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Quantum transport using the Ford-Kac-Mazur formalism
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The Ford-Kac-Mazur formalism is used to study quantum transport in~1! electronic and~2! harmonic
oscillator systems connected to general reservoirs. It is shown that for noninteracting systems the method is
easy to implement and is used to obtain many exact results on electrical and thermal transport in one-
dimensional disordered wires. Some of these have earlier been obtained using nonequilibrium Green function
methods. We examine the role that reservoirs and contacts can have on determining the transport properties of
a wire and find several interesting effects.
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I. INTRODUCTION

There is considerable current interest in the problem
transport through various nanoscale devices both from
fundamental and from applied points of view. In this conne
tion, Kubo’s transport formulas have to a large extent be
superseded by different formalisms in the spirit of Bardee
tunneling model.1 The Landauer formula2 ~LF! and the
Keldysh technique,3 quantum Langevin equations,4 C* alge-
braic formulas,5 and generalized scattering theory idea6

have been developed, allowing one to study systems
steady state arbitrarily far from the linear region where K
bo’s formula is applicable. There is also considerable exp
mental activity involving resistive elements, such as qu
tum dots, scanning tunneling microscopy~STM! tips, single-
walled nanotubes, and insulating nanowires, often coming
with unexpected physics.7–9

The most popular alternative to Kubo’s formulas is t
LF, proposed in 1957.2 Since then, several derivations of th
LF have been given10 and this has led to a good understan
ing of the formula. A large number of experiments are int
preted successfully on the basis of the LF. The quantum
conductancee2/h has been understood as a contact re
tance which arises due to the squeezing of the reservoir
grees of freedom into a single channel.11,12 While a physi-
cally careful statement of the conditions for validity of th
LF can be found in Ref. 13, we believe that a detailed ma
ematical theory of the role of reservoirs and the nature of
coupling between the wires and reservoirs does not e
The role of the idealized reservoirs has been to serve
perfect sources and sinks of thermal electrons. This cle
will not be satisfied in all experimental conditions, and it
necessary to have a better microscopic understanding of
ervoirs and contacts. There has been some work3,5,6,12,14in
this direction but, to our knowledge, a detailed understand
of the role of reservoirs is still lacking.

In this paper we adapt a formalism that was developed
Ford, Kac, and Mazur15 ~FKM! and model reservoirs as in
finite noninteracting systems. This method was originally
vised to study Brownian motion in coupled oscillators15 and
was later extended to a general study of the problem o
quantum particle coupled to a quantum mechanical h
bath.16 In this approach reservoirs are modeled by a coll
0163-1829/2003/67~19!/195405~10!/$20.00 67 1954
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tion of oscillators which are initially in equilibrium. The res
ervoir degrees of freedom are then eliminated, leading
quantum Langevin equations for the remaining degrees
freedom~the system!. Thus the reservoirs can be viewed
providing sources of noise and dissipation into the syste
The FKM formalism is thus very direct to interpret and,
we shall demonstrate, is more straightforward to apply th
other methods of treating open quantum systems such a
Caldeira-Leggett,17 Keldysh,18 and scattering theories.6

Quantum Langevin equations have earlier been used in
context of transport in mesoscopic systems and have he
in the understanding of some experimental data.4,19 The
FKM approach was also used earlier by O’Connor a
Lebowitz20 in studying classical heat transport in disorder
harmonic chains and our analysis here closely follows the
Here we use the FKM approach to make a detailed stud
quantum transport in disordered electronic and phononic
tems. For very general reservoirs we obtain exact form
expressions for currents and local densities in the none
librium steady state. We find that for a special type of res
voir, the ideal Landauer result~where the conductance i
expressed in terms of the transmission coefficient of o
dimensional plane waves! follows exactly, while for general
reservoirs they need to be modified. We examine in so
detail the effect on transport properties that the choice
reservoirs can have and find a number of interesting effe
For example in the electron case we find that imperfect c
tacts can lead to an enhancement of conductivity. In the p
non case we find the surprising result, earlier noted for c
sical systems, that the heat currentJ in a long disordered
wire decays with system sizeN asJ;1/Na wherea depends
on the low-frequency spectral properties of the reservoirs

The paper is organized as follows: In Sec. I we present
formalism and results for transport in the one-dimensio
~1D! Anderson model. In Sec. II we present the formalis
and results for transport in disordered harmonic chains.
end with a discussion in Sec. III.

II. TRANSPORT IN THE ONE-DIMENSIONAL
ANDERSON MODEL

A. Formalism and main results

The setup: we wish to study conduction in a disorde
fermionic system connected to heat and particle reserv
©2003 The American Physical Society05-1
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FIG. 1. A disordered system connecte
through 1D leads to reservoirs at different pote
tials and temperatures.
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through ideal 1D leads~see Fig. 1!. We consider a tight-
binding model, and for simplicity we take the system a
leads to be 1D while the reservoirs are quite general. We
the following notation: the indicesl ,m denote points on the
system or leads, greek indicesl,n or l8,m8 denote points on
the left or right reservoirs, respectively, and finallyp,q de-
note points anywhere. Thuscl( l 51,2, . . . ,N) denotes lattice
fermionic operators on the~system 1 lead!, and
cl , cl8 (l,l851,2, . . . ,M ) denotes operators on the le
and right reservoirs. Thecps’ satisfy the usual anticommuta
tion relations$cp ,cq%50, $cp

† ,cq
†%50, and $cp

† ,cq%5dpq .
Out of theN5Ns12Nl sites, the first and lastNl sites refer
to the leads while the middleNs sites refer to the system. Th
Hamiltonian for the entire system is given byH5H01V
1Vint , where

H052 (
l 51

N21

~cl
†cl 111cl 11

† cl !1(
l 51

N

v lcl
†cl

1(
ln

T̂lncl
†cn1 (

l8n8
T̂l8n8

8 cl8
† cn8 ;

V52g~c1
†ca1ca

†c1!2g8~cN
† ca81ca8

† cN!.

The first part ofH0 refers to the system and leads, whileT̂

and T̂8 describe the two reservoirs. The contact between
reservoirs and leads is given by the interconnection parV.
The interaction partVint can be added perturbatively, and w
return to its inclusion later in the paper. We will consider
system with on-site disorder and so choose the on-site e
gies v l , l 5Nl11, . . . ,Nl1Ns , from some random distri-
bution. At sites belonging to the leads@ l 51,2, . . . ,Nl ,Nl
1Ns11, . . . ,N#, assumed to be perfect conductors, we
v l50. At some timet,t in the remote past, the two rese
voirs are isolated and in equilibrium at chemical potentialsm
andm8 and inverse temperaturesb andb8, respectively. At
t5t, we connect the reservoirs to the two leads and evo
the system with the HamiltonianH. We study the properties
of the nonequilibrium steady state, reached after a long ti

The Heisenberg equations of motion for the operators
the system and leads are given by~for t.t)

ċ15 ic22 iv1c11 igca ,

ċl5 i ~cl 211cl 11!2 iv lcl ~2< l<N21!,

ċN5 icN212 ivNcN1 ig8ca8 . ~1!
19540
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The equations at the boundary sites involve reservoir op
tors ca andca8 . Using the equations of motion of the rese
voir variables we can replace these reservoir operators
Langevin-typeterms. The equations for the left reservoir a
given by ~for t.t)

ċl52 iTlncn ~l5” a!,

ċa52 iTancn1 igc1 . ~2!

This is a linear set of equations with an inhomogeneous
given by the termigc1 and has the general solution

cl~ t !5 i(
n

gln
1 ~ t2t!cn~t!2E

t

`

dt8gla
1 ~ t2t8!@gc1~ t8!#

where

gln
1 ~ t !52 iu~ t !(

n
cn~l!cn* ~n!e2 i ent.

Herecn(l) is the single-particle eigenstate of the left res
voir, with energyen , and n runs over all states. We nee
ca(t) which we note has two parts. The first,h(t)
5 i (ngan

1 (t2t)cn(t), is like a noise term whose statistics
determined by the initial conditions of the reservoir. Initial
the reservoirs are in thermal equilibrium and the norm
modes cn5(lclcn(l) satisfy ^cn

†(t)cn8(t)&
5dnn8 f (en ,m,b), where f is the Fermi distribution, f
51/@eb(en2m)11#, and^Ô&5Tr@Ôr̂ #, wherer̂ is the reser-
voir density matrix at timet and ‘‘Tr’’ denotes a trace
over reservoir variables. The second part ofca(t),
ca(t), 2g*t

`dt8gaa
1 (t2t8)c1(t8), is dissipative in nature

Defining the Fourier transforms cp(v)
5(1/2p)*2`

` dtcp(t)eivt, gaa
1 (v)5*2`

` dtgaa
1 (t)eivt, and

h(v)5(1/2p)*2`
` dth(t)eivt, and taking the limitsM→`

andt→2`, we get

ca~v!5h~v!2ggaa
1 ~v!c1~v!,

^h†~v!h~v8!&5I ~v!d~v2v8!,

I ~v!5ra~v! f ~v!,

gaa
1 ~v!5(

n

ucn~a!u2

v2en
2 ipra, ~3!

wherera5(nucn(a)u2d(v2en) is the density of states a
site a. The third equation above is a statement of t
fluctuation-dissipation theorem. Similarly for the right rese
5-2
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voir we get ca8(v)5h8(v)2g8ga8a8
1 (v)cN(v), with the

noise statistics ofh8(v) determined bym8 andb8 . Also h
andh8 are independent so that^h†(v)h8(v8)&50. We now
Fourier transform the system equations and plug in the fo
of ca(v) andca8(v) to get the following particular solution

cl~ t !5E
2`

`

dvẐlm
21~v!hm~v!e2 ivt,

Ẑlm5F̂ lm1Âlm ,

F̂ lm52d l ,m112d l ,m211~v l2v!d l ,m ,

Âlm5d l ,m@g2gaa
1 ~v!d l ,11g82ga8a8

1
~v!d l ,N#,

hl5gh~v!d l ,11g8h8~v!d l ,N . ~4!

With this formal solution and the known properties of t
spectral functionsh(v), h8(v), gaa

1 (v), andga8a8
1 (v), we

can now compute various physical quantities of interest. S
cifically we shall be interested in the electrical and therm
currents and the local particle and energy densities. The
erators corresponding to particle and energy densities
given by

n̂l5cl
†cl ,

ûl52~cl
†cl 111cl 11

† cl !

1
1

2
~v lcl

†cl1v l 11cl 11
† cl 11!, ~5!

while the corresponding current operatorsĵ n and ĵ u are de-
fined through the conservation equations]n̂/]t1] ĵ n/]x50
and]û/]t1] ĵ u/]x50. We get

ĵ l
n5 i ~cl 11

† cl2cl
†cl 11!,

ĵ l
u52 i ~cl 12

† cl2cl
†cl 12!1

v l 11

2
~ ĵ l 11

n 1 ĵ l
n!. ~6!

We now calculate the steady-state averages of these
quantities. We introduce some notation and state a few m
ematical identities. We denote byYl ,m the determinant of the
submatrix ofẐ beginning with thel th row and column and
ending with themth row and column. SimilarlyDl ,m denotes
determinant of the submatrix formed fromF̂. The following
results can be proved: ~i! Y1,N5D1,N1g2gaa

1 D2,N

1g82ga8a8
1 D1,N211g2g82gaa

1 ga8a8
1 D2,N21, ~ii ! ẐlN

21

5Y1,l 21 /Y1,N , Ẑl1
215Yl 11,N /Y1,N , and ~iii ! D1,n21D2,n

2D1,nD2,n2151.

1. Particle and heat currents

The expectation value of the current operators, using E
~3! and ~21!, gives
19540
s
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^ j l
n&522E

2`

`

dv ImF (
r 51,N

Ẑl 11,r
21* ~v!Ẑl ,r

21~v!I r~v!G ,
^ ĵ l

u&52E
2`

`

dv ImF (
r 51,N

Ẑl 12,r
21* ~v!Ẑl ,r

21~v!I r~v!G , ~7!

whereI 15g2I andI N5g82I 8. In the case of the heat curren
we takel to be on the leads so thatv l50. Using the various
identities stated earlier we can show, as expected, that t
are independent ofl and reduce to the simpler expression

^ ĵ l
n&5E

2`

`

dvJ~v!@ f ~v!2 f 8~v!#,

^ ĵ l
u&5E

2`

`

dvvJ~v!@ f ~v!2 f 8~v!#,

where

J~v!52pg2g82ra~v!ra8~v!/uY1,Nu2.

These can be expressed in terms of the retarded Gre
function G1(v)5(v1 i e2H)21. This satisfiesG15g1

1g1VG1 whereg15(v1 i e2H0)21. These can be solved
to give

G1m
1 5@g1m

1 2g82ga8a8
1

~gNN
1 g1m

1 2g1N
1 gNm

1 !#/Z,

GNm
1 5@gNm

1 2g2gaa
1 ~g11

1 gNm
1 2gN1

1 g1m
1 !#/Z,

where

Z512g2g11
1 gaa

1 2g82gNN
1 ga8a8

1

1g2g82gaa
1 ga8a8

1
~g11

1 gNN
1 2g1N

1 gN1
1 !.

Let glm5Re@glm
1 # denote the real part of the system

Green function. It is easy to see thatg1N5gN1521/D1,N ,
g1152D2,N /D1,N , and gNN52D1,N21 /D1,N . Using these
and the Jacobi identityg11gNN2g1NgN15D2,N21 /D1,N we
get 1/uY1,Nu25Gn1N

1 GnN1
2 whereGn1 is a modified Green

function obtained fromG1 by replacing allsystemGreen
functions by their real part. We then get the particle curr
in a form similar to those obtained by Meir and Wingreen14

using the Keldysh formalism and by Todorovet al.6 using
time-independent scattering theory. Their results differ fro
ours in that they are expressed in terms ofG1 instead of
Gn1. The case of insulating wires treated by Caroliet al.3

also follows from our results.

2. Scattering states

It is instructive to write the currents and densities in ter
of properties of the single-particle scattering states of the
HamiltonianH ~possible when interactions are absent!. Let
c jL(v) and c jR(v) denote thej th unperturbed wave func
tions with energyv of the left and right reservoirs, respec
tively. Let ap

jL andap
jR denote the amplitude at sitep of the

j th right- and left-moving states obtained by evolving t
unperturbed levels with the full Hamiltonian. We then g
5-3
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al
jL5Kl1

21gca
jL(v) and al

jR5KlN
21g8ca8

jR(v). The currents
and densities are given byj l

n5 i (al 11* al2al* al 11), nl

5al* al , etc. Using these we find thatJ(v) is simply the
total transmitted current for all waves with energyv. Also
the particle density is given by

^n̂l&5E
2`

`

dv@r l
L~v! f ~v!1r l

R~v! f 8~v!#,

wherer l
L5( j ual

jL u2 is the total particle density at a pointl
due to all right-moving waves with energyv andr l

R is due
to left movers. Note that the currents and densities do
have the simple Landauer form sinceJ(v) depends not only
on the system but also on bath and contact properties.
spectral properties of the baths enter into the expressions
nontrivial way and one cannot separate the contributions
the system and the baths.

B. Ideal reservoirs and contacts: The Landauer case

This corresponds to the case whereg5g851 and the
reservoirs themselves are semi-infinite extensions of the
dimensional leads. This results in reflectionless contacts
tween the reservoirs and leads. The reservoir wave funct
and energy eigenvalues arecn(l)5@2/(M11)#1/2sin(kl)
and en522 cos(k) where k5np/(M11) with n
51,2, . . . ,M . The leads are connected at the end of the r
ervoir chains so thata5a851. We then get the following
reservoir spectral functions:

I ~v!5
1

p
@12w2/4#1/2f ~v,m,b!, uvu,2,

I ~v!50, uvu.2,

gaa
1 ~v!52eik, 22<v522 cos~k!<2,

5v/22sgn~v!~v2/421!1/2, uvu.2.
~8!

We have similar expressions for the right reservoir. Let
use the notation that if sitesNl1 l andNl1m belong to the
system, then we writeYNl1 l ,Nl1m5yl ,m and DNl1 l ,Nl1m

5dl ,m . It can be shown that the transmission probability o
wave with momentumk across the system is given by

T5
4 sin2~k!

uy1,Ns
u2

, ~9!

where

uy1,Ns
u5ud1,Ns

2eik~d2,Ns
1d1,Ns21!1ei2kd2,Ns21u.

~10!

Note that in this case the transmission factordoes notin-
volve properties of the reservoirs and contacts. Also tra
mission is only by propagating modes which can be labe
by a real wave vectork ~in general, nonpropagating mode
19540
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would also carry current and we would have integrate o
all frequencies!. We then get the following forms for the
particle and energy currents:

^ ĵ l
n&5

1

2pE0

p

dkn~k!T~k!@ f 2 f 8#,

^ ĵ l
u&5

1

2pE0

p

dkn~k!e~k!T~k!@ f 2 f 8#,

where

n~k!5]e~k!/]k52 sin~k!, ~11!

which are precisely of the Landauer form.
In order to get the four-probe result we need to find t

actual potential and temperature differences across the
tem. We imagine doing this by putting potentiometers a
thermometers at points on the leads (A and B in Fig. 1!.
These measure the local particle and energy density on
leads from which one can compute the chemical poten
and temperature. We note that we do not expect local ther
equilibration in this noninteracting system and so these
only effectivepotentials and temperatures.

We start with the general expressions for densities@simi-
lar to Eqs. ~7!# and after using the various determinan
identities we get~for points l located on the left lead! an
integrand which contains a factor sin2@k(Nl2l)#. Assuming
that Nl is large andl is not too close to the point of contac
with reservoirs this factor can be replaced by 1/2. We th
get for the particle and energy densities

^n̂l&5
1

2pE0

p

dk$@22T~k!# f 1T~k! f 8%,

^ûl&5
1

2pE0

p

dke~k!$@22T~k!# f 1T~k! f 8%. ~12!

We get similar expressions for densities at points on the r
lead. The expressions in Eqs.~11! and ~12! are identical to
those obtained from semiclassical arguments, are true
ideal contacts, and lead to the usual four-probe formulas.
results of Eqs.~11! and ~12! have been obtained earlier b
Tasaki5 using the theory ofC* algebra. They can be easil
extended to the case where the leads are still one dimens
but the system is of more general form. Thus let the sys
consist ofNs points of which 1 andNs are connected to the
two leads. Let us specify the system by the matrixf̂ such
that f̂ l l 5v l2v andf̂ lm521 whenever two distinct points
l and m are connected by a hopping element. Then all
above formulas, Eqs.~11! and~12!, for currents and densitie
hold provided we evaluate them within the leads and use
appropriate expression for the transmission coefficie
namely,

T5
4 sin~k!2F2

ud1,Ns
2eik~d2,Ns

1d1,Ns21!1ei2kd2,Ns21u2
, ~13!
5-4
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FIG. 2. Plot of conductance vs Fermi level,
three different temperatures (T), of a wire with a
single impurity and imperfect contacts. The co
responding plot for perfect contacts atT50 is
also shown. The horizontal line is the ideal co
ductanceG051/(2p) ~in units of e2/\).
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where F denotes the determinant of the submatrix form
from f̂ by deleting the first row andNsth column whiled is
as before, but now constructed fromf̂.

C. Application

As an application we show how the experimental resu
of Kong et al.8 can be understood qualitatively using o
results by assuming imperfect contacts.

We consider again semi-infinite ideal reservoirs but ma
the contacts nonideal by settingg5g850.9. As system we
take a wire with a single impurity at sites ~thusvs5” 0). The
linear response conductance is then given byG
5*2`

` dvJ(v) f (v)@12 f (v)#. We evaluate this numeri
cally at different temperatures forN5100, s510, andvs
50.2 ~Fig. 2!. We see the following features:~a! a rapid
oscillation of the conductance due to resonances with sta
ing waves in the wire,~b! a slower oscillation due to stand
ing waves formed between boundary and impurity, and~c! a
washing away of the oscillations with increasing tempe
ture. These features are qualitatively the same as seen i
experiments in Ref. 8. The overall decrease in conducta
with increasing temperature is presumably due to scatte
by phonons and hence is not seen here. We have also pl
in Fig. 2 the conductance as given by the usual LF. Note
this does not give the oscillatory features. Thus imperfect
contacts cannot be treated as resistances in series with
system. Another rather remarkable effect we see is the
hancement of the conductance as a result of the introduc
of imperfect contacts. In fact we can see in Fig. 2 that
certain values ofm the conductance almost attains the ide
value 1/(2p). Similar features are also obtained if we ma
the contacts ideal but take other forms of reservoirs~e.g.,
rings or two-dimensional baths!.

D. Interacting systems

For this case the present approach readily yields to a
turbative treatment. For illustration consider the case wh
19540
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the Hamiltonian of the system~and lead! HSL contains an
interacting part and is given by

HSL52 (
l 51

N21

~cl
†cl 111cl 11

† cl !1(
l 51

N

v lcl
†cl1D (

l 51

N21

nlnl 11 ,

while the reservoirs are still taken to be noninteracting.
this case, Eqs.~1! take the form

ċ15 ic22 iv1c12 iDn2c11 igca ,

ċl5 i ~cl 211cl 11!2 iv lcl2 iD~nl 211nl 11!cl ,

2< l<N21,

ċN5 icN212 ivNcN2 iDnN21cN1 ig8ca8 , ~14!

and, being nonlinear, can no longer be solved exactly. Ho
ever, it is straightforward to obtain a perturbative soluti
which, schematically, has the formc(v)5Ẑ21h

2DẐ21*dv8*dv9Ẑ21hẐ21hẐ21h1O(D2). The operators
for particle density and particle current remain unchang
and we can obtain their expectation values as a perturba
series using this solution. Another possibility would be
solve Eq.~14! using a self-consistent mean-field theory.

III. HEAT TRANSPORT IN OSCILLATOR CHAINS

We now use the FKM method to study heat conduction
quantum-disordered harmonic chains connected to gen
heat reservoirs which are modeled as an infinite collection
oscillators. There has been some earlier work on quan
wires24,25 which follows a similar approach but we give
more clear and complete picture and make some interes
predictions for experiments.

As in the electronic case we obtain formal exact expr
sions for the thermal current and show that, for a spe
case, they reduce to Landauer-like forms. We also ana
5-5
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the asymptotic system size dependence of the current
show that, depending on the reservoirs, a long wire can
have either like an insulator or a superconductor. Our res
should be useful in interpreting recent experiments9 on heat
transport in insulating nanowires and nanotubes. They
also of interest in the context of the question of validity
Fourier’s law in one-dimensional systems, a problem that
received much attention recently.23 A large amount of work
on classical Hamiltonian systems seems to indicate that F
rier’s law is not valid in one-dimensionsal momentum
conserving systems. Our work here shows that this is
even in quantum mechanical systems.

A. Formalism and main results

We consider a mass-disordered harmonic chain contai
N particles with the following Hamiltonian:

H5(
l 51

N pl
2

2ml
1 (

l 51

N21
~xl2xl 11!2

2
1

~x1
21xN

2 !

2
, ~15!

where $xl% and $pl% are the displacement and momentu
operators of the particles and$ml% are the random masse
Sites 1 andN are connected to two heat reservoirs (L andR)
which we now specify. We model each reservoir by a coll
tion of M oscillators. Thus the left reservoir has the follow
ing Hamiltonian:

HL5(
l 51

M Pl
2

2
1(

l ,m

1

2
KlmXlXm

5(
s51

M P̃s
2

2
1

vs
2

2
X̃s

2

5(
s51

M

~ns11/2!vsas
†as , ~16!

whereKlm is a general symmetric matrix for the spring co
plings, $Xl ,Pl% are the bath operators, and$X̃l ,P̃l% are the
corresponding normal-mode operators. They are related
the transformationXl5(sUlsX̃s where Uls , chosen to be
real, satisfies the eigenvalue equation( lKnlUls5vs

2Uns for
s51,2, . . . ,M . The annihilation and creation operatorsas

and as
† are given byas5( P̃s2 ivsX̃s)/(2vs)

1/2, etc., and
ns5as

†as is the number operator.
The two reservoirs are initially in thermal equilibrium

temperaturesTL andTR . At time t5t the system, which is
in an arbitrary initial state is connected to the reservoirs.
consider the case where site 1 on the system is connect
Xp on the left reservoir whileN is connected toXp8 on the
right reservoir. Thereafter the whole system evolves thro
the combined Hamiltonian

HT5H1HL1HR2kx1Xp2k8xNXp8 .

The Heisenberg equations of motion of the system v
ables are the following~for t.t):
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m1ẍ152@2x12x2#1kXp ,

mlẍl52~2xl 2112xl2xl 11!, 1, l ,N,

mNẍN52@2xN2112xN#1k8Xp8 . ~17!

We note that they involve the bath variablesXp,p8 . However,
these can be eliminated and replaced by effective noise
dissipative terms, by using the equations of motion of
bath variables. Consider the equation of motion of the
bath variables. They have the form

Ẍn52KnlXl , n5” p,

Ẍp52KplXl1kx1 . ~18!

This is a linear inhomogeneous set of equations with
solution

Xn5(
l

FFnl~ t2t!Xl~t!1Gnl~ t2t!Ẋl~t!

1E
t

`

dt8Gnp~ t2t8!kx1~ t8!, ~19!

where

Fnl~ t !5u~ t !(
s

UnsUls cos~vst !,

Gnl~ t !5u~ t !(
s

UnsUls

sin~vst !

vs
.

Thus we find thatXp ~say! appearing in Eq.~17! has the form
Xp(t)5h(t)1k*t

`dt8Gpp(t2t8)x1(t8). The first part, given

by h(t)5( l@Fpl(t2t)Xl(t)1Gpl(t2t)Ẋl(t), is like a
noise term while the second part is like dissipation. T
noise statistics is easily obtained using the fact that at t
t5t the bath is in thermal equilibrium and the normal mod
satisfy ^as

†(t)as8(t)&5 f (vs ,bL)dss8 . Here f 51/(ebv21)

is the equilibrium phonon distribution and̂Ô&5Tr@ r̂Ô#

where r̂ is the reservoir density matrix and Tr is over th
reservoir degrees of freedom. We define the Fou
transforms xl(v)5(1/2p)*2`

` dtxl(t)e
ivt, Gpp

1 (v)
5*2`

` dtGpp(t)e
ivt, andh(v)5(1/2p)*2`

` dth(t)eivt. Tak-
ing limits M→` andt→2` we get

Xp~v!5h~v!1kGpp
1 ~v!x1~v!,

^h~v!h~v8!&5I ~v!d~v1v8!,

I ~v!5
f ~v!b~v!

p
,

Gpp
1 ~v!5(

s

Ups
2

vs
22v2

2 ib~v!,

where
5-6
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b~v!5(
s

pUps
2

2vs
@d~v2vs!2d~v1vs!#. ~20!

Similarly for the right reservoir we getXp85h8(v)
1k8Gp8p8

1 (v)xN(v), the noise statistics ofh8(v) being
now determined byb8. The left and right reservoirs are in
dependent so that^h(v)h8(v8)&50. We can now obtain the
particular solution of Eq.~17! by taking Fourier transforms
and plugging in the forms ofh(v) andh8(v). We then get

xl~ t !5E
2`

`

Ẑlm
21~v!hm~v!eivt,

Ẑ5f̂ lm2Âlm ,

with

f̂ lm52~d l ,m111d l ,m21!1~22mlv
2!d l ,m ,

Âlm5d l ,m@k2Gpp
1 ~v!d l ,11k82Gp8p8

1
~v!d l ,N#,

hl~v!5kh~v!d l ,11k8h8~v!d l ,N . ~21!

We can now proceed to calculate the steady-state value
the observables of interest such as the heat current and
perature profile. We first need to find the appropriate ope
tors corresponding to these. To find the current operatorĵ we
first define the local energy densityul5pl

2/4ml

1pl 11
2 /4ml 1111/2(xl2xl 11)2. Using the current conserva

tion equation]û/]t1] ĵ /]x50 and the equations of motio
we then find thatĵ l5( ẋlxl 211xl 21ẋl)/2. The steady-state
current can now be computed by using the explicit solut
in Eq. ~4!. We get

^ ĵ l&5E
2`

`

dv~ iv!@k2Ẑl ,1
21~v!Ẑl 21,1

21 ~2v!I ~v!

1k82Ẑl ,N
21~v!Ẑl 21,N

21 ~2v!I 8~v!#. ~22!

The matrix Z is tridiagonal and using some of its spec
properties~see Sec. II A! we can reduce the current expre
sion to the following simple form:

^ ĵ l&5
k2k82

p E
2`

`

dv
vb~v!b8~v!

uY1,Nu2
~ f 2 f 8!

5E
2`

`

dvJ~v!~ f 2 f 8!, ~23!

whereJ(v)5k2k82vb(v)b8(v)/puY1,Nu2 has the physica
interpretation as the total heat current in the wire due to
right-moving ~or left-moving! scattering states of the fu
Hamiltonian ~system1 reservoirs!. Such scattering state
can be obtained by evolving initial unperturbed states of
reservoirs with the full Hamiltonian~see end of Sec. II A!.
As before we have denoted byYl ,m the determinant of the
submatrix ofẐ beginning with thel th row and column and
ending with themth row and column. Similarly letDl ,m

denote the determinant of the submatrix formed fromF̂.
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B. Ideal reservoirs and contacts: The Landauer case

For the special case when the reservoirs are also o
dimensional chains with nearest-neighbor spring consta
Klm51 and the coupling constantsk,k8 are set to unity, we
have Gpp

1 5Gp8p8
1

5e2 ik, where v52 sin(k/2) and I (v)
5 f (v)sin(k)/p for uvu,2 andI (v)50 for uvu.2. In this
case Eq.~23! simplifies further and has an interpretation
terms of transmission coefficients of plane waves across
disordered system. We get

J5
1

4pE22

2

dvvutN~v!u2~ f 2 f 8!,

where

utN~v!u25
4sin2~k!

uD1,Ns
2eik~D2,Ns

1D1,Ns21!1ei2kD2,Ns21u2

~24!

is the transmission coefficient at frequencyv. We have thus
obtained the Landauer formula2 for phononic transport. It is
only in this special case of a one-dimensional reservoir
perfect contacts that we get the Landauer formula. The
son is that only in this case is the transmission through
contacts perfect, and this requirement is one of the cru
assumptions in the Landauer derivation. Note that in Eq.~24!
~i! the transmission coefficientdoes notdepend on bath prop
erties and ~ii ! transmission is only through propagatin
modes. For general reservoirs where we need to use Eq.~23!
the factorJ(v) involves not just the properties of the wir
but also the details of the spectral functions of the reservo
Thus the conductivity of a sample can show a rather rema
able dependence on reservoir properties as we shall see
low. The above Landauer-like formula has earlier been sta
in Ref. 26 and derived more systematically in Ref. 27. W
note that in the high temperature limitT,T8→`, Eq. ~24!
reduces to the classical limit obtained exactly in Refs. 2
22.

C. Asymptotic system-size dependences

In the case of electrical conduction the conductance o
long disordered chain decays exponentially with system s
as a result of localization of states. In the case of phonons
long-wavelength modes are not localized and can carry
rent. This leads to power-law dependences of the curren
system size as has been found earlier in the context of
conduction in classical oscillator chains. A surprising res
is that the conductivity of such disordered chains depe
not just on the properties of the chain itself but also on th
of the reservoirs to which it is connected. It can be show22

that the asymptotic properties of the integral in Eq.~23! de-
pend on the low-frequency (v&1/N1/2) properties of the in-
tegrand. This means that we will get the same behavior a
the classical case. We summarize some of the main resu

~i! The classical case where the reservoirs are themse
one dimensional. In this case we putk5k851 and the spec-
tral function Gpp

1 5Gp8p8
1

5e2 ik where v52 sin(k/2). This
5-7
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was treated by Rubin and Greer21 and it was found thatJ
;1/N1/2. Thus the ideal Landauer case will also show t
behavior.

~ii ! The case of reservoirs which gived-correlated Lange-
vin noise corresponds to takingk5k851 andGpp

1 5Gp8p8
1

52 igv. The classical case was first treated by Casher
Lebowitz28,20 and one getsJ;1/N3/2.

~iii ! In general one getsJ;1/Na wherea depends on the
low-frequency behavior of the spectral functionsGpp(v)
andGp8p8(v8).22

Note that the casea,1 leads to infinite thermal conduc
tivity while a.1 gives a vanishing conductivity. Thus, d
pending on the properties of the heat baths, the same
can show either superconducting or insulating behavior.
usual Fourier’s law would predictJ;1/N, independent of
reservoirs. Thus Fourier’s law is not valid in quantum h
monic chains, even in the presence of disorder. This bre
down of Fourier’s law in 1D systems has been noted in
number of earlier studies on classical systems23 which have
looked at the effects of scattering both due to impurities a
nonlinearities.

D. Temperature profiles

The local temperature of a particle can be determin
from its average kinetic energykel5^pl

2/(2ml)&. We get

kel5
1

2E2`

`

dvmlv
2@k2Ẑl ,1

21~v!Ẑl ,1
21~2v!I ~v!

1k82Ẑl ,N
21~v!Ẑl ,N

21~2v!I 8~v!#. ~25!

This is straightforward to evaluate numerically for given sy
tems and reservoirs. For the special case of heat transmis
through a perfect one-dimensional harmonic chain attac
to one-dimensional reservoirs through perfect contacts~i.e.,
k5k851), Eq. ~25! simplifies ~for largeN) to

kel5
1

8pE2p

p

dkvk@ f ~vk!1 f 8~vk!#, ~26!

wherevk52 sin(k/2). ForT5T8, we get

kel5
1

4pE0

p

dkvk cothS bvk

2 D , ~27!

which is the expected equilibrium kinetic energy density
an infinite chain. For weak coupling to the reservoirs, wh
can be achieved by makingk and k8 small, we expect tha
the energy density profile for the system should corresp
to that of a finite chain. We verify this numerically by eval
ating Eq.~25! for k5k850.1 andT5T8 ~Fig. 3!. We com-
pare this with the equilibrium kinetic energy profile of
finite chain given by

kel5
1

4 (
s

vs cothS bvs

2 Dcs
2~ l !, ~28!

where cs( l )5@2/(N11)#1/2sin(kl) and vs52 sin(k/2),
wherek5sp/(N11), with s51,2, . . . ,N. Note that unlike
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in the classical case where the energy density is a constan
the quantum case, this is not always true. It is instructive
look at the equilibrium properties for the case where
driving is by ad-correlated noise@case~ii ! discussed earlier#.
In this case the weak-coupling limit corresponds to tak
the damping constantg!1. The temperature profiles ob
tained from Eq.~25! for two different values ofg are plotted
in Fig. 3.

We now consider temperature profiles in the nonequi
rium case (T5” T8). For the Rubin-Greer~or Landauer case
i.e., 1D reservoirs, perfect contacts!, at high temperatures th
local temperature is given byTl52kel and from Eq.~26! we
get Tl5(T1T8)/2 which is the classical result.29 At low
temperatures and imperfect contactsk,k85” 1 we evaluate the
local kinetic energy profile numerically using Eq.~25!. As
can be seen in Fig. 4 the temperature in the bulk still has
same constant value. At the boundaries, however, we s
curious feature noted earlier by Refs. 24 and 29: the temp
ture close to the hot end islower than the average tempera
ture while that at the colder end ishigher than the average
For the case withd-correlated noise, at high temperature
we recover the temperature profiles obtained ealier for c
sical chains in Ref. 29. At low temperatures we get resu
similar to those found by Zurcher and Talkner24 and there
seem to be some qualitative differences from the class
temperature profiles, depending on the value ofg.

IV. DISCUSSION

We note that the more popular approach of treating o
quantum systems is the Caldeira-Leggett formulation. In t
approach, one deals with density matrices and the treatm
becomes complicated. In the context of the present prob
one is not really interested in the full distribution but rath
in physical observables like the steady-state currents

FIG. 3. Kinetic energy density profile in a pure harmonic cha
(N58) attached to reservoirs at equal temperaturesT5T850.2.
Two different kinds of reservoirs are considered: one-dimenio
reservoirs~RG! andd-correlated noise reservoirs~white!. The exact
equilibrium density profiles for an infinite chain~free! and one with
fixed ends are also given.
5-8
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densities and these are basically second moments of the
tribution. The FKM formulation is then more appropriate a
for linear systems one can get exact results. The other
proach of treating nonequilibrium systems which has b
used quite extensively in the mesoscopic context is
Keldysh formalism. This is a perturbative treatment whe
one writes equations of motion for a set of Green functio
and relates them to self-energies through the Dyson e
tions. The current is expressed in terms of these Green f
tions. In special cases the Dyson equations can be so
exactly and indeed some of our results can be obtained.3,14,30

On the other hand, our method is more transparent and
rect. We integrate out the reservoir degrees of freedom to
effective Langevin-type equations of motion for the syste
These are solved and quickly lead to useful results on
rents and densities of both particle and heat which are a
matically expressible in terms of unperturbed Green fu
tions. The connection to scattering theory is also immed
and explicit. Finally one obtains a nice physical picture
the reservoirs serving as effective sources of noise and
sipation. Note that our approach makes connections betw
different approaches such as the Caldeira-Legett, Keld
scattering theory, and the transfer-Hamiltonian methods.

The FKM formulation was earlier used in studying he
transport in classical disordered harmonic chains, and
particularly nice that the method can be extended to
quantum mechanical regime. Earlier results on class
chains are then obtained as limiting cases. The more gen
quantum mechanical results can be expressed in forms w
one can see connections with other approaches such as
dauer, Keldysh, etc.

The dependence of transport properties of a system on
reservoir properties is at first glance a surprsing fact and
briefly comment on this. From our usual experience in
macroscopic world, one usually thinks of the conductivity

FIG. 4. Kinetic energy density profile in a pure harmonic cha
(N564) attached to one-dimensional reservoirs at temperaturT
51.0 ~left! and T850.5 ~right!, for perfect and imperfect (k5k8
50.9) contacts. The temperatures considered are not very high
so the bulk temperature is different from the classically expec
valueTav50.75.
19540
is-

p-
n
e
e
s
a-
c-
ed

i-
et
.
r-
o-
-

te
f
is-
en
h,

t
is
e
al
ral
re

an-

he
e

e
f

a system as an intrinsic property, not dependent on the p
erties of reservoirs. Imagine making a measurement of
thermal conductivity of a wire by putting its ends in conta
with heat baths at two different temperatures and measu
the resulting current. The normal expectation is that the
swer should not depend on the material properties of the
baths. And indeed this expectation holds true quite oft
One physical way of understanding this is that, as long as
system~the wire! is a strongly interacting system, with goo
ergodicity properties, then one can expect that, soon a
contact is made with the reservoirs, the ends of the w
would reach a state of local thermal equilibrium with th
reservoirs. This local equilibrium would be completely det
mined by just the temperature of the reservoir and this t
drives the current in the wire. In the mesoscopic doma
however, there are situations when the interactions betw
the carriers are not strong enough to let the system re
local equilibrium. And then one finds that the conducti
properties of a wire is no longer intrinsic to the wire b
depends on details of the reservoirs. Thus any calculatio
transport properties would require a detailed modeling of
reservoirs. An explicit demonstration of the conditions und
which reservoir dependence goes away does not seem to
ist at present.

As has been shown here the FKM method works as ea
for both electronic transport in disordered fermionic wir
and thermal transport in disordered harmonic chains. In b
cases we are able to obtain exact formal expressions for
ticle and thermal currents and these have very similar for
Both depend on details of the reservoir spectral functio
The usual Landauer case where one writes the curren
terms of transmission factor of one-dimensional plane wa
is shown to follow, exactly, for the choice of one
dimensional reservoirs and perfect contacts. In general, h
ever, one needs to use modified Landauer formulas and
can be quite crucial in interpreting experimental data. F
example we have shown that the oscillations in conducta
seen in the experiments by Konget al. cannot be explained
unless the contacts and reservoirs are treated quantum
chanically. We also find the rather counterintuitive predicti
that imperfect contacts can enhance the conductance
wire. In the phonon case we make a couple of predictio
that are interesting from the experimental point of view:~i!
the large-system-size behavior of the heat current is a po
law and the power depends on reservoir properties, and~ii !
temperature profiles in perfect wires show somewhat co
terintuitive features close to contacts. It would be interest
to see if our predictions, which are true for strictly on
dimensional chains, can be verified in experiments
nanowires.
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