, and the ma-
unlike in that case, has an exponent that is as large as that tifx element in Eq(10) becomes
the Fermi poimk%l). The local density of states near Fermi

energy reads [(flcl |G P=LI(fch|G)P bk p, (22)

~Pgs'
alTr 2 almT— 2

Al@)=Ci(o—ep) 7 +cp(w—ep) 2T, (15) where CS’T creates fermions at site 0. Next, we apply the

which for the noninteractinggr=0 reproduces the Fermi- canonical transformation to formulate the problem using the

liguid step function. transformed wave functiofthe analog of Eq(9)], and for
The exponent were already obtained from the finite-sizehe spectral function we get

analysis of the energy, witd=2« in Eq. (9) of Ref. 10.

Before continuing, let us mention that while we have all the

typical features of a Tomonaga-Luttinger modtie alge- Ai(kw)=LY |(F|(1—2n; )] |G)?
braic singularities and low-lying excitations at multiples of f
the Fermi momenia the strong asymmetry of the spectra X 8(w—EN"1+Ege Bph*1 pg

due to the gauge interaction is not a typical feature of the
standard Luttinger liquids. o~ ~

We now consider the exact evaluation of the spectraftS the wave functiongf) and |G) are products of the
functions. As a preliminary to the discussion for general ~ SPin-up and spin-down part, the evaluation is straightforward
let us note the special cases @0 anda =, where the and leads to
spectral functions can be calculated more or less trivially.

(i) The a=0 case is nothing else but the usual tight- A;(k,w)=(1-2n,)?A%(k,®)
binding Hamiltonian

4

) +t 2 X 2 Se-—s(d)ts (@)
H=—t2 (¢j oCj+10TH.C) (16) L“ aeFS, g/ ¢Fs) k' ¢Fs,
o
_8T(k,))5k,q’fq+k’ ) (23

of noninteracting electrons, a*"i=1 in Eq. (1). For the
spectral functions we recover the familiar and a similar equation giveB; (k,w). In the spectral func-
0 _ tion we can identify the following two distinct featurds) a
AE’ (ko) = 8(w+2t cosk)® (o —e), 17 Dirac-delta contribution following the cosinelike dispersion,
0 B which is the reminder of the noninteracting spectral function
B (k,w)=8(w+2t cosk) O (er—w), (18 [Eq. (17)] suppressed by a factor of {12n)? and (b) a
i.e., a Dirac-delta peak following the cosinelike dispersion ofbroader continuum coming from the propagator dressed with
the free fermions. a single loop. As we increase the filling, the weight of the
(i) When =, the model actually corresponds to the Fermi jump for zero magnetizatiom(=n,=n/2) decreases
electron-hole symmetric correlated hopping mé8ietith  as (1-n)? and will disappear at half-filling, leaving us with
taa=tgp= —t andtyg=t (the hopping amplitudes, 5, tgg,  anA(w)xw? density of statefc,~(1—n)? in Eq. (15) for
andt,g are defined in Ref. 14 a=1]. To illustrate this behavior, we present the evolution
of the local spectral functions with density in Fig. 1.
Let us now consider the nontrivial generic case ®
<. Like in the previous case, in evaluating the matrix ele-
(199  ments we exploit the translation invariance to derive the site
representation given by ER2). Next, we apply the canoni-
cal transformation to formulate the problem using the trans-
formed wave functions

H=—12 (1-2n;;)(1-2n;,15)¢] ,Cj11,+H.C.
],o

The Hamiltonian(19) can be diagonalized with the help of a
unitary transformation

L
U= ,Hl (=M%, (20) <f|c$’T|G):<T|cgﬁei“ﬁovilﬂé)e*i“’\‘i, (24)
=

which is simpler thari{=47k, given by Eqs.(2) and (3), ~ Where the important global operatzree Eq.(4)]
and transforms the fermionic operators as
Tic! it = (1-2p; ;)c! ﬁa:fl[ exp2ialn, | /L). (25)

Jo?

e T (1R, — . . .
Uej U =(1-2n; )¢ 5, (21) As in the transformed basis the wave functions are prod-

so the transformed fermionic operators remain “local.” Fur- Ucts of the spin-up and -down free fermion wave functions,
thermore, this transformation is not any more restricted t4G)=|G;)|G,) and|f)=|f;)[f ), the matrix element factor-
the 1D case. The evaluation of the matrix elements is novizes, and we get
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FIG. 1. The local spectral functiorB(w) (darkey and A(w) 8 0
(lighter shading for a= . The filling increases froom=0 (top
curve to n=1 (bottom plo} in increments of 1/3. —2tr
—4tt
F et IR ARIF |aicng B 2 o
AT<k,w>=L; (F1co, G PI(F, [e“MiRIG )| atl
2t
X5(w_Ef,T+EGS,T_Ef,L+EGS,l) 8 O
X Oy ~Pgs;+Pr.~Pes," _otf
In the equation aboveaT creates a fermion with energy —4t} 1 .
g(k’) and momentunk’ ¢ FS;, in which case the matrix —Bt [ —_— ! 5 ) X \ i
element is|(f;|c}|G;)[P=1/L. This allows us to write the -« w2 0 w2 ®m w2 0 w2 =
spectral function as a convolution q o}

1 FIG. 2. The evolution of thew andk dependent spectral func-

A (k,w)= r > Al(k—K",w—g(K")) (26)  tion as a function ofx for n=1/2 (left) andn=1 (right plots. The
k' ¢Fs, shading is proportional té\;(k,w) andB;(k,), the dashed line

with denotes the Fermi energy. The shift of the Fermi mom¢E®

(35)] is compensated for by introducirgg=k+ an in the plot. We

. omitted the triviala=0 case.
A%(w,k)=L~f2 (T |e"*uR|G | )[?8(w—Ey,
!

+Ees)Okp; ~Pes,- (27) (T,|e'“M.R|G,)
The interesting and nontrivial part of the calculation comes _e"texi(Pes — Py, +2an))] T IRIG)
from the (f|e'*.R|G|) matrix element. In the next and 1+e'* L=
crucial step, we eliminate'“"... This can be easily accom- (29

plished after the observation that by translating the operator
R a similar factor appearﬁR?*=eX|:[2|a(no¢—nl)]R. So To evaluate<7l|§|'él), we putléQ:HjCl, L|O> and |~ﬂ>
~ A~ o~ ~ A~ o~ A~ . JY
(7l|eZi“”0¢R|GL>=eX[{i(2anl—Pf’l+ Pes) I(f|IRIG)). =Hic;, ,L|O>' Then we moveR to the right acrosgl’s so
(28) that it acts on the vacuum stat®|0)=|0). However, as

Next, we note that'“M. = (el*+ e'29M0.)/(1+¢€'%) and we  Ref | =cf, pa1y, R, the k momenta are shifted by @L
end up with the useful identity (this is equivalent to twisting the boundary conditipns
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o N, N The anticommutation relation between the operators with
(IRIG)=(0|]] Ci; JRIT clj ) different phase shifts reads
=1 j=1
N, N, A ={C 4 2arL,) \Ci 1}
=(0I11 i 11 civzan 10)- (30 T 20
- = e'“exr{§<ki—kj’+r } .
Here we have to calculate overlap of free fermion wave func- _ Sina (3D
tions with different phase shifts due to the removal of a L ) ki—kj' a
7-spin fermion. This very problem arises, e.g., in the x-ray sinl ——+

edge problem(the Anderson orthogonality catastrophe )
and the one-dimensional analog was discussed in Ref. 7. Fdihe overlap of the wave functions can be further calculated

the reader’s convenience, we repeat here the main pointas|<~fL|IA?|éL>|2:|de1Aij|2,

T T 2
{Ch2a Gk} .. {Ckl+2a/L!Ck,’\‘l}

|(IRIG )|*=

t t
{CkNL-%—Za/Lkai} {CkNl+2alL7Ck,’\‘l}

1 1
SN 2 L

sitNi o

L2Ny

Sin + - sin —+E

This determinant is actually a Cauchy determinant and can g k=L T le oo RNG VRs(w—E
be expressed as a product, so we end up with 1(@k) Z K| IGF oo —Ees,

o sit=—]] sit——=—
|<~f ||A?|’é >|2 sitN a i>i 2 i>i 2
1 W= ToN k! — k.
L™ . i j
111 smz( 5+ L)

(32

For the speciale=0 [where Aj(w,k) =L &(w)dy ol and &
= cases, taking the suitable limits, we recover the results
of Egs. (17) and (23), respectively. In thew= = case the
phase shift equals 2/L, which is exactly the spacing be-
tween two adjacerk values, thus the orthogonality catastro-
phe is absent.

Following the same approach, for the photoemission part
we get

1
Bi(kw)=T > Bl(o—gi(k)k=k') (33

k' e FST
FIG. 3. The spectral function fax=37/4 andn=1. Here the
with Fermi energy is ato=0.
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TABLE |. The exponents in the local spectral functigg. ' " ' ' " " " " "

(19)].

a 0 wl4 w2 3ml4 T
2(almr)? 0 1/8 1/2 9/8 2
2(alm—1)>? 2 9/8 1/2 1/8 0

The product in Eq(32) can be evaluated numerically and
spectral functions for relatively large systems can be ob-
tained. The numerical result for some large size systems it
presented in Fig. 2. Starting from=0, we observe that
there is an overall shift in momentum proportional to
—2an,; (which we compensated for in the figiy@and that -6t
apart from the main contribution, which follows the cosine-

like dispersion, additional continuumlike features appear. Fi- g 5. To illustrate the weight transfer for smail we compare
nally, for even larger values af another cosinelike feature he jocal spectral function far= /4 (solid line) to thea=0 case

appears with a considerable weight. (dashedl The a= /4 case behaves @ w)~|w—&r|® near the
Alternatively, for the low-energy part, further analytical Fermi energy.
considerations can be appliédtarting from Eq.(32), the
weights of the peaks can be expressedIvifanctions in the
L—o limit, leading to the power-law behavior of the
Tomonaga-Luttinger liquid spectral functidRig. 3), and the
exponents can be associated with the phase shift. We fi
singularities where the momenta of the final state are closely

packed. These happen at A%(k,w)oc[(w_sF)Z_u2k2](a/77)2—1, (36)

A(w), B(w)

4t 6t

comes symmetric witk!" for a= 7, while the weight of the
tower atk({ 1) disappears at the same time. The primed spec-
nt(gal functions in Eq.(26) have a simple behavior nekr=0,

k%V)= van,—2an, (35
. ) ) while neark=2mn,
with v an odd integer. The most important ones for smaall

are those withv= =1, which coincides with the Fermi mo-

mentaks , . As we can follow in Fig. 2, by increasing we ] o7 1t g‘j’“:’/’.\\. 1
get the weight for the tower &{®, which eventually be- = [ 1t ]
€ oaf 1t ]
0.0 / \ ] ‘/ ' \
/2 1 /2
08} noif 1k N .
= N L 1L ]
< o4l . {1t ]
0.0 / + \.._, t t +
osl 00:1372/4 1L oc=?1r,/4 ]
N n= n=
g i -_ i n/—\w 1
f - -//\'\ - :/ '..“\-
0.0 + + t = + + t
08| n-iz o i .
- n= =
z | 1t /\ ]
é 1 P .,
0.4¢ 1F .
_’_\ / - ]
0.0— : . L . . L
K K K KWrx K 0 K x
q q
FIG. 4. The local spectral functioB(w) (darke) and A(w)
(lighter shading for n=2/3. a changes from O(noninteracting FIG. 6. The evolution of the momentum distribution function
case, top curveto 7 (bottom plo} in increments ofr/4. To mini- n,(k) as a function ofx for n=1/2 (left) andn=1 (right plotg (as
mize finite-size effects, the curves show the averagé o303, in Fig. 2). The shift of the Fermi momenlle(TV) is compensated for
279, 255, 231, 207, and 183. by introducingg=k+ an in the plot.

155110-6



EXACT SPECTRAL FUNCTIONS OF A NON-FERM .. PHYSICAL REVIEW B 65 155110

ALK, w)=[(0—ep)2—Uu2(k—2mn )2](a/w—1)2—1_ The weight transfer to higher energies is the largestdfor
! ! 37 = and at halffilling.
Finally, in Fig. 6 we present the momentum distribution

This 'e"%ds to the power-law behavior of the(k,w) as pre- 0o n;(k). We can clearly observe the algebraic discon-
sented in Eq(14). The values of the exponents are '[abulated,[im",[y at k=k{(*D k® for 0<a<m. For a=m (lower
for some selected in Table I. U 5 "
T o (1) 3)
The weight transfer can be quantified by observing the?lotS thereis ajumpin; (k)=(1-2n,) atk=kj"’ andk;™
sum rules. While the zeroth momentum is constant, (t:)ongng(ér:;))m the coherent part in the spectral function given
y Eq. (23).

J'SF BT(w)deI’IT y

IV. CONCLUSIONS
+ 00

o We have presented the exact one-electron Green’s func-

o ) tion for a model Fermi system in 1D with a non-Fermi-liquid
the first integral already shows the large weight transferreqyepayior for essentially any value of the interaction strength.
(Figs. 4 and 5to energies far from the Fermi energy, The Green’s function for this system obtained here does re-

quire some numerics and is not totally analytical. However,

f FwBT(w)dwzz (G|C:T[H,cm]|G> unlike the situation in projected models, such as thk
o : model, it satisfies the sum rules familiar from text books for
2t weakly interacting Fermi liquidée.g., the complete electron
=- ;sin( mNn;) sum rule with largew behavior ofG as 1k). This feature
makes the present model particularly interesting in the con-
. text of the program of reconstruction of the spectral function
- ;”TS'”(W”L)(l_COSOZ)’ from its momentge.g., see Ref. 15

L:wAT(w)deZ (Gleii[H, ¢l 1l6)
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