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) Physics Today
Brainwashed by Feynman. 2000. (PWAnderson)

& Tyranny of Feynman diagrams in describing the state
2 ! Y & of many body physics

Brainwashed by Schwinger.
& Tyranny of Schwingers equations

Middle way possible
Dyson (Maleev) type theory
& Inconvenience of non Hermitean QFT

Early versions of ECFL
may be appear to be
dominated by Schwinger
“sourcery”

We need
a middle way to
enhance clairity
Our presentation here follows
this middle way



t-] model
& the
Hubbard model

ECFL
Schwinger Dyson method
Exact equations (201 1)
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Product expression of Greens function

i.e. non- Dysonian representation
with two self energies! (201 1)

Low energy long wavelength expansion of
the two self energies. (2013)
Motivated by DMFT comparison

l V)

Checks of ECFL: (2013)
QHigh D- DMFT Comparison
@ Anderson Impurity Model Comparison
QHigh T expansion Comparison

Experimental tests of ECFL:
(2011-14)
@ ARPES line shapes
@ Casey Anderson
Q@Asymmetry
QARPES Kinks-
@High energy kinks
Q@Low energy kinks (2014)
QAIS/STM predictions

(V)

Dyson-Maleev type
Non Hermitean representation
Path integral representation
A-Fermions as a new option (2014)

(1)

An approximate implementation
A-expansion (2013)

(V)

Shift identities-

problems with slave representations
Second chemical - potential (2013)

QOPEN ISSUES-In progress
ansulating phase
@Superconducting phase
QMagnetic phases

(VII)
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The Setting

@T=0: Q=0=w (Relatively Simpler problem than the excitations problem)
Q Ground states: Superconductivity from “repulsive” interactions

& t ] model, Hubbard model, 3 band model,..

@ RVB of PW Anderson & friends (Plain Vanilla is almost ideal),

@ Gossamer SC of R B Laughlin,..
@ Competing phases near half filling- CDW’s, AFM, Spin Glass,.. RBL recent

@T> 0, Finite Q, W (Remaining agenda)
@Need to understand transport, ARPES, NMR,..

@ Hubbard U may be “finite”, but U/Z large near half filling where Z~(1-n)

Eliminate using Gutzwiller
Projection



@ Theoretical setting of the ECFL methodology for systematically studying the t J
model.

a> a="T,a=],a=0
‘ fa= X = |g >< b

a 711l
X’s are Fermions with built in projection ops. = (1-n_,)C!
The hatted Fermions are equivalent to X’s 7 ? {Ca, Cg} = Ogb
Co=(1—-n_4,)C,
H = =) t;X7°X)7 - ,U,ZX“ + = Z Ji;{5:.5; — nmj}
1,7,0
_ Z tZ]XJOXOU " Z XO‘O‘ 4 = Z ‘]70 XO’O‘XO‘O‘ XaaXf )
1,7,0 zg o

X’s satisfy a Lie algebra (with anticommuting objects i.e. grading) as opposed to simple
canonical Fermi operators.

— /) —

(X0 X;’O} =0 (0p — 00’ X7 9)

0= —0



What does extreme correlations mean?

H==2% tijcl,cjo+U Y nipni
i,j i
(1) Weak Correlations UKLt Hubbard model (t,U)

Semiconductors

(2) Intermediate Correlations [/ <t

DFT (Band theory), Wide band free electron like metals

(3) Strong Correlations [] > ¢

Transition metal magnetism, Dense Kondo Heavy Fermi systems,
Iron arsenide superconductors etc

(4) Extreme Correlations U >t

High Tc systems, cobaltates, Anderson Impurity Model,
some Heavy Fermi systems.



Useful to summarize one important Idea in ECFL.:
Non Dysonian representation of Greens functions
are Natural and Fundamental

Weak Coupling

Strong Coupling theories

representation

representation

. Z’(w,IZ)Nw, for0 K wk U
theories
_ 1 _ —3 _ (A =-5+9(k) _
G(k) B iw—ek—E(k) g(k) N iw—C€]€—2ZDM<]€) (k)_ iw—cek—q)(k) _g(k) X'u(k
Standard Dyson Dyson-Mori ECFL representation

twin self energies

Reconstruction of 2pm possible but
Physics better captured by ECFL pair. {(I)v \Ij} — 2DM

{(I) \Ij} are BOTH generically ideal Fermi liquid like, but not so with Y s
y

[ L A



Why is the extreme correlation problem (t J model) so difficult?

@ Non canonical field theory- Cannot consult existing text books!
@ Absence of Wicks theorem and Feynman series
@ Absence of any obvious small parameter.

@ Gutzwiller projection is a “singular perturbation”, hence a major stumbling block for the

dynamics.
@ ECFL approach uses an adaptation of Schwinger’s method.
@ Bypass Wicks theorem.

@ Uses extra time dependent potentials and magnetic fields to generate exact

equations of motion (EOM).

@ Freedom intrinsic to the Schwinger Dyson method + shift identities+ insights from spectral sum

rules helps us to make progress.
@ Connects with with Dyson Maleev approach invented for the spin problem
@ ECFL describes a new framework for calculation with twin self energies and vertices.

@ Obtain analytical results that are useful-novel and have experimental consequences. Also

helpful in building bridges with DMFT and other approaches



A quick overview of
“why things are so’.
Work in the liquid state (no broken symmetry)

(TreAs (X07(7) X7 (7))
) (TreAs)

gaa’ (7:7_2'7 fo) —

Added time dependent potentials, finally set to
zero.

A= Z/ V77 (7') €L, (") Cior (7')
Double Hat Theorem: (1963)
XO0=Cl=1-n_,)C]

ag

XP7 = C, = (1—n_s)Cs
X?77 =Cf Cigr

Hat Removal Theorem: (201 3) ~ /
Provided Gutzwiller projector supplied X@'OU — CZ'G? szjO — C@'Ta — CJO’(l o Ni5'>7 qua — C’L]LJOiU’

at initial time /

Goiorg (075, J75) = —((Ci, (1) Cly (7))

<<A(7'1)B(7'2) .. >> = Leads to straightforward
1 . A ) path integral rep, with Gutzwiller
—Tr 6—5Heff TT (e—AS A(Tl)B(TQ) o PG(O—)) projector ONLY at initial time.
Z

As=Topp+JS.S+ A
Tess = =Y tiC5C;

110



Proof of Theorem:
Upper Triangular Representation

t-] basis of states

W]ffm@ = Q-+ Q5-Q1- W nitia Q; ~ e Wity

Next we study the Canonical basis hPh ) 1P 0
of states (W] = , Pa =

In the canonical basis, we can express the operators of
interest, and end up with block structure-

_Qpp qu_ Problem:
Q= J J How to retain time evolution in the physical space
_Q;{Jp Q;Lu_ [w]final — QM <o Q2'Q1-pG°[¢]initial

Requiring that the final state remains in the physical
subspace. This has two classes of sufficient conditions:

(A) First sufficiency condition (-e.g. slave Bosons) too restrictive
[ij pG] —0 Requiring: two vanishings Q?“ =0, Q;Lp —0
(B) Much better sufficiency condition (least constrainted!)
[Qja [A’G],If)G = 0; Requiring: only one vanishing Q¥ =0

J
Thus upper triangular representation of Q

pp pU
Q- — Qj Qj pp pp AppP ,,,Ph
J QM cee QQ ‘Ql : ¢initial

0 Quu Theorem: Product of upper triangular (Y] final =
’ matrices remains upper triangular. QED 0



Reminder from last page: definition of

gamf (iTia fo) = _<<Ciai (Ti)éTaf (Tf)>> hatted operators
CN@ = Cj—(l — Nz)

gaiaf (@'Ti, fo) — _<<Cz'a¢ (Ti)CTG (Tf)>> + Thus the G splits into two parts, the second
f term is from the definition of the creation
{Cig, (Ti)CTUf (Tf)Nfaf (74))). operators with a hat

o ; Firstly the auxiliary Greens defined.
oo, (475, ]Tj) = —((Cio, (Ti>Cjo(Tj)>> Notice the <<>> are still non trivial

Nextset < CCTN >=<CCT>< N > +gx ¥ |
Second self energy by analogy with HM self

Voo, (i3, fT7) = g;ilak (it;, ki) ¥ energy defined through analogous ratio.

(Che (Tk)C;E (1) N s, (7)) (Integration of bold symbols is implied)
Ok of of CH

“The Notorious”
Goio (1T, fTF) = 80,00 (173, KT ) oy s (KT, fT7), Caparison function

Hoiop (iTiy fTr) = 0(if) (1 — (N3, (7)) + Vo,0, (472, fT¢) p= (1- <N>+y
This “explains” how the Product form arises

Caparison= elaborate decoration (%()%1?744

|dea is that the auxiliary “g(k,w)” is already dressed by Fermi liquid
renormalization, G requires a second layer of decoration!!



+ _ f i
St =(2s) 0] (1- %)
28 ;
? ¢ ¢ Dyson Maleev
S7 + s =ny, | ’
Harris, Kumar, Halperin and Hohenberg
Spins: The Dyson-Maleev mapping Fermions: The non-Hermitian
mapping
Destruction operator Si” bi X0 G
Creation operator S (2s5) bl (1 — ) X70 Ch(1—ANp)
Density operator(s) S; +s n; = bl-T b; X C;; Cio’
Projection operator Py [1LO2%, 8nm) Pg [1;(1 = NisNjy), forx =1
Vacuum |44 ... d) |00...0) |Vac) |00...0)
Small parameter & its 5 - €[0,1] A A €0, 1]
range
Auxiliary Green'’s g(i, j) = —(bib}) g, j) = —{(CoC})
function
Caparison function w(i,j) = 6;(1— % (nj)) + %W(i,j) w(i,j) = 6;(1=Ay)+A¥(, j)
Second Self energy ¥ w(i,j) =g (i, a) ((ba,b;r nj))c w(i,j) =

g71(i, ) (Car G Nig ),

This table summarizes the parallel between spins and extreme Fermions.
We have anticipated the parameter A in analogy to the semiclassical parameter 1/(2 S) in D-M



Summary: With Fourier transforms, and —1(L -1
w) = k,w)—o(k,w
with auxuliary “g” having its own self energy, g ( ’ ) ( ’ ) ( ’ )
and expand the caparison function U

. 1— 2 4+ W(k,i
Gk, iw) g + Bk, i)

Novel non-Dysonian

—

gl (k iw) — Bk, iw)

The two self energies can be pursued in different ways
~ Expansion in the A parameter ( A € [0,1])
« Low k,w expansion
+ In high dimensions we can show that these are further related through

W (k) = ¥ (iw),

D (k) = x (iwy) + €W (iwy).
| This relation implies that the Dyson (or Dyson Mori) self energy is momentum
independent.
2. Proof is independent of Wicks theorem and is consistent with the momentum
independence in the Hubbard model foundational to DMFT.

3. Thus the two limits of infinite U and infinite D mutually commute.

_ 1 _ —3 _ (-3 +9(k) _
G(k)_iw—ek—z(k) Ig(k)_iw—cek—ZDM(k) (k)_iw—cek—q)(k)_g(k)x'u(k




A little algebra gives
the explicit relation

(iwg + )Y (iwy) + (1 — g) X (iwy)

Yom (k) = Xpy (iwy) = 1— 1 & W(iay)
2 ¢

9

We also obtain a mapping, simliar in spirit

to that of Georges- Kotliar, where the t] model
in infinite dimensions is identical to the AIM
with self consistently chosen band

structure of the conductions electrons.

t) --> AIM map

Htl?]:()olz — Z tijégaéa — M Z Nio

Lo~ H = Zedxao + Zacnlca + Z(Vk XUO Cko T V]zk C]jg XOO’),
v /D o ko ko
g:,i(iwn) — g(iwn)
(4 ; We also obtain an independent solution of the t] as well as
1w — W
Mz,z( n) 'LL( n) the AIM model as an expansion in A. Here A is related to
U — €4 the density of particles or the filling of the d-level in the AIM.

V|2 _ Will discuss the explicit solution to 2nd order later.
E €;g(k) = E ——8(iwy),
9



Simplest approach is to expand both the self energies
at small (k, W) assuming a Fermi liquid structure.

(DMFT—ECFL comparison paper generalized for k dependence.The FL nature is
justified by the A- expansion of these objects- explained later.)

N ) Long wavelength expansion 3 R = {0 + (TksT)?)
1—E—I—W(k,w)=a0+cw(a)+vlpkvf)+i£/?/)/w—I—O(a)) R . L. .
k = (k — kr).ke/|kg]
W+ — (1 — g) ek — Pk, w) = (14 cp) <a) — Vo lAcvf +iR/2¢ + O(a)3)> vr = (k&) is the bare Fermi velocity
n
a0:1—§+\110—>(1—n)
Spectral function with 5 parameters
> Z0 I
Ak, w) = — R x u(k, w)
T (w — ve kvp)? + I
ok o) — 7 (w* 4 (wkgT)?)
ok, ) = + 20 Scaling property near half filling
Z0 — Zo X & Ay = Ag X 6; Rop — ¢ X8
~ w Vokvf Vo — Vo X 0; Vo —> Vg X §;
,U/(k,(l)) =1- — +

Ap Ap
Ak, o|T, 8) ~ A <k w—

do | .. %0
T—, &
5| §




@Next we review the exact EOM for the G’s obtained using Schwinger’s method of
functional derivatives and functional integration.

QIt is pretty rough going, if you see it for the first time
@However!!

| recently discovered® an
alternate universe, with other
meanings of functional
integration!

*Singapore (NTU October 2013)

Sectrtor 2043

TTGmice

AsaPadich |nding mestegs. incenlive, Cxveal oy arad eofad ors ressurce

~ - :

. Funetional
tion

3.

ar

TORCAY AITUAN T AMGAINE PADC AITTR AL
ALSO IN THIS ISSUE
* Sowth Korea = beyoed the capital + A good Laste of Australla

PROMAETY OF MANTANG EXIOUTIVE SINTR] '



The Schwinger method X0=Cl =(1-n_,)C]
Calculation in brief: liquid state 0e A
(sans broken symmetry) X7 =Co=(1-n-)Co

Added time dependent (Bosonic) potentials and
spin densities. These are finally set to zero.

_ Tr[e™ P Tre™" O(11,12,..)]

(Qer1 e = —— o A= [ v X

{X?UI,X?O} = 51] (50102 — (0'10'2)X?162)

)

s V)

= (QEN(X77 (@) — (X7 (1) O(w))

ooy li- 1= =X} X7 = Ry,

Bold indices are summed over

( aTi — GG f) = -8, f) - 'y(i)} - Vi -GG, f) Local Greens function and ) stands for time reversal
- X6, 6G./) ~ Y. §) - 6. ). 1) =G, Gog, = 0102 G,
X[i,j] = —t[i,j] (D[i"]+ D7) + %J[i,k] (D[] + D[ET])[i, j] 5 L
h D = §* 535 (* represents spin indices)
Y0l = —tli,g] (L=l =) + 5 Tl k] (L =[] = y[E])olz, .

Turning off sources, Y(i) -> n/2

g (Cl b) — g(a l_)) . M(l_) b) The caparison function appears here. (n= density)

Motivation is to get rid of a crucial
non canonical term Y(i).

Next we use the chain rule for functional derivatives



Using chain rule for functional derivatives get exact equation

80 " (4:3) — pdis — ti; — (i,5)]-8(, k).u(k, £) = 5(1, £)(1 — (1)) + (i, f)

®(i,m) =L(3G,1) g (i, m)
Wi, m) = —L(3,1) - (i, m).

. COI\ ek N 1 COS\ ek .
| | o LG, f) = (1. D¢" - 2G.) — 376D - 8(i.)
Falls apart into two a pair of coupled exact equations with a canonical greens 2
function if we write S S
(v " 5v)

+
5V 5V

pli, f) =0, f)(1 = ~(2) + ¥ (i, f)

(80 " (i,§) — pbiz — tig — ®(4,5)]-8(, ) = 0(4, f)

Turning off the sources, we restore translation invariance and can take Ft’s. Number
sum rules are obvious- both G and g satisfy the same number sum rule.

2 m(k)gk) = 7

n %g(k) = 5




Exact so far.
It is a formal solution and how do we make sense of it?
Can we devise an approximate solution, valid in some limit?

@Devise a small parameter A between 0, related to particle density
and also to double occupancy.

@At \=0, get the Fermi gas, and at A=| get the full t} model.

@We will require a good understanding of the shift invariance of the tj model,
this important invariance leads to a second chemical potential in the problem.

We could take the game one step
further and do a Perturbation theory in
small (fake) parameter A A€ 10, 1]

Theory of A Fermions

X700\ — Oja(l _ )\C’;f&CZ.a) Lot of promise- but in infancy.
X%7(\) = G Hence will not purse in these lectures

X7 (\) = C} Cior .



Introducing A expansion

Symbolic notation makes things simpler

1
Y represents the hopping matrix element X = [-t+ §J | D
broken into a static and dynamic parts. 1
7 i = _[_t‘|‘§<]]’7
Y = (—t+ 5) +Y

G (i) = (=0, — V)L~ [t + 1]

Fermi gas (non interacting) Greens function

Symbolic EOM for t | model

G= (G ()= AY1 =X X)L (1=X~).

Parameter A introduced here

Set A=1 at the end.

At A=0 it reduces a Fermi gas and

provides continuity between Fermi gas and t| model.
It plays the role of double occupancy- see this
explicitly in atomic limit.

A 0
G=(Gy;' -UG~- U%)_l 1
Inspiration comes from the symbolic EOM for Hubbard model (Canonical theory.

Notice how the Hubbard U enters this eqn.




Start from exact EOM

G=(Gy' (W) = AYi=AX)"" (1—-X7)

@ We can set up Schwinger Dyson equations by taking
successive functional derivatives.
Q Generates the analog of the skeleton graph
expansion in powers of A.
Q@ We will take terms up to O(N? ) and study this

EOM continues to bifurcate exactly defining the auxiliary FL etc second order theory”.
at a given \. At A=0 Fermi gas, while at A=1 the exact t] egns.

(Gl =AY, —A®).g=1  Auxiliary Fermi liquid

Comment: With some caveats, it might
= (1—X\y)+ AV Caparison factor be useful to think of a mapping

U
A\~
U + z|t]

Hence low order theory in A
is expected to be a VERY GOOD start.
(since unlike U, the range of N is [0,1].)



COMMENTS

@Since t is both the propagator and interaction term, we need a watchdog theorem to make
sense.

@shifting the center of gravity of the band should not change the physics.

@Exact Shift identities Simple but powerful. Analogs of pure Gauge transformations.

Q@Shift identities help us formulate a rigorous theory to each order in A.

H — — Z tinfOX?U _ IJ’ZXZ'UU + % ZJZJ{S;ZS_; — ininj},
[2W)

’i,j,O' ’i,O’

= =3 4 X70X0% —MZX?“L%Z% (X7 X377 = X7°X7°)

1,J,0 00 1j,0

Shift invariance: Under the shifts

tij = tij —ut 055, Jij = Jij +uy 04,

e Shift theorem-(1): A shift of either t or J can be absorbed into suitable parameters, leaving the physics unchanged.
e Shift theorem-(1I): The two shifts of ¢ and J cancel each other when uy = —4 X ;.




@The auxiliary Fermi problem leading to g(k) is canonical in all respects.

@It has a Hamiltonian with canonical electrons, and one can use the Feynman series to each
order in A.

@The procedure outlined here “stitches” together this Feynman theory with the caparison
factor to give the exact physical Greens function.

@Exact shift identities help us formulate a rigorous theory to each order in A.

1
Hepp = — Ztijffafja + Z(ZJO — W) IT fio + Vers,
‘/eff :)\4 th 0102 [( zalfzal + fgalfgol) flU2fJU2 } - Z JZJ 0102 zalfgalfj52fid2

+ ZUO 0102) zglfzo-lfla'gfiag'

M/eff — _5p1+p2;p3+p4 {Zj €5 + Jpz—m — Up }




SUMMARY OF THE O(\?) THEORY

1= AT+ X2 T 42U (k),  where (k) = (K, iwx),

— (ep + Errqp + ek T €q + Jhp — u0) 8(p) 8(q) 8lg+k — p)
b,q

iwy + o — & — A2 ®(k)

(1—)\n—|—)\2 3%) er + A %:%qu g(q)
-> g(0) g(p) gk +q—p)

1
X (ex+ep+eqg+chrqp+ J—p—u ) {€k+ep+eq+ hvgp+ 3 (Jo—p + Jp—q) —uo }.

°Domain of validity of second order theory n <.7

(from the high frequency sum rule).

9Can be pushed to higher densities by going to higher order in
lambda

9Already leads to interesting answers at the second order.
9Leads to insight about Fermi liquid behaviour of the two self
energies ~ g g g. This is as in 2nd order perturbation of Fermi

liquids. End Lectures &2



