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Brainwashed by Schwinger.
& Tyranny of Schwingers equations

Brainwashed by Feynman.
& Tyranny of Feynman diagrams

Physics Today
2000. (PWAnderson)
in describing the state 
of many body physics

Middle way possible
Dyson (Maleev) type theory

& Inconvenience of non Hermitean QFT

We need
a middle way to
enhance clairity

Our presentation here follows 
this middle way

Early versions of ECFL
may be appear to be

dominated by Schwinger 
“sourcery”
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The Setting

T=0: Q=0=ω  (Relatively Simpler problem than the excitations problem)

Ground states:  Superconductivity from “repulsive” interactions

 t J model, Hubbard model, 3 band model,..

 RVB of P W Anderson & friends (Plain Vanilla  is almost ideal),

 Gossamer SC of R B Laughlin,..

 Competing phases near half filling- CDW’s, AFM, Spin Glass,.. RBL recent

T> 0, Finite Q, ω (Remaining agenda)
Need to understand transport, ARPES, NMR,..
 Hubbard U may be “finite”, but U/Z large near half filling where Z~(1-n) 

Eliminate using Gutzwiller
Projection



 Theoretical setting of the ECFL methodology for systematically studying the t J 
model. 6

identities of this theory, which splits into two parts following the splitting of the Greens functions. Sec. (IX) gives the
set of vertices defining the random phase approximation for this theory and Sec. (X) gives the formal results for the
charge and spin susceptibilities within RPA and its low order expansion. Sec. (XII) concludes with some comments
including a calculation of the superconducting transition temperature in this theory.

II. THE t-J MODEL AND ITS SHIFT INVARIANCE

We write the projected Fermi operators in terms of the Hubbard X operators as usual ĉi⇥ ⌅ X0⇥
i , ĉ†i⇥ ⌅ X⇥0

i and

ĉ†i⇥� ĉi⇥ ⌅ X⇥�⇥
i . We study the t-J model given by

H = �
⌦

i,j,⇥

tijX
⇥0
i X0⇥

j � µ
⌦

i,⇥

X⇥⇥
i +

1

2

⌦

i,j

Jij{⌅Si.⌅Sj �
1

4
ninj},

= �
⌦

i,j,⇥

tijX
⇥0
i X0⇥

j � µ
⌦

i,⇥

X⇥⇥
i +

1

4

⌦

ij,⇥

Jij
�
X⇥⇥̄

i X ⇥̄⇥
j �X⇥⇥

i X ⇥̄⇥̄
j

⇥
(10)

We will treat the two terms on an equal footing as far as possible. The statement of the model is invariant under a
particular “pure gauge” transformation that we next discuss. Let us note the shift invariance of the two parameters
in H. Consider the uniform (i.e. space independent) shifts of the basic parameters:

tij ⌅ tij � ut �ij , Jij ⌅ Jij + uJ �ij , (11)

with independent parameters ut, uJ . Under this transformation the Hamiltonian shifts as

H ⌅ H +

⌥
ut +

1

4
uJ

�
N̂ (12)

where N̂ =
 

i⇥ X
⇥⇥
i is the number operator for the electrons. Let us note two simple theorems encoding this

invariance:

• Shift theorem-(I): A shift of either t or J can be absorbed into suitable parameters, leaving the physics unchanged.

• Shift theorem-(II): The two shifts of t and J cancel each other when uJ = �4⇥ ut.

The first theorem is illustrated, for example, in the initial Hamiltonian Eq. (10) where it can be absorbed in the
chemical potential µ ⌅ µ + ut, and serves to identify a second generalized chemical potential u0 encountered later
while making approximations. The second theorem is subtle as it leaves the chemical potential µ unchanged. It
provides a measure of the equal handed treatment of t and J . We will find these almost trivial theorems of great use
in devising and validating various approximation schemes later.

In further work we need to add a source term via the operator A

A =

↵ �

0
A(⇤) d⇤ =

⌦

j,⇥1,⇥2

↵ �

0
d⇤ V⇥1⇥2

j (⇤)X⇥1⇥2
j (⇤) +

⌦

ij,⇥1⇥2

↵ �

0
d⇤ V⇥1⇥2

ij (⇤)X⇥10
i (⇤)X0⇥2

j (⇤), (13)

with the usual imaginary time Heisenberg picture ⇤ dependence of the operators Q(⇤) = e⇤HQe�⇤H , and the Bosonic
sources, V⇥1⇥2

j (⇤) at every site and also V⇥1⇥2
ij (⇤) for every pair of sites, as arbitrary functions of time. For any variable

we define a modified expectation

⇧⇧Q(⇤1, ⇤2, ..)⌃⌃ =
Tr
⇤
e��HT (e�A Q(⇤1, ⇤2, ..)

⌅

Tr [e��HT (e�A)]
, (14)

with a compact notation that includes the time ordering and the exponential factor automatically. With the abbre-
viation i ⇤ (Ri, ⇤i) for spatial ⌅Ri and imaginary time (⇤) coordinates, the physical electron is described by a Greens
function:

G⇥i⇥f [i, f ] = �⇧⇧X0⇥i
i X

⇥f0
f ⌃⌃. (15)

From this, the variation can be found from functional di�erentiation as

�

�V⇥1⇥2
j (⇤1)

⇧⇧Q(⇤2)⌃⌃ = ⇧⇧Q(⇤2)⌃⌃ ⇧⇧X⇥1⇥2
j (⇤1)⌃⌃ � ⇧⇧X⇥1⇥2

j (⇤1)Q(⇤2)⌃⌃. (16)

We note the fundamental anticommutator between the destruction and creation operators:
⇧
X0⇥1

i , X⇥20
j

⌃
= �ij

�
�⇥1⇥2 � (⇥1⇥2) X

⇥̄1⇥̄2
i

⇥
. (17)

X’s satisfy a Lie algebra (with anticommuting objects i.e. grading) as opposed to simple
canonical Fermi operators.

{X0�
i , X�00

j } = �ij(���0 � ⇥⇥0X �̄0�̄
i )

�̄ = ��

X’s are Fermions with built in projection ops. 
The hatted Fermions are equivalent to X’s

|a > a =�, a =⇥, a = 0
Xab

i = |a >< b|
a 6="#

Ĉ†
� = (1� n��)C†

�

Ĉ� = (1� n��)C�

n

Ca, C†
b

o

= �ab



(1) Weak Correlations

(2) Intermediate Correlations

(3) Strong Correlations

U ⌧ t

U  t

U � t

(4) Extreme Correlations U � t

H = �
X

i,j

tijc
†
i�cj� + U

X

i

ni"ni#

Hubbard model (t,U)

Semiconductors

DFT (Band theory),  Wide band free electron like metals

Transition metal magnetism, Dense Kondo  Heavy Fermi systems, 
Iron arsenide superconductors etc

High Tc systems, cobaltates, Anderson Impurity Model,
 some Heavy Fermi systems.  

What does extreme correlations mean?

H = Pd=0 (�
X

tij c†i cj) Pd=0 +
1

2

X
Jij �Si.�Sj

t J model



Useful to summarize one important Idea in  ECFL:
Non Dysonian representation of Greens functions 

are Natural and Fundamental

�0(�,⇥k) ⇠ �, for 0⌧ � ⌧ U

G(k) =
1

i� � ⇥k � �(k)
G(k) =

1� n
2

i� � c ⇥k � �DM (k)
G(k) =

(1� n
2 +⇥(k))

i� � c ⇥k � �(k)
= g(k)⇥ µ(k)

Weak Coupling 
theories

Strong Coupling theories

Standard Dyson 
representation

Dyson-Mori 
representation

ECFL  representation
twin self energies

{�, } � ⌃DM
Reconstruction of ΣDM possible but

Physics better captured by ECFL pair.

{�, } are BOTH generically ideal Fermi liquid like, but not so with ⌃DM



 Why is the extreme correlation problem (t J model)  so  difficult?

Non canonical field theory- Cannot consult existing text books!

Absence of Wicks theorem and Feynman series

Absence of  any obvious small parameter. 

 Gutzwiller projection is a ``singular perturbation’’, hence a major stumbling block for the 
dynamics. 

ECFL  approach uses an adaptation of    Schwinger’s method.    

Bypass Wicks theorem. 

 Uses extra time dependent potentials and magnetic fields to generate exact 
equations of motion (EOM).

Freedom  intrinsic to the  Schwinger Dyson method + shift identities+ insights from spectral sum 
rules helps us to make progress.  

Connects with  with Dyson Maleev approach invented for the spin problem  

ECFL describes a new framework for calculation with twin self energies and vertices.

Obtain analytical results that are useful-novel and have experimental consequences. Also 
helpful in building bridges with DMFT and other approaches 



A =
X

i

Z

⇥ 0
V��0

i (� �) Ĉ†
i�(�

�)Ĉi�0(� �)

Added time dependent potentials, finally set to 
zero.  

A quick  overview of  
“why things are so”. 

Work in the liquid state (no broken symmetry)

4

vented a method for computing the lifetime of spin waves
in antiferromagnets, with considerable overlap with our
representation of the Greens function with two self ener-
gies.

In Sec (VII), we cast the canonical theory in terms
of Fermionic path integrals, and show how the exact
Schwinger equations of motion can be obtained directly
from this representation, thereby validating all the links
in the argument. The subtle role of the Gutzwiller pro-
jection operator is explored, it does not appear explicitly
in the equations of motion and yet plays an important
role in the theory. In Sec (VIII) we summarize the main
points of the paper.

In Appendix ( A) we summarize the derivation of the
minimal equations of motion from the Schwinger view-
point. In Appendices (B, C, D) we provide the details of
the coherent state path integrals and the implementation
of the Gutzwiller projection. In Appendix (E) we provide
a more detailed interpretation of the caparison function
in terms of a change of variable of the source fields.

II. SUMMARY OF THE ECFL THEORY FOR
THE t-J MODEL

A. The t-J model preliminaries

The well studied t-J model is a two component
Fermi system on a lattice, defined on the restricted sub-
space of three local states, obtained by excluding all
doubly occupied configurations. The allowed states are
|a⌦ with a = 0, ⌅, ⇧, and the double occupancy state
| ⌅⇧⌦ is removed by the (Gutzwiller) projection opera-
tor. These Gutzwiller projected electron operators are
denoted, in the convenient notation due to Hubbard, as
Xa,b

i = |a⌦ b|. Its Hamiltonian HtJ is expressed in terms
of the X operators so that the single occupancy con-
straint is explicit. Summing over repeated spin indices
we write

HtJ = Ht +HJ ,

Ht = �
⌥

ij

tijX
⇥0
i X0⇥

j � µ
⌥

i

X⇥⇥
i ,

HJ =
1

2

⌥

ij

Jij

⇧
�Si.�Sj � 1

4
X⇥⇥

i X⇥�⇥�

i

⌃
. (9)

In computing the Green’s functions we add two kinds
of Schwinger sources to the Hamiltonian; the anticom-
muting Grassman pair J, J⇥ coupling to electron creation
and destruction operators, and the commuting potential
V, coupling to the charge as well as spin density. These
sources serve to generate compact Schwinger equations of
motion (EOM), and are set to zero at the end. Explicitly

we write

ÂS =
⌥

i

� �

0
ÂS(i, ⌅)d⌅,

ÂS(i, ⌅) =
�
X⇥0

i (⌅)Ji⇥(⌅) + J⇥
i⇥(⌅)X

0⇥
i (⌅)

⇥

+V⇥�⇥
i (⌅)X⇥�⇥

i (⌅), (10)

and all time dependences are as inQ(⌅) = e⇤HtJQe�⇤HtJ .
The generating functional of Green’s functions of the t-J
model is

Z[J, J⇥,V] ⇥ TrtJ e��HtJT⇤

⇤
e�ÂS

⌅
. (11)

it reduces to the standard partition function on turning
o� the indicated source terms. The Green’s functions
for positive times 0 ⇤ ⌅j ⇤ �, are defined through the
Martin-Schwinger prescription20,21:

G⇥⇥�(i⌅i, f⌅f ) = �
 T⇤e�ÂS

⇤
X0⇥

i (⌅i)X⇥�0
f (⌅f )

⌅
⌦

 T⇤e�ÂS ⌦
. (12)

The functional Z conveniently yields the Green’s func-
tions upon taking functional derivatives with respect to
the sources, e.g.

G⇥⇥�(i⌅i, f⌅f ) =

⇧
1

Z

⇥2Z

⇥J⇥
i⇥(⌅i)⇥Jf⇥�(⌅f )

⌃
, (13)

where the sources are turned o� at then end. We note
that n⇥, the number of particles per site, is determined
from the number sum rule:

n⇥ = G⇥⇥(i⌅
�, i⌅), (14)

and µ the chemical potential is fixed by this constraint.

B. The Schwinger equations of motion

The detailed theory of the t-J model developed so
far5,7 uses the Schwinger equations of motion. Since these
equations play a fundamental role in the theory, we sum-
marize next the equations of motion and their extension,
obtained by introducing a parameter ⇤. We relegate to
Appendix (A) the derivation of the “minimal theory”
equations. In the minimal theory, the most compact set
of Schwinger equations are established, and some redun-
dant terms from Ref. (5) are omitted. This minimal ver-
sion of the theory is important for the purposes of the
present paper, since our goal in this paper is to recover
these from a canonical formalism.
As the Schwinger school has20,24,25 emphasized, a field

theory is rigorously determined by its equations of motion
plus the boundary conditions. We can also establish al-
ternate descriptions such as path integrals formulations,
from the requirement that they reproduce these equa-
tions of motion- we present an example of this approach

X�0
i = C̃†

� = (1� n��)C†
�

X0�
i = C̃� = (1� n��)C�

X��0

i = C†
i�Ci�0

Double Hat  Theorem: (1963)
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We now state a hat-removal rule: in all expressions of
the type Eq. (64) and (65), the replacement

⌅Ci⇥(⇥) ⇤ Ci⇥(⇥), (66)

leaves the result unchanged. Notice that this rule can also
be applied to Heff , the source terms ÂS , and the Ci⇥.
Note that the creation operators cannot be ‘un-hatted’
in this fashion- since these do create a doubly occupied
site. Summarizing, we can use instead of (60), the more
compact non-Hermitean rule

X0⇥
i ⇤ Ci⇥, X

⇥0
i ⇤ ⌅C†

i⇥ = C†
i⇥(1�Ni⇥̄), X

⇥⇥�

i ⇤ C†
i⇥Ci⇥� .

(67)

We thus rewrite the sources (10) as:

ÂS(i, ⇥) =
�
⌅C†
i⇥(⇥) Ji⇥(⇥) + J⇥

i⇥(⇥)Ci⇥(⇥)
⇥
+

V⇥�⇥
i (⇥)C†

i⇥�(⇥)Ci⇥(⇥), (68)

and the Green’s function with imaginary time 0 ⇥
⇥i, ⇥j ⇥ � is therefore written as:

G⇥i⇥f (i⇥i, f⇥f ) = �⌥⌥Ci⇥i(⇥i) ⌅C
†
f⇥f

(⇥f )��, (69)

analogous to (61) but with an unprojected destruc-
tion operator. We will show below that this is the most
useful and compact expression for the Green’s function.
To complete the description of this theory, we turn to
the task of specifying the Hamiltonian, and obtain the
boundary conditions on the time variables. The last task
is somewhat nontrivial since the projection operator does
not commute with the other operators.

C. Hamiltonian in the Symmetrized and Minimal
theories

In order to represent the Hamiltonian, the spin op-
erators of the exchange part HJ are unambiguously ex-
pressed in terms of the Ci⇥ and C†

i⇥ operators without
hats as in (67), since they preserve the occupation of a
site. For the kinetic energy we could choose to work with
(56), and thereby gain some advantage of dealing with
a Hermitean Hamiltonian. This leads to the equations
of motion termed the the symmetrized theory in Ref. (7).
Alternately we can implement the hat removal rule for
the kinetic energy as well:

T̂eff = �
⇤

ij⇥

tij ⌅C†
i⇥Cj⇥. (70)

This minimal version of the kinetic energy is clearly non-
Hermitean. However, it has exactly the same action as
the symmetrized version (55), when right-operating on
the physical Gutzwiller projected states, as proved above.
This leads to equations of motion of the minimal theory
noted in Ref. (7). and elaborated upon in Ref. (11) and
Ref. (10). For completeness, we provide in Sec (VIIB) a
brief derivation of these equations for the minimal case,
using the above canonical representation, in place of the
Schwinger equations.

D. Kubo-Martin-Schwinger antiperiodic boundary
conditions

In working with the expression Eq. (64), Eq. (67) and
Eq. (69), we have assumed that all the times ⇥j are
positive and satisfy 0 ⇥ ⇥j ⇥ �. The Green’s func-
tion Eq. (12) satisfies the Kubo-Martin-Schwinger (KMS)
anti-periodic boundary conditions23

G(a ⇥i = 0, b ⇥f ) = �G(a ⇥i = �, b ⇥f ), (71)

G(a ⇥i, b ⇥f = 0) = �G(a ⇥i, b ⇥f = �), (72)

where the fixed time ⇥f (⇥i) in the first (second) equa-
tions is assumed to satisfy 0 ⇥ ⇥ ⇥ �. These conditions
are usually proven by using the cyclic invariance of the
trace24, and translates easily to the canonical representa-
tion Eq. (61), with ⌅C and ⌅C† replacing the X operators
(60).
In using the non-Hermitean representation (67) as in

(69), we cannot use cyclicity of trace since the operator
⌅C does not commute with PG. Remarkably enough, the
conditional commutativity (62) and (63) su⇤ces to
guarantee the required antiperiodicity. In physical terms
these proofs follow from the observation made above,
the creation operators with hats, and destruction opera-
tors (without hats) preserve a Gutzwiller projected state
within that subspace.
For simplicity we present the case with sources turned

o� i.e. A ⇤ 0, the more general case follows by a similar
argument. From the definitions of the Green’s functions,

Eq. (72) is true since Tr
�
e��HeffCa⇥(⇥i)[ ⌅C†

b⇥�(0), P̂G]
⇥

vanishes identically from Eq. (52).
In order to prove that Eq. (71) remains true, we need

to show that the expression

Tr
�
e��Heff ⌅C†

b⇥�(⇥f )[Ca⇥(0), P̂G]
⇥

(73)

vanishes, despite the non vanishing of the commuta-
tor in the expression. For this purpose, we utilize the
conditional commutator (62) to write [Ca⇥(0), P̂G] =
[Ca⇥(0), P̂G](1� P̂G). We next use cyclicity of trace and

the simple identity (for any Q̂): Tr
�
(1� P̂G)Q̂P̂G

⇥
= 0,

to write the required expression (73) in the form

Tr
�
(P̂G � 1)e��Heff ⌅C†

b⇥�(⇥f )P̂GCa⇥(0)
⇥
. (74)

Using (P̂G)2 = P̂G, we rewrite this as:

(P̂G � 1)e��Heff ⌅C†
b⇥�(⇥f )P̂G = [P̂G, e

��Heff ⌅C†
b⇥�(⇥f )]P̂G.

This expression vanishes on using the conditional com-
mutator Eq. (63), thereby proving the required result
(71).
The two canonical theories providing an exact mapping

of the original theory are summarized in the Table (II).

Hat Removal Theorem: (2013)
Provided Gutzwiller projector supplied

 at initial time
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We now state a hat-removal rule: in all expressions of
the type Eq. (64) and (65), the replacement

⌅Ci⇥(⇥) ⇤ Ci⇥(⇥), (66)

leaves the result unchanged. Notice that this rule can also
be applied to Heff , the source terms ÂS , and the Ci⇥.
Note that the creation operators cannot be ‘un-hatted’
in this fashion- since these do create a doubly occupied
site. Summarizing, we can use instead of (60), the more
compact non-Hermitean rule

X0⇥
i ⇤ Ci⇥, X

⇥0
i ⇤ ⌅C†

i⇥ = C†
i⇥(1�Ni⇥̄), X

⇥⇥�

i ⇤ C†
i⇥Ci⇥� .

(67)

We thus rewrite the sources (10) as:

ÂS(i, ⇥) =
�
⌅C†
i⇥(⇥) Ji⇥(⇥) + J⇥

i⇥(⇥)Ci⇥(⇥)
⇥
+

V⇥�⇥
i (⇥)C†

i⇥�(⇥)Ci⇥(⇥), (68)

and the Green’s function with imaginary time 0 ⇥
⇥i, ⇥j ⇥ � is therefore written as:

G⇥i⇥f (i⇥i, f⇥f ) = �⌥⌥Ci⇥i(⇥i) ⌅C
†
f⇥f

(⇥f )��, (69)

analogous to (61) but with an unprojected destruc-
tion operator. We will show below that this is the most
useful and compact expression for the Green’s function.
To complete the description of this theory, we turn to
the task of specifying the Hamiltonian, and obtain the
boundary conditions on the time variables. The last task
is somewhat nontrivial since the projection operator does
not commute with the other operators.

C. Hamiltonian in the Symmetrized and Minimal
theories

In order to represent the Hamiltonian, the spin op-
erators of the exchange part HJ are unambiguously ex-
pressed in terms of the Ci⇥ and C†

i⇥ operators without
hats as in (67), since they preserve the occupation of a
site. For the kinetic energy we could choose to work with
(56), and thereby gain some advantage of dealing with
a Hermitean Hamiltonian. This leads to the equations
of motion termed the the symmetrized theory in Ref. (7).
Alternately we can implement the hat removal rule for
the kinetic energy as well:

T̂eff = �
⇤

ij⇥

tij ⌅C†
i⇥Cj⇥. (70)

This minimal version of the kinetic energy is clearly non-
Hermitean. However, it has exactly the same action as
the symmetrized version (55), when right-operating on
the physical Gutzwiller projected states, as proved above.
This leads to equations of motion of the minimal theory
noted in Ref. (7). and elaborated upon in Ref. (11) and
Ref. (10). For completeness, we provide in Sec (VIIB) a
brief derivation of these equations for the minimal case,
using the above canonical representation, in place of the
Schwinger equations.

D. Kubo-Martin-Schwinger antiperiodic boundary
conditions

In working with the expression Eq. (64), Eq. (67) and
Eq. (69), we have assumed that all the times ⇥j are
positive and satisfy 0 ⇥ ⇥j ⇥ �. The Green’s func-
tion Eq. (12) satisfies the Kubo-Martin-Schwinger (KMS)
anti-periodic boundary conditions23

G(a ⇥i = 0, b ⇥f ) = �G(a ⇥i = �, b ⇥f ), (71)

G(a ⇥i, b ⇥f = 0) = �G(a ⇥i, b ⇥f = �), (72)

where the fixed time ⇥f (⇥i) in the first (second) equa-
tions is assumed to satisfy 0 ⇥ ⇥ ⇥ �. These conditions
are usually proven by using the cyclic invariance of the
trace24, and translates easily to the canonical representa-
tion Eq. (61), with ⌅C and ⌅C† replacing the X operators
(60).
In using the non-Hermitean representation (67) as in

(69), we cannot use cyclicity of trace since the operator
⌅C does not commute with PG. Remarkably enough, the
conditional commutativity (62) and (63) su⇤ces to
guarantee the required antiperiodicity. In physical terms
these proofs follow from the observation made above,
the creation operators with hats, and destruction opera-
tors (without hats) preserve a Gutzwiller projected state
within that subspace.
For simplicity we present the case with sources turned

o� i.e. A ⇤ 0, the more general case follows by a similar
argument. From the definitions of the Green’s functions,

Eq. (72) is true since Tr
�
e��HeffCa⇥(⇥i)[ ⌅C†

b⇥�(0), P̂G]
⇥

vanishes identically from Eq. (52).
In order to prove that Eq. (71) remains true, we need

to show that the expression

Tr
�
e��Heff ⌅C†

b⇥�(⇥f )[Ca⇥(0), P̂G]
⇥

(73)

vanishes, despite the non vanishing of the commuta-
tor in the expression. For this purpose, we utilize the
conditional commutator (62) to write [Ca⇥(0), P̂G] =
[Ca⇥(0), P̂G](1� P̂G). We next use cyclicity of trace and

the simple identity (for any Q̂): Tr
�
(1� P̂G)Q̂P̂G

⇥
= 0,

to write the required expression (73) in the form

Tr
�
(P̂G � 1)e��Heff ⌅C†

b⇥�(⇥f )P̂GCa⇥(0)
⇥
. (74)

Using (P̂G)2 = P̂G, we rewrite this as:

(P̂G � 1)e��Heff ⌅C†
b⇥�(⇥f )P̂G = [P̂G, e

��Heff ⌅C†
b⇥�(⇥f )]P̂G.

This expression vanishes on using the conditional com-
mutator Eq. (63), thereby proving the required result
(71).
The two canonical theories providing an exact mapping

of the original theory are summarized in the Table (II).
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site. For the kinetic energy we could choose to work with
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operators written in terms of C’s and C†’s without hats
(since the occupancy of a site is una⇥ected by the ex-
change term). We easily verify that

[Ĥeff , D̂] = 0 = [Ĥeff , P̂G], (57)

therefore if we start with a state satisfying D̂|�↵ = 0,
i.e. in the singly occupied subspace, the resultant state
Heff |�↵ remains in this subspace; we do not create dou-
bly occupied states. We note that (57) implies that the
operator (50) is invariant under time evolution through
Heff :

P̂G(�) = P̂G(0). (58)

The partition functional as in (11), now defined with
arbitrary �0:

Z = Tr e��ĤeffT⇤

�
e�ÂS P̂G(�0)

⇥
, (59)

where the trace (unlike that in Eq. (11)), is over the entire
canonical basis, i.e. includes doubly occupied states. For
the observables as well as the source terms ÂS , we use
the replacement rules:

X0⇥
i ⌅ ⌅Ci⇥, X⇥0

i ⌅ ⌅C†
i⇥, X⇥⇥�

i ⌅ C†
i⇥Ci⇥� , (60)

to convert arbitrary expressions involving Xab
i into those

with the ⌅C, ⌅C†. Note that the density or spin density
type variables are replaced by the canonical operators
without a hat, since these commutes with the local D̂i.

We can compute the Green’s functions in the enlarged
(canonical) basis from

G⇥i⇥f (i�i, f�f ) = �
⌦T⇤

�
e�ÂS ⌅Ci⇥i(�i) ⌅C

†
f⇥f

(�f ) P̂G(�0)
⇥
↵

⌦T⇤

�
e�ÂS P̂G(�0)

⇥
↵

,

(61)

evaluated21 at ÂS ⌅ 0. This relation can be replaced
by di⇥erentiating the partition functional (59) with the
Fermi sources J, J⇥. Using the commutation of P̂G or D̂
with all operators, the cyclicity of trace and (58), we
are free at this stage to locate place P̂G at any specific
time, without a⇥ecting the results. This formulation of
the theory has parallels with the path integral represen-
tation of the electromagnetic field (QED) in the temporal
gauge, where the scalar potential is chosen to be zero (i.e.
⇥(rt) = 0) Ref. (47), Ref. (48). In this case the Gauss’s
law condition �. �E(r, t) = 0 needs to be imposed at each
time slice. However upon using [H, �E] = ��⇥ �B, this ob-
ject commutes with the Hamiltonian [H, ��. �E] = 0, and
therefore it su⌅ces to impose this condition at the initial
time. The situation has a clear analogy with Eq. (59),
where it su⌅ces to insert the projection operator at the
initial time.

B. The optimal Non-Hermitean Theory and Hat
Removal Rules

The non-Hermitean theory arises when we inspect
closely expressions of the type in (59), with the time
�0 chosen as the earliest time 0�. The general argument
has been given in the Introduction, we consider its spe-
cific application to the present problem next. Discretiz-
ing the time variables and expanding, we obtain a series
containing expression of the type

const⇥
⇤

⌦i|Q1(�1) . . . Qm(�m)P̂G|i↵,

so that the first operator from the right Qm(�m) acts
upon a state which is Gutzwiller projected. Now the
creation operators contained in the Q(�)’s are defined
with the hats (see (51)) ensuring that they never create
doubly occupied states. Next observe that destroying a
particle cannot create a doubly occupied site. There-
fore it cannot take a projected state out of this subspace!
Therefore the operator ⌅Ci⇥ can as well be replaced by
the destruction operator Ci⇥ without a hat. We can iter-
ate this argument for the next operator, which also acts
on a Gutzwiller projected state, and so forth, leading to
the hat removal rules. In this argument, we may replace
the operator’s Q(�m) by any expressions involving the
destruction operators as well as creation operators with
hats (as in (51)), and the same argument holds. More
formally we may summarize by saying that the destruc-
tion operator conditionally commutes with the projection
operator, when right-operating on projected states:

[Ci⇥, P̂G]P̂G = 0, (62)

although [Ci⇥, P̂G] ⇧= 0, as one readily checks. Thus
the commutator lives in an orthogonal subspace to
that spanned by the Gutzwiller projected states. This
property also extends to arbitrary functions f̂ (f̂ ⇤
f̂{Ci⇥}, { ⌅C†

j⇥�}) of the operators:

[f̂ , P̂G]P̂G = 0. (63)

This property is just a rewriting of the important block
triangularity condition of the operators noted in Eq. (8)
leading to Eq. (7). We will make frequent use of this
expression below.

We now turn to implementing this observation. Let us
write the partition functional

Z = Tr e��ĤeffT⇤

�
e�ÂS P̂G(0

�)
⇥
, (64)

and introduce the abbreviation

⌦⌦A(�1)B(�2) . . .↵↵ =
1

Z
Tr e��ĤeffT⇤

�
e�ÂSA(�1)B(�2) . . . P̂G(0

�)
⇥
, (65)

where notice that we located the projector at the initial
time, by bringing it under the time ordering symbol.

Leads to straightforward
path integral rep, with Gutzwiller 
projector ONLY at initial time. 
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in parameter � have been carried out to O(�2) so far, and
yield reliable results for electron densities 0 ⇥ n <⇤ .7.
The detailed dynamical results of the ECFL theory have
been bench marked against independent theories in over-
lapping domains; against high temperature series results
in Ref. (12) and against the dynamical mean field theory
in the limit of infinite dimensions in Ref. (10) where the
ECFL theory has been shown to have a momentum inde-
pendent Dyson self energy in Ref. (11). The ECFL the-
ory has also been benchmarked in Ref. (13) against the
exact solution of the asymmetric U = ⇧ Anderson im-
purity model, obtained from the numerical renormaliza-
tion group study of Krishnamurthy, Wilson and Wilkins
Ref. (14). In addition, a detailed comparison between the
data on cuprate superconductors at optimal filling and
the theoretical photoemission spectral lines of the ECFL
theory has been carried out in Ref. (15) and Ref. (16),
where excellent agreement is found. In all cases stud-
ied, the comparisons with ECFL are close, and seem to
indicate the utility of this approach.

The ECFL formalism could be initially somewhat un-
familiar to some readers, in view of the reliance on the
analysis of the Schwinger equations of motion. This
was used to derive the main constituents of the the-
ory, namely the auxiliary Greens function and the two
self energies (detailed below). This type of analysis is
somewhat removed from the standard toolkit of “stan-
dard” many body physics courses, and hence might ob-
struct a ready visualization of these objects. One goal
of the present work is to show that these results are
both minimal, i.e. having least redundancy, and avail-
able more transparently, from a mapping to canonical
Fermions (Eq. (1) and Section (III B)) and a path integral
formulation (Section (VII)). This simplified presentation
could potentially lead to improved strategies for devising
approximate methods, especially closer to the insulating
state.

We show in Section (IIA), that the Schwinger equa-
tions of motion can be alternately derived from a path
integral method. This method rests on an exact replace-
ment rule for the Hubbard X operators in terms of the
canonical Fermi operators

X0�
i ⌅ Ci�, X

�0
i ⌅ C†

i�(1�Ni�̄), X
���

i ⌅ C†
i�Ci�� . (1)

This replacement rule is shown to be exact when “right-
operating” on states which satisfy the Gutzwiller con-
straint. This replacement is similar in spirit to the
Dyson-Maleev representation Ref. (29), Ref. (30), where
spin operators are expressed in terms of canonical
Bosonic operators. With the advantage of this represen-
tation, most steps in the ECFL theory, such as the fac-
torization of the Greens function into an auxiliary Greens
function, the two self energies and the caparison function
(see Eqs ( 18, 19, 21)) becomes very intuitive.

The analogy can be pushed further to establish a paral-
lel between the � parameter of the ECFL theory, and the
small parameter of the Dyson Maleev theory, namely the
inverse spin 1

2s . Finally we are able to make contact with

the illuminating work of Harris, Kumar, Halperin and
Hohenberg Ref. (31). In a detailed work these authors
computed the Greens function of the spins for two sublat-
tice antiferromagnet using the Dyson-Maleev scheme and
extracted the lifetime of the magnons of the theory. We
find that their calculation contains the precise Bosonic
counterparts of the auxiliary Greens function and the
second self energy � defining the “caparison function” of
the ECFL theory (see Eqs ( 18, 19, 21)) Unlike the spin
problem with variable number of excitations, the t-J
model has a fixed number of particles. Hence there are
significant new elements in the ECFL theory involving
the imposition of the Luttinger Ward volume theorem,
as discussed later.

A few comments on the canonical description of the
equations of motion are appropriate. The general prob-
lem is to represent a time evolution of a state of the t-J
model

[⇥]⌅final = Q⌅
M . . . Q⌅

2.Q
⌅
1.[⇥]

⌅
initial, (2)

where the primed states and operators are in the t-J
model Hilbert space defined with the three allowed states
at each site as usual (see Sec (IIA) for details). The op-
erators Q⌅

j may be thought of as the exponential of the

t-J Hamiltonian: Q⌅
j ⇤ e�itjHtJ written in terms of

the projected operators. Since the algebra of the pro-
jected electrons is very inconvenient, one seeks a refram-
ing of the problem to a canonical space, where we map
the states, the Hamiltonian and all other operators of
the original theory, into the unconstrained Hilbert space
of two Fermions at each site. This canonical space is of
course described by the usual Fermi operators Cj⇥, Cj⇤
and their adjoints. This gives us an enlarged space with
four states per site, with one redundant state correspond-
ing to double occupancy. Gutzwiller projection is then
used to eliminate states with double occupation. There
are various possibilities for doing this elimination lead-
ing to the di⇥erent theories in literature. This includes
the popular slave Boson or slave Fermion technique17–19,
where additional degrees of freedom, over and above the
already enlarged 4 dimensional local state space, are in-
troduced and finally eliminated as best as possible. This
handling of the redundancy leads to gauge theories for
the t-J model that are reviewed in Ref. (19).

In the enlarged state space let us block diagonalize the
state space into physical and unphysical states and write
the projection operator as

[⇥] =

�

⇧⇤
⇥ph

⇥un

⇥

⌃⌅ ; P̂G =

�

⇧⇤
1ph 0

0 0

⇥

⌃⌅ , (3)

where 1ph is the identity operator in the physical space.
The relevant operators in the theory Qj e.g. the Hamilto-
nian, the creation operators or the destruction operators,
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at each site as usual (see Sec (IIA) for details). The op-
erators Q⌅

j may be thought of as the exponential of the

t-J Hamiltonian: Q⌅
j ⇤ e�itjHtJ written in terms of

the projected operators. Since the algebra of the pro-
jected electrons is very inconvenient, one seeks a refram-
ing of the problem to a canonical space, where we map
the states, the Hamiltonian and all other operators of
the original theory, into the unconstrained Hilbert space
of two Fermions at each site. This canonical space is of
course described by the usual Fermi operators Cj⇥, Cj⇤
and their adjoints. This gives us an enlarged space with
four states per site, with one redundant state correspond-
ing to double occupancy. Gutzwiller projection is then
used to eliminate states with double occupation. There
are various possibilities for doing this elimination lead-
ing to the di⇥erent theories in literature. This includes
the popular slave Boson or slave Fermion technique17–19,
where additional degrees of freedom, over and above the
already enlarged 4 dimensional local state space, are in-
troduced and finally eliminated as best as possible. This
handling of the redundancy leads to gauge theories for
the t-J model that are reviewed in Ref. (19).

In the enlarged state space let us block diagonalize the
state space into physical and unphysical states and write
the projection operator as

[⇥] =

�

⇧⇤
⇥ph

⇥un

⇥
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where 1ph is the identity operator in the physical space.
The relevant operators in the theory Qj e.g. the Hamilto-
nian, the creation operators or the destruction operators,
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the states, the Hamiltonian and all other operators of
the original theory, into the unconstrained Hilbert space
of two Fermions at each site. This canonical space is of
course described by the usual Fermi operators Cj⇥, Cj⇤
and their adjoints. This gives us an enlarged space with
four states per site, with one redundant state correspond-
ing to double occupancy. Gutzwiller projection is then
used to eliminate states with double occupation. There
are various possibilities for doing this elimination lead-
ing to the di⇥erent theories in literature. This includes
the popular slave Boson or slave Fermion technique17–19,
where additional degrees of freedom, over and above the
already enlarged 4 dimensional local state space, are in-
troduced and finally eliminated as best as possible. This
handling of the redundancy leads to gauge theories for
the t-J model that are reviewed in Ref. (19).

In the enlarged state space let us block diagonalize the
state space into physical and unphysical states and write
the projection operator as
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where 1ph is the identity operator in the physical space.
The relevant operators in the theory Qj e.g. the Hamilto-
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are now written in terms of the canonical Fermions:

Qj =
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Qpp

j Qpu
j

Qup
j Quu

j

⇥

⌃⌅ . (4)

The next goal of the construction is to ensure that a state
resulting from the application of a sequence of operators
on a projected state remains in the projected space, i.e.

[⇥]final = QM . . . Q2.Q1.P̂G.[⇥]initial, (5)

and [⇥]final = P̂G.[⇥]final. If this condition is not en-
sured, the projector has to be introduced at all inter-
mediate time slices, thus making the calculations in-
tractable. A su⇥ciency condition for this is the commu-
tation [Qj , P̂G] = 0 for all j. The slave Boson- Fermion
technique uses the conservation of the Gutzwiller con-
straint by writing a suitable version of the Hamiltonian.
This enables the use of a time independent Lagrange mul-
tiplier, as demonstrated in the work of Read and Newns
Ref. (18). In Sec (IIIA), we display a compact Hermitean
representation that also achieves this, without however
adding further states (beyond the four states) into the
problem.

While the commutation condition [Qj , P̂G] = 0 is suf-
ficient, it is not necessary, and a much less restrictive
condition can be found. We note that if the operators
Qj have a vanishing Qup

j then the product in Eq. (5)
remains in the physical sector with

[⇥]final =

�

⇧⇤
Qpp

M . . . Qpp
2 .Qpp

1 . ⇥ph
initial

0

⇥

⌃⌅ . (6)

The property of a commuting projection operator
[Qj , P̂G] = 0, requires that Qpu

j = 0 as well as Qup
j = 0,

whereas the vanishing property of the unphysical compo-
nents noted in Eq. (6) requires only Qup

j = 0. Then Qpu
j

as well as Quu
j are quite arbitrary. With this property,

all the Qj operators in Eq. (4) are block triangular

Qj =
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⇧⇤
Qpp

j Qpu
j

0 Quu
j

⇥

⌃⌅ . (7)

In more formal terms the su⇥ciency condition with least
constraints that leads to Eq. (6) (via the block triangu-
larity Eq. (7)) is

(1� P̂G).Qj .P̂G = 0. (8)

This condition is also expressible as [Qj , P̂G].P̂G = 0;
implying that the commutator vanishes when right op-
erating on projected states. This observation provides
some intuition for why Eq. (8) is su⇥cient in the present
context. In view of the block triangular operators in

Eq. (7), the adjoint property, namely of representing con-
jugate operators by their matrix Hermitean conjugates,
is lost in this representation, as seen in Eq. (1). In gen-
eral this leads to non Hermitean Hamiltonians. The non
Hermitean representation in Eq. (60) and Sec (III B) im-
plements this idea and therefore leads to the most e⇥-
cient canonical theory. We show that it exactly matches
the minimal theory, found from the minimal description
of the t-J model in terms of the Hubbard X operators
and the Schwinger equations of motion. It is notable that
the Gutzwiller projection operator does not appear ex-
plicitly in the equations of motion, although it does play
a crucial role in the canonical theory, and is at the root
of its di⇥culty.
The plan of the paper is as follows. In Sec (IIA, II B,

II C) we review the Schwinger equations of motion for the
t-J model, and the ingredients of the recent method de-
veloped for a systematic expansion in a parameter �. In
Sec (IID) we summarize the general form of the Greens
function at low frequencies near the Fermi surface, and
obtain the prototypical spectral function of the theory.
We summarize in Sec (II E) a kink in the electronic dis-
persion that arises from the theory, and seems to be
closely related to that seen in many photoemission ex-
periments. We also present simple but important ideas
for analyzing photoemission data, with a view to isolating
important feature of asymmetry predicted by the ECFL
theory.
In Sec (III) we formulate the “best possible” repre-

sentation of the Hubbard operators in terms of canonical
Fermions, as discussed above. Sec (IIIA) summarizes the
well known representation and Sec (III B) implements the
block triangular idea to obtain a non Hermitean method
with least redundancy. Sec (III C, IIID) give further de-
tails of the Hamiltonian in this representation and the
proof of the antiperiodic temporal boundary conditions
necessary for defining the new framework.
In Sec (IV), the above non Hermitean representation

is used to analyze the nature of the Greens function of
projected electrons. Quite remarkably this process also
yields the Greens function as a convolution of an auxiliary
Greens function and a caparison function, in complete
parallel to that obtained from the Schwinger method
employed in Sec ( II B, II C). In Sec (V) we generalize
the above representation to define � Fermions where the
Gutzwiller projection is only partial, and becomes full at
� = 1. The equations of motion from these Fermions
are shown to be those obtained in the � expansion of
Sec (II C).
In Sec (VI) we display a close analogy between the

non Hermitean representation of the Gutzwiller projected
electrons and the well known Dyson-Maleev representa-
tion of spin operators in terms of canonical Bosons. This
connection also provides further meaning of the small
parameter � in the Fermion theory, as a parallel of the
expansion parameter 1

2s of the Dyson Maleev theory. A
connection with the illuminating work of Harris, Kumar,
Halperin and Hohenberg (HKHH)31 is noted, who in-

In the canonical basis, we can express the operators of 
interest, and end up with block structure- 

3

are now written in terms of the canonical Fermions:

Qj =

�

⇧⇤
Qpp

j Qpu
j

Qup
j Quu

j

⇥

⌃⌅ . (4)

The next goal of the construction is to ensure that a state
resulting from the application of a sequence of operators
on a projected state remains in the projected space, i.e.
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mediate time slices, thus making the calculations in-
tractable. A su⇥ciency condition for this is the commu-
tation [Qj , P̂G] = 0 for all j. The slave Boson- Fermion
technique uses the conservation of the Gutzwiller con-
straint by writing a suitable version of the Hamiltonian.
This enables the use of a time independent Lagrange mul-
tiplier, as demonstrated in the work of Read and Newns
Ref. (18). In Sec (IIIA), we display a compact Hermitean
representation that also achieves this, without however
adding further states (beyond the four states) into the
problem.

While the commutation condition [Qj , P̂G] = 0 is suf-
ficient, it is not necessary, and a much less restrictive
condition can be found. We note that if the operators
Qj have a vanishing Qup

j then the product in Eq. (5)
remains in the physical sector with
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The property of a commuting projection operator
[Qj , P̂G] = 0, requires that Qpu
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whereas the vanishing property of the unphysical compo-
nents noted in Eq. (6) requires only Qup
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all the Qj operators in Eq. (4) are block triangular
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In more formal terms the su⇥ciency condition with least
constraints that leads to Eq. (6) (via the block triangu-
larity Eq. (7)) is

(1� P̂G).Qj .P̂G = 0. (8)

This condition is also expressible as [Qj , P̂G].P̂G = 0;
implying that the commutator vanishes when right op-
erating on projected states. This observation provides
some intuition for why Eq. (8) is su⇥cient in the present
context. In view of the block triangular operators in

Eq. (7), the adjoint property, namely of representing con-
jugate operators by their matrix Hermitean conjugates,
is lost in this representation, as seen in Eq. (1). In gen-
eral this leads to non Hermitean Hamiltonians. The non
Hermitean representation in Eq. (60) and Sec (III B) im-
plements this idea and therefore leads to the most e⇥-
cient canonical theory. We show that it exactly matches
the minimal theory, found from the minimal description
of the t-J model in terms of the Hubbard X operators
and the Schwinger equations of motion. It is notable that
the Gutzwiller projection operator does not appear ex-
plicitly in the equations of motion, although it does play
a crucial role in the canonical theory, and is at the root
of its di⇥culty.
The plan of the paper is as follows. In Sec (IIA, II B,

II C) we review the Schwinger equations of motion for the
t-J model, and the ingredients of the recent method de-
veloped for a systematic expansion in a parameter �. In
Sec (IID) we summarize the general form of the Greens
function at low frequencies near the Fermi surface, and
obtain the prototypical spectral function of the theory.
We summarize in Sec (II E) a kink in the electronic dis-
persion that arises from the theory, and seems to be
closely related to that seen in many photoemission ex-
periments. We also present simple but important ideas
for analyzing photoemission data, with a view to isolating
important feature of asymmetry predicted by the ECFL
theory.
In Sec (III) we formulate the “best possible” repre-

sentation of the Hubbard operators in terms of canonical
Fermions, as discussed above. Sec (IIIA) summarizes the
well known representation and Sec (III B) implements the
block triangular idea to obtain a non Hermitean method
with least redundancy. Sec (III C, IIID) give further de-
tails of the Hamiltonian in this representation and the
proof of the antiperiodic temporal boundary conditions
necessary for defining the new framework.
In Sec (IV), the above non Hermitean representation

is used to analyze the nature of the Greens function of
projected electrons. Quite remarkably this process also
yields the Greens function as a convolution of an auxiliary
Greens function and a caparison function, in complete
parallel to that obtained from the Schwinger method
employed in Sec ( II B, II C). In Sec (V) we generalize
the above representation to define � Fermions where the
Gutzwiller projection is only partial, and becomes full at
� = 1. The equations of motion from these Fermions
are shown to be those obtained in the � expansion of
Sec (II C).
In Sec (VI) we display a close analogy between the

non Hermitean representation of the Gutzwiller projected
electrons and the well known Dyson-Maleev representa-
tion of spin operators in terms of canonical Bosons. This
connection also provides further meaning of the small
parameter � in the Fermion theory, as a parallel of the
expansion parameter 1

2s of the Dyson Maleev theory. A
connection with the illuminating work of Harris, Kumar,
Halperin and Hohenberg (HKHH)31 is noted, who in-
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The next goal of the construction is to ensure that a state
resulting from the application of a sequence of operators
on a projected state remains in the projected space, i.e.

[⇥]final = QM . . . Q2.Q1.P̂G.[⇥]initial, (5)

and [⇥]final = P̂G.[⇥]final. If this condition is not en-
sured, the projector has to be introduced at all inter-
mediate time slices, thus making the calculations in-
tractable. A su⇥ciency condition for this is the commu-
tation [Qj , P̂G] = 0 for all j. The slave Boson- Fermion
technique uses the conservation of the Gutzwiller con-
straint by writing a suitable version of the Hamiltonian.
This enables the use of a time independent Lagrange mul-
tiplier, as demonstrated in the work of Read and Newns
Ref. (18). In Sec (IIIA), we display a compact Hermitean
representation that also achieves this, without however
adding further states (beyond the four states) into the
problem.

While the commutation condition [Qj , P̂G] = 0 is suf-
ficient, it is not necessary, and a much less restrictive
condition can be found. We note that if the operators
Qj have a vanishing Qup

j then the product in Eq. (5)
remains in the physical sector with
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The property of a commuting projection operator
[Qj , P̂G] = 0, requires that Qpu

j = 0 as well as Qup
j = 0,

whereas the vanishing property of the unphysical compo-
nents noted in Eq. (6) requires only Qup

j = 0. Then Qpu
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as well as Quu
j are quite arbitrary. With this property,

all the Qj operators in Eq. (4) are block triangular
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In more formal terms the su⇥ciency condition with least
constraints that leads to Eq. (6) (via the block triangu-
larity Eq. (7)) is

(1� P̂G).Qj .P̂G = 0. (8)

This condition is also expressible as [Qj , P̂G].P̂G = 0;
implying that the commutator vanishes when right op-
erating on projected states. This observation provides
some intuition for why Eq. (8) is su⇥cient in the present
context. In view of the block triangular operators in

Eq. (7), the adjoint property, namely of representing con-
jugate operators by their matrix Hermitean conjugates,
is lost in this representation, as seen in Eq. (1). In gen-
eral this leads to non Hermitean Hamiltonians. The non
Hermitean representation in Eq. (60) and Sec (III B) im-
plements this idea and therefore leads to the most e⇥-
cient canonical theory. We show that it exactly matches
the minimal theory, found from the minimal description
of the t-J model in terms of the Hubbard X operators
and the Schwinger equations of motion. It is notable that
the Gutzwiller projection operator does not appear ex-
plicitly in the equations of motion, although it does play
a crucial role in the canonical theory, and is at the root
of its di⇥culty.
The plan of the paper is as follows. In Sec (IIA, II B,

II C) we review the Schwinger equations of motion for the
t-J model, and the ingredients of the recent method de-
veloped for a systematic expansion in a parameter �. In
Sec (IID) we summarize the general form of the Greens
function at low frequencies near the Fermi surface, and
obtain the prototypical spectral function of the theory.
We summarize in Sec (II E) a kink in the electronic dis-
persion that arises from the theory, and seems to be
closely related to that seen in many photoemission ex-
periments. We also present simple but important ideas
for analyzing photoemission data, with a view to isolating
important feature of asymmetry predicted by the ECFL
theory.
In Sec (III) we formulate the “best possible” repre-

sentation of the Hubbard operators in terms of canonical
Fermions, as discussed above. Sec (IIIA) summarizes the
well known representation and Sec (III B) implements the
block triangular idea to obtain a non Hermitean method
with least redundancy. Sec (III C, IIID) give further de-
tails of the Hamiltonian in this representation and the
proof of the antiperiodic temporal boundary conditions
necessary for defining the new framework.
In Sec (IV), the above non Hermitean representation

is used to analyze the nature of the Greens function of
projected electrons. Quite remarkably this process also
yields the Greens function as a convolution of an auxiliary
Greens function and a caparison function, in complete
parallel to that obtained from the Schwinger method
employed in Sec ( II B, II C). In Sec (V) we generalize
the above representation to define � Fermions where the
Gutzwiller projection is only partial, and becomes full at
� = 1. The equations of motion from these Fermions
are shown to be those obtained in the � expansion of
Sec (II C).
In Sec (VI) we display a close analogy between the

non Hermitean representation of the Gutzwiller projected
electrons and the well known Dyson-Maleev representa-
tion of spin operators in terms of canonical Bosons. This
connection also provides further meaning of the small
parameter � in the Fermion theory, as a parallel of the
expansion parameter 1

2s of the Dyson Maleev theory. A
connection with the illuminating work of Harris, Kumar,
Halperin and Hohenberg (HKHH)31 is noted, who in-

(A) First sufficiency condition (-e.g. slave Bosons) too restrictive

Requiring: two vanishings 

3

are now written in terms of the canonical Fermions:

Qj =

�

⇧⇤
Qpp

j Qpu
j

Qup
j Quu

j

⇥

⌃⌅ . (4)

The next goal of the construction is to ensure that a state
resulting from the application of a sequence of operators
on a projected state remains in the projected space, i.e.

[⇥]final = QM . . . Q2.Q1.P̂G.[⇥]initial, (5)

and [⇥]final = P̂G.[⇥]final. If this condition is not en-
sured, the projector has to be introduced at all inter-
mediate time slices, thus making the calculations in-
tractable. A su⇥ciency condition for this is the commu-
tation [Qj , P̂G] = 0 for all j. The slave Boson- Fermion
technique uses the conservation of the Gutzwiller con-
straint by writing a suitable version of the Hamiltonian.
This enables the use of a time independent Lagrange mul-
tiplier, as demonstrated in the work of Read and Newns
Ref. (18). In Sec (IIIA), we display a compact Hermitean
representation that also achieves this, without however
adding further states (beyond the four states) into the
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constraints that leads to Eq. (6) (via the block triangu-
larity Eq. (7)) is
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This condition is also expressible as [Qj , P̂G].P̂G = 0;
implying that the commutator vanishes when right op-
erating on projected states. This observation provides
some intuition for why Eq. (8) is su⇥cient in the present
context. In view of the block triangular operators in

Eq. (7), the adjoint property, namely of representing con-
jugate operators by their matrix Hermitean conjugates,
is lost in this representation, as seen in Eq. (1). In gen-
eral this leads to non Hermitean Hamiltonians. The non
Hermitean representation in Eq. (60) and Sec (III B) im-
plements this idea and therefore leads to the most e⇥-
cient canonical theory. We show that it exactly matches
the minimal theory, found from the minimal description
of the t-J model in terms of the Hubbard X operators
and the Schwinger equations of motion. It is notable that
the Gutzwiller projection operator does not appear ex-
plicitly in the equations of motion, although it does play
a crucial role in the canonical theory, and is at the root
of its di⇥culty.
The plan of the paper is as follows. In Sec (IIA, II B,

II C) we review the Schwinger equations of motion for the
t-J model, and the ingredients of the recent method de-
veloped for a systematic expansion in a parameter �. In
Sec (IID) we summarize the general form of the Greens
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for analyzing photoemission data, with a view to isolating
important feature of asymmetry predicted by the ECFL
theory.
In Sec (III) we formulate the “best possible” repre-

sentation of the Hubbard operators in terms of canonical
Fermions, as discussed above. Sec (IIIA) summarizes the
well known representation and Sec (III B) implements the
block triangular idea to obtain a non Hermitean method
with least redundancy. Sec (III C, IIID) give further de-
tails of the Hamiltonian in this representation and the
proof of the antiperiodic temporal boundary conditions
necessary for defining the new framework.
In Sec (IV), the above non Hermitean representation

is used to analyze the nature of the Greens function of
projected electrons. Quite remarkably this process also
yields the Greens function as a convolution of an auxiliary
Greens function and a caparison function, in complete
parallel to that obtained from the Schwinger method
employed in Sec ( II B, II C). In Sec (V) we generalize
the above representation to define � Fermions where the
Gutzwiller projection is only partial, and becomes full at
� = 1. The equations of motion from these Fermions
are shown to be those obtained in the � expansion of
Sec (II C).
In Sec (VI) we display a close analogy between the

non Hermitean representation of the Gutzwiller projected
electrons and the well known Dyson-Maleev representa-
tion of spin operators in terms of canonical Bosons. This
connection also provides further meaning of the small
parameter � in the Fermion theory, as a parallel of the
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The next goal of the construction is to ensure that a state
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The plan of the paper is as follows. In Sec (IIA, II B,

II C) we review the Schwinger equations of motion for the
t-J model, and the ingredients of the recent method de-
veloped for a systematic expansion in a parameter �. In
Sec (IID) we summarize the general form of the Greens
function at low frequencies near the Fermi surface, and
obtain the prototypical spectral function of the theory.
We summarize in Sec (II E) a kink in the electronic dis-
persion that arises from the theory, and seems to be
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We summarize in Sec (II E) a kink in the electronic dis-
persion that arises from the theory, and seems to be
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for analyzing photoemission data, with a view to isolating
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tails of the Hamiltonian in this representation and the
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yields the Greens function as a convolution of an auxiliary
Greens function and a caparison function, in complete
parallel to that obtained from the Schwinger method
employed in Sec ( II B, II C). In Sec (V) we generalize
the above representation to define � Fermions where the
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Theorem: Product of upper triangular
matrices remains upper triangular. QED  
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e�ÂS P̂G(⇤0)

⇥
;

Arbitrary time ⇤0 (0 ⇥ ⇤0 ⇥ �).

Tr e��ĤeffT⇤
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Remarks: H = H† in the defining
representation.

Symmetrized Theory H = H† (i)Symmetrized Theory: Ĥeff = H†
eff

(ii) Minimal Theory: Ĥeff ⇤= Ĥ†
eff

TABLE II: A summary of the the representations of the Green’s functions. The non-Hermitean minimal theory provides
the most compact set of equations of motion, which are identical to those from the Hubbard-Gutzwiller theory in the second
column. The absence of the adjoint property for the non-Hermitean theory arises from the asymmetric hat removal between
the destruction and creation operators in the first two rows of the last column.

IV. THE AUXILIARY GREEN’S FUNCTION
AND THE CAPARISON FUNCTION USING

CANONICAL FERMIONS

We next discuss the rationale for decomposing the
Green’s function into an auxiliary Greens function and
a caparison function as in Ref. (5), using a simple ar-
gument from Eq. (69). This important part of the the-
ory is also encountered in Section (VI). In its simplest
version this decomposition can be illustrated using the
minimal theory, where the averages are defined as in
Eq. (64), with the projection operator pinned at the ini-
tial time. We recall the Green’s function from Eq. (69)
G�i�f (i⌅i, f⌅f ) = �⌅⌅Ci�i(⌅i) �C

†
f�f

(⌅f )⇧⇧, with the aver-

ages from Eq. (65). Expanding the �C† operator this be-
comes

G�i�f (i⌅i, f⌅f ) = �⌅⌅Ci�i(⌅i)C
†
f�f

(⌅f )⇧⇧+

⌅⌅Ci�i(⌅i)C
†
f�f

(⌅f )Nf �̄f (⌅f )⇧⇧. (75)

We next define the auxiliary Green’s function as:

g�i�j (i⌅i, j⌅j) = �⌅⌅Ci�i(⌅i)C
†
j�(⌅j)⇧⇧, (76)

and regarding the spin, space and time indices as matrix
indices with a matrix inverse g�1. We will see that its
equation of motion coincides with that from Eq. (171)
obtained through the Schwinger equation of motion. By
separating the disconnected and connected parts ( c) of
the second term in (75) we write

⌅⌅Ci�i(⌅i)C
†
f�f

(⌅f )Nf �̄f (⌅f )⇧⇧ =
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The connected part is written in terms of a second self
energy ⇥ defined as

⇥�i�f (i⌅i, f⌅f ) = g�1
�i�k

(i⌅i,k⌅k)⇥
⌅⌅Ck�k(⌅k)C

†
f�f

(⌅f )Nf �̄f (⌅f )⇧⇧c,
(77)

and assembling these we rewrite (75) as the product
relation Ref. (5)

G�i�f (i⌅i, f⌅f ) = g�i�k(i⌅i,k⌅k)µ�k�f (k⌅k, f⌅f ),

µ�i�f (i⌅i, f⌅f ) = �(if) (1� ⌅N�̄i(⌅i)⇧) +⇥�i�f (i⌅i, f⌅f ).

(78)

We observe from the expression (77) that if the aver-
ages are (temporarily) computed in a standard Feynman
Dyson theory, then ⇥ is essentially the self energy of a
Hubbard type model, made dimensionless by dropping
an explicit interaction constant U . Indeed this is the
key observation made in Ref. (5), on the basis of the ⇥
expansion, where the two self energies are argued to be
generically Fermi liquid-like and similar to each other.
An energy scale (�) emerges from a ratio of their imag-
inary parts, and controls the significant asymmetry seen
in the spectral functions.

V. THE ⇥-FERMIONS

A natural question is whether Eq. (16), explicitly con-
taining the parameter ⇥, can arise in a microscopic the-
ory where ⇥ enters in a fundamental way, as opposed to
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indices with a matrix inverse g�1. We will see that its
equation of motion coincides with that from Eq. (171)
obtained through the Schwinger equation of motion. By
separating the disconnected and connected parts ( c) of
the second term in (75) we write

⌅⌅Ci�i(⌅i)C
†
f�f

(⌅f )Nf �̄f (⌅f )⇧⇧ =

�g�i�f (i⌅i, f⌅f )⌅Nf �̄f (⌅f )⇧+ ⌅⌅Ci�i(⌅i)C
†
f�f

(⌅f )Nf �̄f (⌅f )⇧⇧c.

The connected part is written in terms of a second self
energy ⇥ defined as

⇥�i�f (i⌅i, f⌅f ) = g�1
�i�k

(i⌅i,k⌅k)⇥
⌅⌅Ck�k(⌅k)C

†
f�f

(⌅f )Nf �̄f (⌅f )⇧⇧c,
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and assembling these we rewrite (75) as the product
relation Ref. (5)

G�i�f (i⌅i, f⌅f ) = g�i�k(i⌅i,k⌅k)µ�k�f (k⌅k, f⌅f ),

µ�i�f (i⌅i, f⌅f ) = �(if) (1� ⌅N�̄i(⌅i)⇧) +⇥�i�f (i⌅i, f⌅f ).

(78)

We observe from the expression (77) that if the aver-
ages are (temporarily) computed in a standard Feynman
Dyson theory, then ⇥ is essentially the self energy of a
Hubbard type model, made dimensionless by dropping
an explicit interaction constant U . Indeed this is the
key observation made in Ref. (5), on the basis of the ⇥
expansion, where the two self energies are argued to be
generically Fermi liquid-like and similar to each other.
An energy scale (�) emerges from a ratio of their imag-
inary parts, and controls the significant asymmetry seen
in the spectral functions.

V. THE ⇥-FERMIONS

A natural question is whether Eq. (16), explicitly con-
taining the parameter ⇥, can arise in a microscopic the-
ory where ⇥ enters in a fundamental way, as opposed to
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Tr e��ĤeffT⇤

�
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“The Notorious” 
 Caparison function
μ= (1- <N> +ψ

Thus the G splits into two parts, the second 
term is from the definition of the creation 

operators with a hat 

Next set 

This “explains” how the Product form arises

Caparison=  elaborate decoration (Ye Olde English). 

 Idea is that the auxiliary “g(k,ω)” is already dressed by Fermi liquid 
renormalization, G requires a second layer of decoration!!

< CC†N >=< CC† >< N > +g ⇥�
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We now state a hat-removal rule: in all expressions of
the type Eq. (64) and (65), the replacement

⌅Ci⇥(⇥) ⇤ Ci⇥(⇥), (66)

leaves the result unchanged. Notice that this rule can also
be applied to Heff , the source terms ÂS , and the Ci⇥.
Note that the creation operators cannot be ‘un-hatted’
in this fashion- since these do create a doubly occupied
site. Summarizing, we can use instead of (60), the more
compact non-Hermitean rule

X0⇥
i ⇤ Ci⇥, X

⇥0
i ⇤ ⌅C†

i⇥ = C†
i⇥(1�Ni⇥̄), X

⇥⇥�

i ⇤ C†
i⇥Ci⇥� .

(67)

We thus rewrite the sources (10) as:

ÂS(i, ⇥) =
�
⌅C†
i⇥(⇥) Ji⇥(⇥) + J⇥

i⇥(⇥)Ci⇥(⇥)
⇥
+

V⇥�⇥
i (⇥)C†

i⇥�(⇥)Ci⇥(⇥), (68)

and the Green’s function with imaginary time 0 ⇥
⇥i, ⇥j ⇥ � is therefore written as:

G⇥i⇥f (i⇥i, f⇥f ) = �⌥⌥Ci⇥i(⇥i) ⌅C
†
f⇥f

(⇥f )��, (69)

analogous to (61) but with an unprojected destruc-
tion operator. We will show below that this is the most
useful and compact expression for the Green’s function.
To complete the description of this theory, we turn to
the task of specifying the Hamiltonian, and obtain the
boundary conditions on the time variables. The last task
is somewhat nontrivial since the projection operator does
not commute with the other operators.

C. Hamiltonian in the Symmetrized and Minimal
theories

In order to represent the Hamiltonian, the spin op-
erators of the exchange part HJ are unambiguously ex-
pressed in terms of the Ci⇥ and C†

i⇥ operators without
hats as in (67), since they preserve the occupation of a
site. For the kinetic energy we could choose to work with
(56), and thereby gain some advantage of dealing with
a Hermitean Hamiltonian. This leads to the equations
of motion termed the the symmetrized theory in Ref. (7).
Alternately we can implement the hat removal rule for
the kinetic energy as well:

T̂eff = �
⇤

ij⇥

tij ⌅C†
i⇥Cj⇥. (70)

This minimal version of the kinetic energy is clearly non-
Hermitean. However, it has exactly the same action as
the symmetrized version (55), when right-operating on
the physical Gutzwiller projected states, as proved above.
This leads to equations of motion of the minimal theory
noted in Ref. (7). and elaborated upon in Ref. (11) and
Ref. (10). For completeness, we provide in Sec (VIIB) a
brief derivation of these equations for the minimal case,
using the above canonical representation, in place of the
Schwinger equations.

D. Kubo-Martin-Schwinger antiperiodic boundary
conditions

In working with the expression Eq. (64), Eq. (67) and
Eq. (69), we have assumed that all the times ⇥j are
positive and satisfy 0 ⇥ ⇥j ⇥ �. The Green’s func-
tion Eq. (12) satisfies the Kubo-Martin-Schwinger (KMS)
anti-periodic boundary conditions23

G(a ⇥i = 0, b ⇥f ) = �G(a ⇥i = �, b ⇥f ), (71)

G(a ⇥i, b ⇥f = 0) = �G(a ⇥i, b ⇥f = �), (72)

where the fixed time ⇥f (⇥i) in the first (second) equa-
tions is assumed to satisfy 0 ⇥ ⇥ ⇥ �. These conditions
are usually proven by using the cyclic invariance of the
trace24, and translates easily to the canonical representa-
tion Eq. (61), with ⌅C and ⌅C† replacing the X operators
(60).
In using the non-Hermitean representation (67) as in

(69), we cannot use cyclicity of trace since the operator
⌅C does not commute with PG. Remarkably enough, the
conditional commutativity (62) and (63) su⇤ces to
guarantee the required antiperiodicity. In physical terms
these proofs follow from the observation made above,
the creation operators with hats, and destruction opera-
tors (without hats) preserve a Gutzwiller projected state
within that subspace.
For simplicity we present the case with sources turned

o� i.e. A ⇤ 0, the more general case follows by a similar
argument. From the definitions of the Green’s functions,

Eq. (72) is true since Tr
�
e��HeffCa⇥(⇥i)[ ⌅C†

b⇥�(0), P̂G]
⇥

vanishes identically from Eq. (52).
In order to prove that Eq. (71) remains true, we need

to show that the expression

Tr
�
e��Heff ⌅C†

b⇥�(⇥f )[Ca⇥(0), P̂G]
⇥

(73)

vanishes, despite the non vanishing of the commuta-
tor in the expression. For this purpose, we utilize the
conditional commutator (62) to write [Ca⇥(0), P̂G] =
[Ca⇥(0), P̂G](1� P̂G). We next use cyclicity of trace and

the simple identity (for any Q̂): Tr
�
(1� P̂G)Q̂P̂G

⇥
= 0,

to write the required expression (73) in the form

Tr
�
(P̂G � 1)e��Heff ⌅C†

b⇥�(⇥f )P̂GCa⇥(0)
⇥
. (74)

Using (P̂G)2 = P̂G, we rewrite this as:

(P̂G � 1)e��Heff ⌅C†
b⇥�(⇥f )P̂G = [P̂G, e

��Heff ⌅C†
b⇥�(⇥f )]P̂G.

This expression vanishes on using the conditional com-
mutator Eq. (63), thereby proving the required result
(71).
The two canonical theories providing an exact mapping

of the original theory are summarized in the Table (II).

Reminder from last page: definition of 
hatted operators 

C̃†
� = C†

�(1�N�̄)
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Spins: The Dyson-Maleev mapping Fermions: The non-Hermitean mapping

Destruction operator S�
i bi X0�

i Ci�

Creation operator S+
i (2s) b†i (1�

ni
2s ) X�0

i C†
i�(1� ⇤Ni�̄)

Density operator(s) Sz
i + s ni = b†i bi X���

i C†
i�Ci��

Projection Operator P̂D
⇥

i{
�2s

m=0 ⇥ni,m} P̂G
⇥

i(1�Ni⇥Ni⇤), for ⇤ = 1

Vacuum | ⇤⇤ . . . ⇤� |00 . . . 0� |V ac� |00 . . . 0�

Small Parameter & Its
Range

1
2s

1
2s ⌅ [0, 1] ⇤ ⇤ ⌅ [0, 1]

Auxiliary Green’s func-
tion

g(i, j)=�⌥⌥bib†j�� g(i, j) = �⌥⌥Ci�C
†
j���

Caparison Function µ(i, j)=⇥ij(1� 1
2s ⌥nj�) + 1

2s�(i, j) µ(i, j) = ⇥ij(1� ⇤�) + ⇤�(i, j)

Second Self energy � �(i, j) = g�1(i,a)⌥⌥bab†jnj��c �(i, j) = g�1(i,a)⌥⌥Ca�C
†
j�Nj�̄��c

TABLE III: A comparison of the Dyson-Maleev representation for spins and the non-Hermitean representation Eq. (67) for two
component Fermions ⇧ = ±1 with ⇧̄ = �⇧. At ⇤ = 1 the Fermion mappings provide a faithful representation of Gutzwiller
projected Fermi operators Xab

i , acting to the right on states with single occupancy, since their action produces states that
remain in this space. The representation is non self adjoint, i.e. its left operation on Dirac bra states is not faithful. The
situation has an exact parallel in the Dyson Maleev representation. The Dyson projection operator P̂D for integer 2s and the
Gutzwiller projection operator P̂G at ⇤ = 1, play a similar role in filtering out unphysical states. The role of the parameter ⇤
away from 0, 1 is similar to that of 1

2s , extending the Dyson Maleev representation to spin values that are neither integer or half
integer. The last three rows show the auxiliary Green’s function, the caparison function and the second self energy in terms
of the Bosons from Eqs (95, 96). These follow from the work of Harris, Kumar, Halperin and Hohenberg Ref. (31) adapted to
the ferromagnet. The corresponding Fermionic objects are discussed in Section (IV) and detailed in Eqs (77,78).

site repulsion, in parallel to the infinite U in the ex-
tremely correlated electron problem. In order to avoid
dealing with the infinite energy of the hard core, sev-
eral other representations of spins were invented, such
as the Holstein Primako� method Ref. (43). Dyson’s
use of a non-Hermitean representation provides the most
compact canonical description of the spin operators. In
fact it is analogous to the non-Hermitean mapping of the
Fermionic Gutzwiller problem in Eq. (67).

Dyson’s representation, later streamlined by Maleev30,
may be written with ni = b†i bi as

S+
i = (2s) b†i (1� ni

2s
)

S�
i = bi

Sz
i + s = ni, (93)

where ✏Si.✏Si = s(s+ 1) and bi, b
†
i are canonical Bose op-

erators. The Boson vacuum state bi|vac⇧ = 0 is mapped
as |vac⇧ ⌅ | ⇤, ⇤, ⇤ . . . ⇤⇧, so that the action of b†i cre-
ates spin reversals. Their number is cut o� such that
ni ⇥ (2s), thereby defining the physical states. Under
these conditions Eq. (93) is shown to provide a faith-
ful representation of the angular momentum operators,
when right-operating on physical states. Under the ac-
tion of the operators in (93), the physical states form an

invariant subspace of the extended Bose Hilbert space,
and are selected by projection. The Dyson projection
operator P̂D acts on the Bose state space and leaves the
physical states unchanged while annihilating states with
ni > (2s).

It is now evident that the Dyson-Maleev representation
has a strong formal similarity to the minimal representa-
tion (67). The Dyson projector P̂D plays a role parallel
to that of the Gutzwiller projector P̂G in (67) in our
theory. The parallel further deepens in the path integral
representation of the Fermions that we discuss below.
The interesting work of Douglass32, following Langer’s33

path integral program for Bosons- employs the projection
operator P̂D in the same spirit to our usage below.

The work of Harris, Kumar, Halperin and Hohenberg
(HKHH) Ref. (31) extended Dyson’s method to two sub-
lattice antiferromagnets, and provided a non trivial gen-
eralization to study the lifetime of the excitations. De-
tails of the ECFL formalism turn out to have points of
overlap with those in HKHH that are worth noting. In
particular HKHH decompose the physical Green’s func-
tion into a space time convolution of two parts. These
parts are precisely the Bosonic analogs of the ECFL
breakup of the physical Green’s function, into an auxil-
iary Green’s function g(k) and a caparison function µ(k),
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component Fermions ⇧ = ±1 with ⇧̄ = �⇧. At ⇤ = 1 the Fermion mappings provide a faithful representation of Gutzwiller
projected Fermi operators Xab

i , acting to the right on states with single occupancy, since their action produces states that
remain in this space. The representation is non self adjoint, i.e. its left operation on Dirac bra states is not faithful. The
situation has an exact parallel in the Dyson Maleev representation. The Dyson projection operator P̂D for integer 2s and the
Gutzwiller projection operator P̂G at ⇤ = 1, play a similar role in filtering out unphysical states. The role of the parameter ⇤
away from 0, 1 is similar to that of 1

2s , extending the Dyson Maleev representation to spin values that are neither integer or half
integer. The last three rows show the auxiliary Green’s function, the caparison function and the second self energy in terms
of the Bosons from Eqs (95, 96). These follow from the work of Harris, Kumar, Halperin and Hohenberg Ref. (31) adapted to
the ferromagnet. The corresponding Fermionic objects are discussed in Section (IV) and detailed in Eqs (77,78).

site repulsion, in parallel to the infinite U in the ex-
tremely correlated electron problem. In order to avoid
dealing with the infinite energy of the hard core, sev-
eral other representations of spins were invented, such
as the Holstein Primako� method Ref. (43). Dyson’s
use of a non-Hermitean representation provides the most
compact canonical description of the spin operators. In
fact it is analogous to the non-Hermitean mapping of the
Fermionic Gutzwiller problem in Eq. (67).

Dyson’s representation, later streamlined by Maleev30,
may be written with ni = b†i bi as

S+
i = (2s) b†i (1� ni

2s
)

S�
i = bi

Sz
i + s = ni, (93)

where ✏Si.✏Si = s(s+ 1) and bi, b
†
i are canonical Bose op-

erators. The Boson vacuum state bi|vac⇧ = 0 is mapped
as |vac⇧ ⌅ | ⇤, ⇤, ⇤ . . . ⇤⇧, so that the action of b†i cre-
ates spin reversals. Their number is cut o� such that
ni ⇥ (2s), thereby defining the physical states. Under
these conditions Eq. (93) is shown to provide a faith-
ful representation of the angular momentum operators,
when right-operating on physical states. Under the ac-
tion of the operators in (93), the physical states form an

invariant subspace of the extended Bose Hilbert space,
and are selected by projection. The Dyson projection
operator P̂D acts on the Bose state space and leaves the
physical states unchanged while annihilating states with
ni > (2s).

It is now evident that the Dyson-Maleev representation
has a strong formal similarity to the minimal representa-
tion (67). The Dyson projector P̂D plays a role parallel
to that of the Gutzwiller projector P̂G in (67) in our
theory. The parallel further deepens in the path integral
representation of the Fermions that we discuss below.
The interesting work of Douglass32, following Langer’s33

path integral program for Bosons- employs the projection
operator P̂D in the same spirit to our usage below.

The work of Harris, Kumar, Halperin and Hohenberg
(HKHH) Ref. (31) extended Dyson’s method to two sub-
lattice antiferromagnets, and provided a non trivial gen-
eralization to study the lifetime of the excitations. De-
tails of the ECFL formalism turn out to have points of
overlap with those in HKHH that are worth noting. In
particular HKHH decompose the physical Green’s func-
tion into a space time convolution of two parts. These
parts are precisely the Bosonic analogs of the ECFL
breakup of the physical Green’s function, into an auxil-
iary Green’s function g(k) and a caparison function µ(k),
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site repulsion, in parallel to the infinite U in the ex-
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dealing with the infinite energy of the hard core, sev-
eral other representations of spins were invented, such
as the Holstein Primako� method Ref. (43). Dyson’s
use of a non-Hermitean representation provides the most
compact canonical description of the spin operators. In
fact it is analogous to the non-Hermitean mapping of the
Fermionic Gutzwiller problem in Eq. (67).

Dyson’s representation, later streamlined by Maleev30,
may be written with ni = b†i bi as
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i are canonical Bose op-
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as |vac⇧ ⌅ | ⇤, ⇤, ⇤ . . . ⇤⇧, so that the action of b†i cre-
ates spin reversals. Their number is cut o� such that
ni ⇥ (2s), thereby defining the physical states. Under
these conditions Eq. (93) is shown to provide a faith-
ful representation of the angular momentum operators,
when right-operating on physical states. Under the ac-
tion of the operators in (93), the physical states form an

invariant subspace of the extended Bose Hilbert space,
and are selected by projection. The Dyson projection
operator P̂D acts on the Bose state space and leaves the
physical states unchanged while annihilating states with
ni > (2s).

It is now evident that the Dyson-Maleev representation
has a strong formal similarity to the minimal representa-
tion (67). The Dyson projector P̂D plays a role parallel
to that of the Gutzwiller projector P̂G in (67) in our
theory. The parallel further deepens in the path integral
representation of the Fermions that we discuss below.
The interesting work of Douglass32, following Langer’s33

path integral program for Bosons- employs the projection
operator P̂D in the same spirit to our usage below.

The work of Harris, Kumar, Halperin and Hohenberg
(HKHH) Ref. (31) extended Dyson’s method to two sub-
lattice antiferromagnets, and provided a non trivial gen-
eralization to study the lifetime of the excitations. De-
tails of the ECFL formalism turn out to have points of
overlap with those in HKHH that are worth noting. In
particular HKHH decompose the physical Green’s func-
tion into a space time convolution of two parts. These
parts are precisely the Bosonic analogs of the ECFL
breakup of the physical Green’s function, into an auxil-
iary Green’s function g(k) and a caparison function µ(k),
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projected Fermi operators Xab

i , acting to the right on states with single occupancy, since their action produces states that
remain in this space. The representation is non self adjoint, i.e. its left operation on Dirac bra states is not faithful. The
situation has an exact parallel in the Dyson Maleev representation. The Dyson projection operator P̂D for integer 2s and the
Gutzwiller projection operator P̂G at ⇤ = 1, play a similar role in filtering out unphysical states. The role of the parameter ⇤
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2s , extending the Dyson Maleev representation to spin values that are neither integer or half
integer. The last three rows show the auxiliary Green’s function, the caparison function and the second self energy in terms
of the Bosons from Eqs (95, 96). These follow from the work of Harris, Kumar, Halperin and Hohenberg Ref. (31) adapted to
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site repulsion, in parallel to the infinite U in the ex-
tremely correlated electron problem. In order to avoid
dealing with the infinite energy of the hard core, sev-
eral other representations of spins were invented, such
as the Holstein Primako� method Ref. (43). Dyson’s
use of a non-Hermitean representation provides the most
compact canonical description of the spin operators. In
fact it is analogous to the non-Hermitean mapping of the
Fermionic Gutzwiller problem in Eq. (67).

Dyson’s representation, later streamlined by Maleev30,
may be written with ni = b†i bi as

S+
i = (2s) b†i (1� ni

2s
)

S�
i = bi

Sz
i + s = ni, (93)

where ✏Si.✏Si = s(s+ 1) and bi, b
†
i are canonical Bose op-

erators. The Boson vacuum state bi|vac⇧ = 0 is mapped
as |vac⇧ ⌅ | ⇤, ⇤, ⇤ . . . ⇤⇧, so that the action of b†i cre-
ates spin reversals. Their number is cut o� such that
ni ⇥ (2s), thereby defining the physical states. Under
these conditions Eq. (93) is shown to provide a faith-
ful representation of the angular momentum operators,
when right-operating on physical states. Under the ac-
tion of the operators in (93), the physical states form an

invariant subspace of the extended Bose Hilbert space,
and are selected by projection. The Dyson projection
operator P̂D acts on the Bose state space and leaves the
physical states unchanged while annihilating states with
ni > (2s).

It is now evident that the Dyson-Maleev representation
has a strong formal similarity to the minimal representa-
tion (67). The Dyson projector P̂D plays a role parallel
to that of the Gutzwiller projector P̂G in (67) in our
theory. The parallel further deepens in the path integral
representation of the Fermions that we discuss below.
The interesting work of Douglass32, following Langer’s33

path integral program for Bosons- employs the projection
operator P̂D in the same spirit to our usage below.

The work of Harris, Kumar, Halperin and Hohenberg
(HKHH) Ref. (31) extended Dyson’s method to two sub-
lattice antiferromagnets, and provided a non trivial gen-
eralization to study the lifetime of the excitations. De-
tails of the ECFL formalism turn out to have points of
overlap with those in HKHH that are worth noting. In
particular HKHH decompose the physical Green’s func-
tion into a space time convolution of two parts. These
parts are precisely the Bosonic analogs of the ECFL
breakup of the physical Green’s function, into an auxil-
iary Green’s function g(k) and a caparison function µ(k),
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Table 3
A comparison of the Dyson–Maleev representation for spins and the non-Hermitian representation (71) for two component
Fermions ⌃ = ±1 with ⌃̄ = �⌃ . At ⇧ = 1 the Fermion mappings provide a faithful representation of Gutzwiller projected
Fermi operators Xab

i , acting to the right on states with single occupancy, since their action produces states that remain in this
space. The representation is non self adjoint, i.e. its left operation on Dirac bra states is not faithful. The situation has an exact
parallel in the Dyson–Maleev representation. The Dyson projection operator P̂D for integer 2s and the Gutzwiller projection
operator P̂G at ⇧ = 1, play a similar role in filtering out unphysical states. The role of the parameter ⇧ away from 0, 1 is similar
to that of 1

2s , extending the Dyson–Maleev representation to spin values that are neither integer or half integer. The last three
rows show the auxiliary Green’s function, the caparison function and the second self energy in terms of the Bosons from Eqs.
(100) and (101). These follow from the work of Harris, Kumar, Halperin and Hohenberg [18] adapted to the ferromagnet. The
corresponding Fermionic objects are discussed in Section 4 and detailed in Eqs. (82) and (83).

Spins: The Dyson–Maleev mapping Fermions: The non-Hermitian
mapping

Destruction operator S�
i bi X0⌃

i Ci⌃

Creation operator S+
i (2s) bÑi (1 � ni

2s ) X⌃0
i CÑi⌃ (1 � ⇧Ni⌃̄ )

Density operator(s) Szi + s ni = bÑi bi X⌃⌃ ⇧
i CÑi⌃ Ci⌃ ⇧

Projection operator P̂D
⇥

i{
�2s

m=0 ⌅ni,m} P̂G
⇥

i(1 � Ni⇤Ni⌅), for ⇧ = 1
Vacuum | ⌅⌅ . . . ⌅� |00 . . . 0� |Vac� |00 . . . 0�
Small parameter & its
range

1
2s

1
2s ⌃ [0, 1] ⇧ ⇧ ⌃ [0, 1]

Auxiliary Green’s
function

g(i, j) = �⌥⌥bibÑj �� g(i, j) = �⌥⌥Ci⌃ C
Ñ
j⌃ ��

Caparison function µ(i, j) = ⌅ij(1� 1
2s ⌥nj�)+ 1

2s � (i, j) µ(i, j) = ⌅ij(1�⇧⇤ )+⇧� (i, j)
Second Self energy � � (i, j) = g�1(i, a)⌥⌥babÑj nj��c � (i, j) =

g�1(i, a)⌥⌥Ca⌃ C
Ñ
j⌃Nj⌃̄ ��

c

shown to provide a faithful representation of the angularmomentumoperators, when right-operating
on physical states. Under the action of the operators in (98), the physical states form an invariant
subspace of the extended Bose Hilbert space, and are selected by projection. The Dyson projection
operator P̂D acts on the Bose state space and leaves the physical states unchanged while annihilating
states with ni > (2s).

It is now evident that the Dyson–Maleev representation has a strong formal similarity to the
minimal representation (71). The Dyson projector P̂D plays a role parallel to that of the Gutzwiller
projector P̂G in (71) in our theory. The parallel further deepens in the path integral representation of
the Fermions that we discuss below. The interesting work of Douglass [42], following Langer’s [43]
path integral program for Bosons, employs the projection operator P̂D in the same spirit to our usage
below.

The work of Harris, Kumar, Halperin and Hohenberg (HKHH) [18] extended Dyson’s method to
two sublattice antiferromagnets, and provided a non trivial generalization to study the lifetime of
the excitations. Details of the ECFL formalism turn out to have points of overlap with those in HKHH
that are worth noting. In particular HKHH decompose the physical Green’s function into a space time
convolution of two parts. These parts are precisely the Bosonic analogs of the ECFL breakup of the
physical Green’s function, into an auxiliary Green’s function g(k) and a caparison function µ(k), as
detailed in Ref. [4] and in Section 4.

The computation of the Green’s function by HKHH [18] was carried out for the two sublattice
antiferromagnet. In order to avoid dealing with the added complexity of the two sublattice problem,
we translate theirmethod to theDyson problemof the dynamical Green’s function of the ferromagnet.
We use a notation that brings out the close parallel with the product ansatz used in ECFL [4].

The calculation, paraphrasing that of HKHH, proceeds as follows. In order to compute the imaginary
time Green’s function G(i, j) = �⌥⌥S�

i S+
j �� with the shorthand spacetime notation i ⇥ (ri, ⌥i), the

repeated index summation (integration) convention and denoting the averages as ⌥⌥Q �� = Tr(e�⇥H

This table summarizes the parallel between spins and extreme Fermions.
We have anticipated the parameter λ in analogy to the semiclassical parameter 1/(2 S) in D-M



6

while the thermodynamical chemical potential µ (resid-
ing in the non interacting g�1

0 ), is fixed by the number
sum rule n� = G��(i��, i�)(Eq. (14)). Enforcing this
shift invariance to each order in the ⌅ expansion plays
an important “watchdog” role on the ⌅ expansion, in ad-
dition to other standard constraints such as the Ward
identities.

To summarize some key points of the ⌅ expansion, we
first decompose the Greens function into the space time
convolution of an auxiliary Greens function and a capari-
son function as:

G = g.µ. (17)

With this the operator in equation (16) acts on the
two factors of Eq. (17), and breaks into two equations
upon using the ansatz that g has a canonical structure�
g�1
0 � ⌅X̂ � ⌅Y1

⇥
.g = ⇤ 1. The ⌅ expansion Ref. (7)

is then an iteration scheme that proceeds by an expan-
sion of the caparison function µ(k) and Y1 (Y1 = t⇥) in
powers of ⌅. Dyson’s skeleton graph idea is implemented
by keeping the auxiliary g intact ( i.e. unexpanded in
⌅), while all other variables are expanded in powers of ⌅
and g, thereby obtaining self consistent equations for g
and the vertex functions. Successive levels of approxima-
tion are obtained by retaining increasing powers of ⌅. At
each approximation level, we set ⌅ = 1 before actually
evaluating the expressions, and implement the antiperi-
odic boundary conditions (71), (72), and the number
sum-rule n� = G��(i��, i�) (Eq. (14)).

Elaborating on the representation Eq. (17) of G, we
note that the ⇥ term on the right hand side of (16) is
due to the non canonical anticommutator of the projected
Fermi operators. As noted in Ref. (5), this term contains
the essential di⌃culty of the t-J problem, having no par-
allel in the (canonical) Hubbard type models. This pro-
cess is organized e⌃ciently by representing G through the
temporal convolution in Eq. (78). After turning o⌅ the
sources, in the momentum-frequency space we can fur-
ther introducing two self energies ⇥(k, i ), and �(k, i )
with

µ(�k, i n) = 1� n

2
+⇥(�k, i n) (18)

g�1(�k, i n) = g(�1)
0 (�k, i )� �(�k, i n), (19)

where the constant n
2 in Eq. (18) is fixed by the condi-

tion that ⇥ vanishes at infinite frequency. The auxiliary
Greens function satisfies a second sumrule analogous to
Eq. (14), written in the Fourier domain:

(kBT )
⇤

k,n

ei⇥n0
+

g��(k, i n) = n�. (20)

Clearly the same sumrule holds for G��(k, i n). Eq. (17)
can now be written explicitly in the non-Dysonian form
proposed in Ref. (5) and Ref. (6)

G(�k, i ) =
1� n

2 +⇥(�k, i )

g(�1)
0 (�k, i )� �(�k, i )

. (21)

As argued in5,7,8,10, simple Fermi liquid type self energies
⇥ and � can, in the combination above, lead to highly
asymmetric (in frequency) Dyson self energies from the
structure of Eq. (21), thus providing a considerable tac-
tical advantage in describing extreme correlations. We
further discuss the physical meaning of this decomposi-
tion and the twin self energies in Section (IV). Table (I)
provides an overview of the various steps in the construc-
tion of the theory.

D. G(⇧k, i�n) and the low energy spectral function
in ECFL theory

We summarize here the low temperature low energy
theory near the Fermi surface that follows from the gen-
eral structure of Eq. (21) in terms of a small number
of parameters, upon assuming that the two self ener-
gies have a Fermi liquid behavior at low energies. In
the limit of large dimensions, a similar exercise gives a
very interesting spectral function that matches the ex-
act solution of the U = ⇤ Hubbard model found from
the dynamical mean field theory (DMFT) Ref. (10). The
presentation below generalizes that to include a momen-
tum dependence that is absent in high dimensions, and is
supplemented by a discussion of the behavior of the var-
ious coe⌃cients as the density of electrons n approaches
unity, or equivalently the hole density ⇤ ⇥ 0.
The Dyson self energy can be inferred from a simple

inversion, and has a strong set of corrections to the Fermi
liquid theory that we delineate here. We assume here a
Fermi liquid type state that survives the limit of small
hold density ⇤ ⇥ 0. In reality at very small ⇤ several
other broken symmetry states would compete and pre-
sumably win over the liquid state, so that this Fermi
liquid state would be metastable. It characteristics are
of interest and hence we proceed to describe these.
We study Eq. (21) by analytically continuing i ⇥

 + i0+ and write

g(�1)
0 (�k, i ) =  + µ� (1� n

2
)⌦k (22)

Let us define k̂ as the normal deviation from the Fermi
surface i.e. k̂ = (�k � �kF ).�kF /|�kF |, and the frequently
occurring Fermi liquid function

R = ⌥{ 2 + (⌥kBT )
2}. (23)

We carry out a low frequency expansion as follows:

1� n

2
+⇥(�k, ) = �0 + c⇥( + ⌃⇥ k̂ vf )

+iR/⇥⇥ +O( 3), (24)

and a similar expansion for �(�k, ) so that

 + µ� (1� n

2
)⌦k � �(k, ) =

(1 + c�)
�
 + ⌃� k̂ vf + iR/⇤� +O( 3)

⇥
, (25)

Novel non-Dysonian 

 Summary:  With Fourier transforms, and 
with auxuliary “g” having its own self energy, 

and  expand the caparison function μ 

g�1(k,�) = g�1
0 (k, �)� �(k, �)

µ(k, �) = 1� n

2
�(k,�)

The two self energies can be pursued in different ways
 Expansion in the λ parameter ( λ ε [0,1])
Low k,ω expansion
In high dimensions we can show that these are further related through
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1.2. Results in the limit of infinite dimensions

We show that in the large d limit, the two self energies ⇥(k) and ⇤ (k) simplify in the following
way.

⇤ (k) = ⇤ (i�k), (9)
⇥(k) = ↵(i�k) + ⌃k⇤ (i�k). (10)

These in turn show that the Dyson–Mori self energy behaves as

�DM(k) = �DM(i�k) = (i�k + µ)⇤ (i�k) +
�
1 � n

2

⇥
↵(i�k)

1 � n
2 + ⇤ (i�k)

, (11)

and is therefore local in the limit of infinite dimensions.We show that to each order in the� expansion,
⇤ (i�k) and↵(i�k) are each a product of an arbitrary number of factors, each ofwhich take on the form⇤

⇥p g(⇥p, i�p)⌃
m
⇥p , with m equal to zero or one, and with arbitrarily complex frequency dependence of

the individual factors.
We show that just as in the finite U case [10,11], the optical conductivity is given by the expression
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where v⌅⇥p is the component of the velocity in the ⌅ direction (Eq. (39)). We show that this formula can
be applied at each order of the � expansion.

We show that there is a self consistent mapping between the ECFL theory of the infinite-
dimensional t–J model and the ECFL theory of the infinite-U Anderson impurity model (AIM) [22].
This mapping is similar in spirit to themapping first discussed by Georges and Kotliar for the Hubbard
model [8], but is made directly in the infinite U limit here. In this mapping, gi,i[⌦i, ⌦f ] and µi,i[⌦i, ⌦f ]
of the t–J model are mapped to the objects g[⌦i, ⌦f ] and µ[⌦i, ⌦f ] of the Anderson model, written with
the same symbols, but without the spatial or momentum labels. This mapping is valid under the self-
consistency condition
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where ⌃⇥k is the dispersion of the lattice in the t–J model, and V⇥k and ⇧⌃⇥k are the hybridization and
dispersion of the bath respectively in the Anderson impurity model. This self-consistency condition
is shown to be equivalent to the standard self-consistency condition from DMFT [8,9]. We also show
that the mapping holds to each order in � under the same self-consistency condition. We note that
this implies that ECFL computations for the infinite-dimensional t–J model can be done with a DMFT-
like self-consistency loop involving ECFL computations for the AIM. However, since the � expansion
provides integral equations which are relatively straightforward to solve numerically, this is not
necessary as the t–J model equations can be solved directly.

1.3. Outline of the paper

The paper is structured as follows. In Section 2, some basic facts about lattice sums in the limit
of large dimensions and the ECFL equations of motion as well as the � expansion are reviewed.
Additionally, the spatial dependence of various standard and ECFL specific objects in the limit of large
dimensions is stated. Finally, we introduce a class of local functions denoted as class-L functions; these
turn out to play a central role in the ECFL in the limit of large dimensions. In Sections 3.1 and 3.2,
Eqs. (9) and (10) are proven in general and to each order in �, and the locality of the Dyson–Mori self
energy is shown as a consequence. In Section 3.3, Eq. (12) is shown to hold in general and to each
order in �. In Section 3.4, the ECFL self-consistent integral equations are derived to O(�2) in the large-
d limit. Finally, in Section 4, the ECFL of the infinite dimensional t–J model is mapped onto the ECFL of
the infinite-U AIM under the self-consistency condition (Eq. (13)). This is done in general and to each
order in �.

1.This relation implies that the Dyson (or Dyson Mori) self energy is momentum 
independent.
2. Proof is independent of Wicks theorem and is consistent with the  momentum 
independence in the Hubbard model foundational to  DMFT. 
3. Thus the two limits of infinite U and infinite  D  mutually commute. 
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= g(k)⇥ µ(k)
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1.2. Results in the limit of infinite dimensions
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A little algebra gives
the explicit relation

We  also obtain a mapping, simliar in spirit 
to that of  Georges- Kotliar, where  the tJ model
in infinite dimensions is identical to the AIM
with self consistently  chosen band 
structure of the conductions electrons. 
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gi,i(i�n)! g(i�n)

µ! �d

µi,i(i�n)! µ(i�n) We  also obtain an independent solution of the tJ as well as
the AIM model as an expansion in λ. Here λ is related to 
the density of  particles or the filling of the d-level in the AIM. 
Will discuss the explicit solution to 2nd order later. 
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�
⌥
n
2

� ⌥2 n
2

8

⇥
+ ⌥

⇤

p
�pg(p) � aG

u0

2
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⇤ (i�k) = �⌥u0I000(i�k) + 2⌥I010(i�k), (60)

↵(i�k) = �u0

2
⇤ (i�k) � u0⌥I001(i�k) + 2⌥I011(i�k). (61)

Before solving the equations, one must set ⌥ = 1. The two Lagrange multipliers µ and u0 are
determined by the two sum rules:

⇤

k

g(k) = n
2
;

⇤

k

G(k) = n
2
. (62)

The objects gloc,m(i�k) are given by an appropriate integral over the non-interacting density of states of
a function composed of the two self energies↵(i�k) and⇤ (i�k) and the energy ⌃ (Eq. (57)). Therefore,
these constitute a self-consistent set of equations for the two self energies. These equations have been
solved numerically and compared to DMFT calculations in Ref. [23].

4. Anderson model

A word is needed at this point on the notation used, since similar looking symbols represent
quite different objects in the t–J model and the AIM. We use the functions G({⌦j}), g({⌦j}), µ({⌦j}) or
G({i�j}), g({i�j}), µ({i�j}) and the related vertex functions for the impurity site of theAIMaswell, but
distinguish them from the t–J model variables by dropping the spatial ormomentum labels. Therefore
in an equation such as Eq. (88), the object on the left (right) hand side corresponds to the t–J model
(AIM).

4.1. Equations of motion for the Anderson model

In DMFT [8,9], the local Green’s function of the infinite-dimensional finite-U Hubbard model is
mapped onto the impurity Green’s function of the finite-U AIM, with a self-consistently determined
set of parameters. Using the ECFL equations of motion for both models, we show that the same
mapping can be made between the infinite-dimensional t–J model and the infinite-U AIM. Further,
we show that this mapping also extends to the auxiliary Green’s function g, and the caparison factor
µ individually. In this section, we briefly review the ECFL theory of the AIM [22], and we establish the
mapping in the following section.

Consider the AIM in the limit U ⇤ ⇧ which has the following Hamiltonian:

H =
⇤

 

⌃dX  +
⇤

k 

⌅⌃knk +
⇤

k 

(Vk X 0 ck + V ⇥
k cÑk X0 ), (63)

where we have set the Fermi energy of the conduction electrons to be zero. The impurity Green’s
function is given by the following expression:

G i f [⌦i, ⌦f ] = �⌃⌃ X0 i(⌦i) X f 0(⌦f )⌥⌥. (64)

The ECFL solution of the Anderson model is presented in Ref. [22]. The impurity Green’s function is
factored into the auxiliary Green’s function and the caparison factor:

G[⌦i, ⌦f ] = g[⌦i, ⌦j] · µ[⌦j, ⌦f ]. (65)

The equations of motion for g and µ can be written as

(�⌦i + ⌃d + V(⌦i))g[⌦i, ⌦f ] = �⇧(⌦i � ⌦f ) � (1 � ⌥⌅ [⌦i]) · �[⌦i, ⌦j] · g[⌦j, ⌦f ]
� ⌥ � ⇥�[⌦i, ⌦j] · g[⌦j, ⌦x] · ⇥⇥[⌦x, ⌦y; ⌦i] · g[⌦y, ⌦f ], (66)

µ[⌦i, ⌦f ] = ⇧(⌦i � ⌦f )(1 � ⌥⌅ [⌦i]) + ⌥ � ⇥ · �[⌦i, ⌦j] · g[⌦j, ⌦x] · U⇥[⌦x, ⌦f ; ⌦i], (67)

HD=�
tJ = �

X

ij

tijĈ
†
i�Ĉ� � µ

X

i

Ni�

tij ⇠
1p
D

tJ --> AIM map



Simplest approach is to expand both the self energies
at small (k, ω) assuming a Fermi liquid structure. 

(DMFT-ECFL comparison paper generalized for k dependence. The FL nature is
justified by the λ- expansion of these objects- explained later.)
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U = ⇧ Hubbard model found from the dynamical mean field theory (DMFT) [9]. The presentation
below generalizes that to include a momentum dependence that is absent in high dimensions, and is
supplemented by a discussion of the behavior of the various coefficients as the density of electrons n
approaches unity, or equivalently the hole density � ⌅ 0.

The Dyson self energy can be inferred from a simple inversion, and has a strong set of corrections to
the Fermi liquid theory that we delineate here.We assume here a Fermi liquid type state that survives
the limit of small hold density � ⌅ 0. In reality at very small � several other broken symmetry states
would compete and presumably win over the liquid state, so that this Fermi liquid state would be
metastable. It characteristics are of interest and hence we proceed to describe these.

We study Eq. (21) by analytically continuing i� ⌅ � + i0+ and write

g(�1)
0 (⌥k, i�) = � + µ �

�
1 � n

2

⇥
�k. (22)

Let us define k̂ as the normal deviation from the Fermi surface i.e. k̂ = (⌥k � ⌥kF ).⌥kF/|⌥kF |, and the
frequently occurring Fermi liquid function

R = ↵{�2 + (↵kBT )2}. (23)
We carry out a low frequency expansion as follows:

1 � n
2

+ ⌅ (⌥k,�) = ⌃0 + c⌅ (� + ⌦⌅ k̂ vf ) + iR/⌥⌅ + O(�3), (24)

where ⌃0 = 1� n
2 +⌅0 is the constant term at the Fermi surface, and a similar expansion for⇤(⌥k,�)

so that

� + µ �
�
1 � n

2

⇥
�k � ⇤(k,�) = (1 + c⇤)

�
� � ⌦⇤ k̂ vf + iR/⇧⇤ + O(�3)

⇥
, (25)

where vf = (�k�k)kF is the bare Fermi velocity. The expansion coefficients above are in principle
functions of the location of ⌥kF on the Fermi surface, and have suitable dimensions to ensure that ⌅ is
dimensionless and ⇤ is an energy. The dimensionless velocity renormalization constants ⌦⇤ and ⌦⌅
capture the momentum dependence normal to the Fermi surface, arising from the two respective self
energies. The Greens function near the Fermi surface can now be written as

G(⌥k,�) ⇤ z0
⌃0

⇤
⌃0 + c⌅ (� + ⌦⌅ k̂ vf ) + iR/⌥⌅

� � ⌦⇤ k̂ vf + iR/⇧⇤

⌅

(26)

where z0 = ⌃0/(1 + c⇤) is the net quasiparticle renormalization constant. The spectral function can
be computed from A(⌥k,�) = � 1

↵
⌃m G(⌥k,� + i0+) in the ECFL form of a Fermi liquid function times

a caparison function µ(k,�) as follows:

A(⌥k,�) = z0
↵

�0

(� � ⌦⇤ k̂ vf )2 + � 2
0

⇥ µ(k,�), (27)

where the (Fermi liquid) width function

�0(k̂,�) =  + ↵(�2 + (↵kBT )2)

⇧⇤

, (28)

with an extra phenomenological parameter  required to describe elastic scattering [14] in impure
systems. The caparison function is

µ(k̂,�) = 1 � �

⇥0
+ ⌦0 k̂ vf

⇥0
, (29)

where we introduced an important (emergent) low energy scale combining the other parameters:

⇥0 = ⌃0
⌥⌅

⇧⇤ � c⌅ ⌥⌅
(30)
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⇥
, (25)

where vf = (�k�k)kF is the bare Fermi velocity. The expansion coefficients above are in principle
functions of the location of ⌥kF on the Fermi surface, and have suitable dimensions to ensure that ⌅ is
dimensionless and ⇤ is an energy. The dimensionless velocity renormalization constants ⌦⇤ and ⌦⌅
capture the momentum dependence normal to the Fermi surface, arising from the two respective self
energies. The Greens function near the Fermi surface can now be written as

G(⌥k,�) ⇤ z0
⌃0

⇤
⌃0 + c⌅ (� + ⌦⌅ k̂ vf ) + iR/⌥⌅

� � ⌦⇤ k̂ vf + iR/⇧⇤

⌅

(26)

where z0 = ⌃0/(1 + c⇤) is the net quasiparticle renormalization constant. The spectral function can
be computed from A(⌥k,�) = � 1

↵
⌃m G(⌥k,� + i0+) in the ECFL form of a Fermi liquid function times

a caparison function µ(k,�) as follows:

A(⌥k,�) = z0
↵

�0

(� � ⌦⇤ k̂ vf )2 + � 2
0

⇥ µ(k,�), (27)

where the (Fermi liquid) width function

�0(k̂,�) =  + ↵(�2 + (↵kBT )2)

⇧⇤

, (28)

with an extra phenomenological parameter  required to describe elastic scattering [14] in impure
systems. The caparison function is

µ(k̂,�) = 1 � �

⇥0
+ ⌦0 k̂ vf

⇥0
, (29)

where we introduced an important (emergent) low energy scale combining the other parameters:

⇥0 = ⌃0
⌥⌅

⇧⇤ � c⌅ ⌥⌅
(30)

�0 = 1� n

2
+ �0 ! (1� n)
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and the dimensionless momentum dependence coefficient
⌦0 = (⌦⇤ ⌃⇤ c⇤ + ⌦⇥⌅⇥)/(⌅⇥ � c⇤ ⌃⇤ ). (31)

A cutoff  
⇥
µ(k̂,↵)

⇤
is implicit in Eq. (29), so that the function µ(k̂,↵) is assumed to be zero at

large positive frequencies as discussed in Ref. [4]. The five final parameters defining the spectral
function (27) are z0, ⌦0, ⌦⇥,⌅⇥,�0. For fitting experimental data, it may be best to think of them
as adjustable parameters that determine the line shapes, their asymmetries and also features in
the spectral dispersions. In addition the � parameter is needed to describe impurities that are not
contained in the microscopic theory. In the early fit [14] the total number of free parameters is even
smaller—just two instead of five. The corrections to the Landau Fermi liquid theory are encapsulated
in the caparison factor, which contains a correction term that is odd in frequency and seems to be
ultimately responsible for the asymmetric appearance of the line shapes [14,8].

For reference we note that in the limit of high dimensions [9], the coefficient of the momentum
dependent term ⌦0 vanishes in Eq. (27), while the earlier fits to experiments in [14], it is non zero, and
in modified fits [15] its magnitude is varied to get a good description of the constant energy cuts of
the data.

It is useful to consider the approach to the Mott insulating limit, where the parameters behave
in a specific fashion to satisfy the expected behavior. We consider the limit of density ⌥ ⌃ 0, and
a frequency scale 0 ⇤ |↵| < ↵c ⌅ ⌥t , where the above expression (27) may be expected to work.
For reference, it is useful to note that in this limiting case, the widely used Gutzwiller–Brinkman–Rice
theory [2,27] gives the quasiparticle propagator as:

GGBR(�k,↵) ⌅ z

↵ � z k̂ vf
, (32)

where z vanishes linearly with ⌥ as z = 2⌥/(1 + ⌥). This leads to a delta function spectral weight
AGBR = z ⌥(↵ � z k̂ vf ). In contrast Eq. (27) provides the spectral function at non zero T and ↵.

As n ⌃ 1 in Eq. (24) we expect that the constant ⇤0 ⌃ � n
2 , in order to reach the Mott

insulating limit continuously. This implies that ⇧0 ⌥ ⌥ in this regime, and this drives the various
other coefficients as well. We summarize the expected behavior of the above five coefficients

z0 ⌃ z0 ⇥ ⌥; �0 ⌃ �0 ⇥ ⌥; ⌅⇥ ⌃ ⌅⇥ ⇥ ⌥;
⌦0 ⌃ ⌦0 ⇥ ⌥; ⌦⇥ ⌃ ⌦⇥ ⇥ ⌥; (33)

by using an overline for denoting a non vanishing limit of the stated variable [9,28]. The scaling of
the velocity constants ⌦ is guided by the results in high dimensions, and ensure that the dispersing
quasiparticles have a vanishing bandwidth aswe approach the insulator—as emphasized by Brinkman
and Rice [27]. From this we find that the ECFL spectral function (27) satisfies a simple homogeneity
(i.e. scaling) relation valid in the low energy regime for a scale parameter s:

A(k̂, s↵|s T , s ⌥) = A(k̂,↵|T , ⌥), (34)
where the dependence on the temperature and hole density are made explicit. The momentum
variable does not scale with s due to the assumed behavior of the ⌦’s. The scaling holds for � = 0,
and generalizes to a non zero values if we scale � ⌃ s �. This scaling relation describes a Fermi liquid
including significant corrections to Fermi liquid theory through the caparison function. It rests upon
the specific behavior for the coefficients as the density varies near the insulating state, unlike other
generalized scaling relations that have been proposed in literature Ref. [29] for non Fermi liquid states.
If set s ⇥ ⌥ = ⌥0 with say ⌥0 . .5, then the ratio ⌥0

⌥
⇧ 1 and we infer

A(k̂,↵|T , ⌥) ⌅ A
⌅
k̂, ↵

⌥0

⌥

���� T
⌥0

⌥
, ⌥0

⇧
, (35)

relating the low hole density system to an overdoped (i.e. high hole density) system at a high effective
temperature. This relation provides basic intuition for why the t–J model, near the insulating limit
behaves almost like a classical liquid, unless one fine tunes parameters very close to the T = 0,↵ = 0
limit.
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ultimately responsible for the asymmetric appearance of the line shapes [14,8].
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dependent term ⌦0 vanishes in Eq. (27), while the earlier fits to experiments in [14], it is non zero, and
in modified fits [15] its magnitude is varied to get a good description of the constant energy cuts of
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a frequency scale 0 ⇤ |↵| < ↵c ⌅ ⌥t , where the above expression (27) may be expected to work.
For reference, it is useful to note that in this limiting case, the widely used Gutzwiller–Brinkman–Rice
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where z vanishes linearly with ⌥ as z = 2⌥/(1 + ⌥). This leads to a delta function spectral weight
AGBR = z ⌥(↵ � z k̂ vf ). In contrast Eq. (27) provides the spectral function at non zero T and ↵.

As n ⌃ 1 in Eq. (24) we expect that the constant ⇤0 ⌃ � n
2 , in order to reach the Mott

insulating limit continuously. This implies that ⇧0 ⌥ ⌥ in this regime, and this drives the various
other coefficients as well. We summarize the expected behavior of the above five coefficients
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by using an overline for denoting a non vanishing limit of the stated variable [9,28]. The scaling of
the velocity constants ⌦ is guided by the results in high dimensions, and ensure that the dispersing
quasiparticles have a vanishing bandwidth aswe approach the insulator—as emphasized by Brinkman
and Rice [27]. From this we find that the ECFL spectral function (27) satisfies a simple homogeneity
(i.e. scaling) relation valid in the low energy regime for a scale parameter s:

A(k̂, s↵|s T , s ⌥) = A(k̂,↵|T , ⌥), (34)
where the dependence on the temperature and hole density are made explicit. The momentum
variable does not scale with s due to the assumed behavior of the ⌦’s. The scaling holds for � = 0,
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relating the low hole density system to an overdoped (i.e. high hole density) system at a high effective
temperature. This relation provides basic intuition for why the t–J model, near the insulating limit
behaves almost like a classical liquid, unless one fine tunes parameters very close to the T = 0,↵ = 0
limit.
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U = ⇧ Hubbard model found from the dynamical mean field theory (DMFT) [9]. The presentation
below generalizes that to include a momentum dependence that is absent in high dimensions, and is
supplemented by a discussion of the behavior of the various coefficients as the density of electrons n
approaches unity, or equivalently the hole density � ⌅ 0.

The Dyson self energy can be inferred from a simple inversion, and has a strong set of corrections to
the Fermi liquid theory that we delineate here.We assume here a Fermi liquid type state that survives
the limit of small hold density � ⌅ 0. In reality at very small � several other broken symmetry states
would compete and presumably win over the liquid state, so that this Fermi liquid state would be
metastable. It characteristics are of interest and hence we proceed to describe these.

We study Eq. (21) by analytically continuing i� ⌅ � + i0+ and write

g(�1)
0 (⌥k, i�) = � + µ �

�
1 � n

2

⇥
�k. (22)

Let us define k̂ as the normal deviation from the Fermi surface i.e. k̂ = (⌥k � ⌥kF ).⌥kF/|⌥kF |, and the
frequently occurring Fermi liquid function

R = ↵{�2 + (↵kBT )2}. (23)
We carry out a low frequency expansion as follows:

1 � n
2

+ ⌅ (⌥k,�) = ⌃0 + c⌅ (� + ⌦⌅ k̂ vf ) + iR/⌥⌅ + O(�3), (24)

where ⌃0 = 1� n
2 +⌅0 is the constant term at the Fermi surface, and a similar expansion for⇤(⌥k,�)

so that

� + µ �
�
1 � n

2

⇥
�k � ⇤(k,�) = (1 + c⇤)

�
� � ⌦⇤ k̂ vf + iR/⇧⇤ + O(�3)

⇥
, (25)

where vf = (�k�k)kF is the bare Fermi velocity. The expansion coefficients above are in principle
functions of the location of ⌥kF on the Fermi surface, and have suitable dimensions to ensure that ⌅ is
dimensionless and ⇤ is an energy. The dimensionless velocity renormalization constants ⌦⇤ and ⌦⌅
capture the momentum dependence normal to the Fermi surface, arising from the two respective self
energies. The Greens function near the Fermi surface can now be written as

G(⌥k,�) ⇤ z0
⌃0

⇤
⌃0 + c⌅ (� + ⌦⌅ k̂ vf ) + iR/⌥⌅

� � ⌦⇤ k̂ vf + iR/⇧⇤

⌅

(26)

where z0 = ⌃0/(1 + c⇤) is the net quasiparticle renormalization constant. The spectral function can
be computed from A(⌥k,�) = � 1

↵
⌃m G(⌥k,� + i0+) in the ECFL form of a Fermi liquid function times

a caparison function µ(k,�) as follows:

A(⌥k,�) = z0
↵

�0

(� � ⌦⇤ k̂ vf )2 + � 2
0

⇥ µ(k,�), (27)

where the (Fermi liquid) width function

�0(k̂,�) =  + ↵(�2 + (↵kBT )2)

⇧⇤

, (28)

with an extra phenomenological parameter  required to describe elastic scattering [14] in impure
systems. The caparison function is

µ(k̂,�) = 1 � �

⇥0
+ ⌦0 k̂ vf

⇥0
, (29)

where we introduced an important (emergent) low energy scale combining the other parameters:

⇥0 = ⌃0
⌥⌅

⇧⇤ � c⌅ ⌥⌅
(30)
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the Fermi liquid theory that we delineate here.We assume here a Fermi liquid type state that survives
the limit of small hold density � ⌅ 0. In reality at very small � several other broken symmetry states
would compete and presumably win over the liquid state, so that this Fermi liquid state would be
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Let us define k̂ as the normal deviation from the Fermi surface i.e. k̂ = (⌥k � ⌥kF ).⌥kF/|⌥kF |, and the
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where vf = (�k�k)kF is the bare Fermi velocity. The expansion coefficients above are in principle
functions of the location of ⌥kF on the Fermi surface, and have suitable dimensions to ensure that ⌅ is
dimensionless and ⇤ is an energy. The dimensionless velocity renormalization constants ⌦⇤ and ⌦⌅
capture the momentum dependence normal to the Fermi surface, arising from the two respective self
energies. The Greens function near the Fermi surface can now be written as
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⌅

(26)

where z0 = ⌃0/(1 + c⇤) is the net quasiparticle renormalization constant. The spectral function can
be computed from A(⌥k,�) = � 1

↵
⌃m G(⌥k,� + i0+) in the ECFL form of a Fermi liquid function times

a caparison function µ(k,�) as follows:

A(⌥k,�) = z0
↵

�0

(� � ⌦⇤ k̂ vf )2 + � 2
0

⇥ µ(k,�), (27)

where the (Fermi liquid) width function

�0(k̂,�) =  + ↵(�2 + (↵kBT )2)

⇧⇤

, (28)

with an extra phenomenological parameter  required to describe elastic scattering [14] in impure
systems. The caparison function is

µ(k̂,�) = 1 � �

⇥0
+ ⌦0 k̂ vf

⇥0
, (29)

where we introduced an important (emergent) low energy scale combining the other parameters:

⇥0 = ⌃0
⌥⌅

⇧⇤ � c⌅ ⌥⌅
(30)
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U = ⇧ Hubbard model found from the dynamical mean field theory (DMFT) [9]. The presentation
below generalizes that to include a momentum dependence that is absent in high dimensions, and is
supplemented by a discussion of the behavior of the various coefficients as the density of electrons n
approaches unity, or equivalently the hole density � ⌅ 0.

The Dyson self energy can be inferred from a simple inversion, and has a strong set of corrections to
the Fermi liquid theory that we delineate here.We assume here a Fermi liquid type state that survives
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would compete and presumably win over the liquid state, so that this Fermi liquid state would be
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where z0 = ⌃0/(1 + c⇤) is the net quasiparticle renormalization constant. The spectral function can
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systems. The caparison function is

µ(k̂,�) = 1 � �

⇥0
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where we introduced an important (emergent) low energy scale combining the other parameters:
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⇧⇤ � c⌅ ⌥⌅
(30)
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below generalizes that to include a momentum dependence that is absent in high dimensions, and is
supplemented by a discussion of the behavior of the various coefficients as the density of electrons n
approaches unity, or equivalently the hole density � ⌅ 0.
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the Fermi liquid theory that we delineate here.We assume here a Fermi liquid type state that survives
the limit of small hold density � ⌅ 0. In reality at very small � several other broken symmetry states
would compete and presumably win over the liquid state, so that this Fermi liquid state would be
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where vf = (�k�k)kF is the bare Fermi velocity. The expansion coefficients above are in principle
functions of the location of ⌥kF on the Fermi surface, and have suitable dimensions to ensure that ⌅ is
dimensionless and ⇤ is an energy. The dimensionless velocity renormalization constants ⌦⇤ and ⌦⌅
capture the momentum dependence normal to the Fermi surface, arising from the two respective self
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where z0 = ⌃0/(1 + c⇤) is the net quasiparticle renormalization constant. The spectral function can
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with an extra phenomenological parameter  required to describe elastic scattering [14] in impure
systems. The caparison function is
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where we introduced an important (emergent) low energy scale combining the other parameters:
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U = ⇧ Hubbard model found from the dynamical mean field theory (DMFT) [9]. The presentation
below generalizes that to include a momentum dependence that is absent in high dimensions, and is
supplemented by a discussion of the behavior of the various coefficients as the density of electrons n
approaches unity, or equivalently the hole density � ⌅ 0.

The Dyson self energy can be inferred from a simple inversion, and has a strong set of corrections to
the Fermi liquid theory that we delineate here.We assume here a Fermi liquid type state that survives
the limit of small hold density � ⌅ 0. In reality at very small � several other broken symmetry states
would compete and presumably win over the liquid state, so that this Fermi liquid state would be
metastable. It characteristics are of interest and hence we proceed to describe these.

We study Eq. (21) by analytically continuing i� ⌅ � + i0+ and write

g(�1)
0 (⌥k, i�) = � + µ �

�
1 � n

2

⇥
�k. (22)

Let us define k̂ as the normal deviation from the Fermi surface i.e. k̂ = (⌥k � ⌥kF ).⌥kF/|⌥kF |, and the
frequently occurring Fermi liquid function

R = ↵{�2 + (↵kBT )2}. (23)
We carry out a low frequency expansion as follows:

1 � n
2

+ ⌅ (⌥k,�) = ⌃0 + c⌅ (� + ⌦⌅ k̂ vf ) + iR/⌥⌅ + O(�3), (24)

where ⌃0 = 1� n
2 +⌅0 is the constant term at the Fermi surface, and a similar expansion for⇤(⌥k,�)

so that

� + µ �
�
1 � n

2

⇥
�k � ⇤(k,�) = (1 + c⇤)

�
� � ⌦⇤ k̂ vf + iR/⇧⇤ + O(�3)

⇥
, (25)

where vf = (�k�k)kF is the bare Fermi velocity. The expansion coefficients above are in principle
functions of the location of ⌥kF on the Fermi surface, and have suitable dimensions to ensure that ⌅ is
dimensionless and ⇤ is an energy. The dimensionless velocity renormalization constants ⌦⇤ and ⌦⌅
capture the momentum dependence normal to the Fermi surface, arising from the two respective self
energies. The Greens function near the Fermi surface can now be written as

G(⌥k,�) ⇤ z0
⌃0

⇤
⌃0 + c⌅ (� + ⌦⌅ k̂ vf ) + iR/⌥⌅

� � ⌦⇤ k̂ vf + iR/⇧⇤

⌅

(26)

where z0 = ⌃0/(1 + c⇤) is the net quasiparticle renormalization constant. The spectral function can
be computed from A(⌥k,�) = � 1

↵
⌃m G(⌥k,� + i0+) in the ECFL form of a Fermi liquid function times

a caparison function µ(k,�) as follows:

A(⌥k,�) = z0
↵

�0

(� � ⌦⇤ k̂ vf )2 + � 2
0

⇥ µ(k,�), (27)

where the (Fermi liquid) width function

�0(k̂,�) =  + ↵(�2 + (↵kBT )2)

⇧⇤

, (28)

with an extra phenomenological parameter  required to describe elastic scattering [14] in impure
systems. The caparison function is

µ(k̂,�) = 1 � �

⇥0
+ ⌦0 k̂ vf

⇥0
, (29)

where we introduced an important (emergent) low energy scale combining the other parameters:

⇥0 = ⌃0
⌥⌅

⇧⇤ � c⌅ ⌥⌅
(30)

Long wavelength expansion



Next we review the exact EOM for the G’s obtained using Schwinger’s method of
functional derivatives and functional integration.

It is pretty rough going, if you see it for the first time
However!! 

 I recently discovered*  an 
alternate universe, with other 
meanings of  functional 
integration!
 
*Singapore (NTU  October 2013)



 Turning off  sources,  γ(i) ->  n/2   
(n= density)  

The Schwinger method 
Calculation in brief:  liquid state  

(sans broken symmetry)
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in the following. The second theorem is subtle as it leaves the
chemical potential µ unchanged (see Ref. 15). It provides a
measure of the equal-handed treatment of t and J . We will
find these almost trivial theorems of great use in devising and
validating various approximation schemes later.

In further work we need to add a source term via the
operator A:

A =
∫ β

0
A(τ )dτ =

∑

j,σ1,σ2

∫ β

0
dτ Vσ1σ2

j (τ )Xσ1σ2
j (τ )

+
∑

ij,σ1σ2

∫ β

0
dτ Vσ1σ2

ij (τ )Xσ10
i (τ )X0σ2

j (τ ), (15)

with the usual imaginary-time Heisenberg picture τ depen-
dence of the operators Q(τ ) = eτH Qe−τH , and the bosonic
sources Vσ1σ2

j (τ ) at every site and also Vσ1σ2
ij (τ ) for every

pair of sites, as arbitrary functions of time. We will denote
these sources in a compact notation where the site index also
carries the time argument as Vσ1σ2

i ≡ Vσ1σ2
i (τi) and Vσ1σ2

ij ≡
Vσ1σ2

ij (τi)δ(τi − τj ). For any variable we define a modified
expectation

⟨⟨Q(τ1,τ2,...)⟩⟩ = Tr[e−βH Tτ e
−A Q(τ1,τ2,..)]

Tr[e−βH Tτ (e−A)]
, (16)

with a compact notation that includes the (imaginary) time
ordering symbol Tτ and the exponential factor automatically.
With the abbreviation i ≡ (Ri,τi) for spatial R⃗i and imaginary-
time (τ ) coordinates, the physical electron is described by a
Green’s function:

Gσiσf
[i,f ] = −

〈〈
X

0σi

i X
σf 0
f

〉〉
. (17)

From this, the variation can be found from functional differ-
entiation as

δ

δVσ1σ2
j (τ1)

⟨⟨Q(τ2)⟩⟩

= ⟨⟨Q(τ2)⟩⟩
〈〈
Xσ1σ2

j (τ1)
〉〉

−
〈〈
Xσ1σ2

j (τ1)Q(τ2)
〉〉
. (18)

We note the fundamental anticommutator between the destruc-
tion and creation operators:

{
X0σ1

i ,Xσ20
j

}
= δij

(
δσ1σ2 − (σ1σ2)Xσ̄1σ̄2

i

)
. (19)

A. The Heisenberg equation of motion

Let us now study the time evolution of the destruction
operator through its important commutator:
[
X

0σi

i ,H
]

= −
∑

j

tij
[
δσiσj

− (σiσj )Xσ̄i σ̄j

i

]
X

0σj

j +1
4
J0X

0σi

i
︸ ︷︷ ︸

−µX
0σi

i − 1
2

∑

j ̸=i

Jij (σiσj )Xσ̄i σ̄j

j X
0σj

i . (20)

Here J0 is the zero wave vector (i.e., Jii the on-site) exchange
constant. The term in underbraces here and in the next equation
ensures that the commutator reproduces the term with Jij →
Jij + uJ δij correctly. We note that under the transformation
Eq. (14), the last term in Eq. (20) adds nothing, in view of
the ordering of the operators as written, while the term with
underbraces provides the correct transformation factor. Let us
call this commutator
[
X

0σi

i ,H
]

= −
∑

j

tijX
0σi

j +1
4
J0X

0σi

i
︸ ︷︷ ︸

−µX
0σi

i + Aiσi
, (21)

Ai,σi
=

∑

jσj

tij (σiσj )Xσ̄i σ̄j

i X
0σj

j − 1
2

∑

j ̸=i

Jij (σiσj )Xσ̄i σ̄j

j X
0σj

i .

(22)

We next express the EOM for the Green’s function in terms
of A.

B. Equation of motion for G
Let us compute the time derivative of G. For this we need

the derivative

∂τi
Tτ

(
e−AX

0σi

i (τi)
)

= −Tτ

(
e−A[

X
0σi

i (τi),H
])

+ Tτ

(
e−A[

A(τi),X
0σi

i (τi)
])

,
[
A(τi),X

0σi

i (τi)
]

= Vσ1σ2
i (τi)

[
Xσ1σ2

i (τi),X
0σi

i (τi)
]
−

∑

j

Vσ1σ2
ij (τi)

{
Xσ10

i (τi),X
0σi

i (τi)
}
X0σ2

j (τi)

= −Vσiσ2
i X0σ2

i −
∑

j

Vσiσ2
ij X + j 0σ2 +

∑

j

Vσ1σ2
ij (σ1σi)X

σ̄i σ̄1
i X0σ2

j . (23)

This follows from the definition of the time ordering and Eq. (15) for A. Using this we find

∂τi
Gσiσf

[i,f ] = −δ(τi − τf )δi,f

〈〈(
δσiσf

− σiσf X
σ̄i σ̄f

i

)〉〉
+

〈〈[
X

0σi

i (τi),H
]
X

σf 0
f (τf )

〉〉

−Vσiσ2
i (τi)Gσ2σf

[i,f ] −
∑

j

Vσiσ2
ij Gσ2σf

[j,f ] −
∑

j

Vσ1σ2
ij (σ1σi)

〈〈
X

σ̄i σ̄1
i (τi)X

0σ2
j (τj )Xσf 0

f (τf )
〉〉
. (24)

To simplify notation, in such expressions for the Green’s functions [or Eq. (26) below], the sum over an index implies
a sum over the corresponding site and also an integration over the corresponding time; e.g.,

∑
j V

σ1σ2
ij f (. . . ,τj , . . .) →

∑
Rj

∫ β

0 dτjVσ1σ2
ij (τj )δ(τi − τj )f (. . . ,τj , . . .). A further bold letter summation convention is used after Eq. (41). However,

note that in expressions for operators such as Eq. (21) or Eq. (22), the sum only refers to the site index summation. We further
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X0�
i = C̃� = (1� n��)C�

X�0
i = C̃†

� = (1� n��)C†
�

Next we use the chain rule for functional derivatives
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in the following. The second theorem is subtle as it leaves the
chemical potential µ unchanged (see Ref. 15). It provides a
measure of the equal-handed treatment of t and J . We will
find these almost trivial theorems of great use in devising and
validating various approximation schemes later.

In further work we need to add a source term via the
operator A:

A =
∫ β

0
A(τ )dτ =

∑

j,σ1,σ2

∫ β

0
dτ Vσ1σ2

j (τ )Xσ1σ2
j (τ )

+
∑

ij,σ1σ2

∫ β

0
dτ Vσ1σ2

ij (τ )Xσ10
i (τ )X0σ2

j (τ ), (15)

with the usual imaginary-time Heisenberg picture τ depen-
dence of the operators Q(τ ) = eτH Qe−τH , and the bosonic
sources Vσ1σ2

j (τ ) at every site and also Vσ1σ2
ij (τ ) for every

pair of sites, as arbitrary functions of time. We will denote
these sources in a compact notation where the site index also
carries the time argument as Vσ1σ2

i ≡ Vσ1σ2
i (τi) and Vσ1σ2

ij ≡
Vσ1σ2

ij (τi)δ(τi − τj ). For any variable we define a modified
expectation

⟨⟨Q(τ1,τ2,...)⟩⟩ = Tr[e−βH Tτ e
−A Q(τ1,τ2,..)]

Tr[e−βH Tτ (e−A)]
, (16)

with a compact notation that includes the (imaginary) time
ordering symbol Tτ and the exponential factor automatically.
With the abbreviation i ≡ (Ri,τi) for spatial R⃗i and imaginary-
time (τ ) coordinates, the physical electron is described by a
Green’s function:

Gσiσf
[i,f ] = −

〈〈
X

0σi

i X
σf 0
f

〉〉
. (17)

From this, the variation can be found from functional differ-
entiation as

δ

δVσ1σ2
j (τ1)

⟨⟨Q(τ2)⟩⟩

= ⟨⟨Q(τ2)⟩⟩
〈〈
Xσ1σ2

j (τ1)
〉〉

−
〈〈
Xσ1σ2

j (τ1)Q(τ2)
〉〉
. (18)

We note the fundamental anticommutator between the destruc-
tion and creation operators:

{
X0σ1

i ,Xσ20
j

}
= δij

(
δσ1σ2 − (σ1σ2)Xσ̄1σ̄2

i

)
. (19)

A. The Heisenberg equation of motion

Let us now study the time evolution of the destruction
operator through its important commutator:
[
X

0σi

i ,H
]

= −
∑

j

tij
[
δσiσj

− (σiσj )Xσ̄i σ̄j

i

]
X

0σj

j +1
4
J0X

0σi

i
︸ ︷︷ ︸

−µX
0σi

i − 1
2

∑

j ̸=i

Jij (σiσj )Xσ̄i σ̄j

j X
0σj

i . (20)

Here J0 is the zero wave vector (i.e., Jii the on-site) exchange
constant. The term in underbraces here and in the next equation
ensures that the commutator reproduces the term with Jij →
Jij + uJ δij correctly. We note that under the transformation
Eq. (14), the last term in Eq. (20) adds nothing, in view of
the ordering of the operators as written, while the term with
underbraces provides the correct transformation factor. Let us
call this commutator
[
X

0σi

i ,H
]

= −
∑

j

tijX
0σi

j +1
4
J0X

0σi

i
︸ ︷︷ ︸

−µX
0σi

i + Aiσi
, (21)

Ai,σi
=

∑

jσj

tij (σiσj )Xσ̄i σ̄j

i X
0σj

j − 1
2

∑

j ̸=i

Jij (σiσj )Xσ̄i σ̄j

j X
0σj

i .

(22)

We next express the EOM for the Green’s function in terms
of A.

B. Equation of motion for G
Let us compute the time derivative of G. For this we need

the derivative

∂τi
Tτ

(
e−AX

0σi

i (τi)
)

= −Tτ

(
e−A[

X
0σi

i (τi),H
])

+ Tτ

(
e−A[

A(τi),X
0σi

i (τi)
])

,
[
A(τi),X

0σi

i (τi)
]

= Vσ1σ2
i (τi)

[
Xσ1σ2

i (τi),X
0σi

i (τi)
]
−

∑

j

Vσ1σ2
ij (τi)

{
Xσ10

i (τi),X
0σi

i (τi)
}
X0σ2

j (τi)

= −Vσiσ2
i X0σ2

i −
∑

j

Vσiσ2
ij X + j 0σ2 +

∑

j

Vσ1σ2
ij (σ1σi)X

σ̄i σ̄1
i X0σ2

j . (23)

This follows from the definition of the time ordering and Eq. (15) for A. Using this we find

∂τi
Gσiσf

[i,f ] = −δ(τi − τf )δi,f

〈〈(
δσiσf

− σiσf X
σ̄i σ̄f

i

)〉〉
+

〈〈[
X

0σi

i (τi),H
]
X

σf 0
f (τf )

〉〉

−Vσiσ2
i (τi)Gσ2σf

[i,f ] −
∑

j

Vσiσ2
ij Gσ2σf

[j,f ] −
∑

j

Vσ1σ2
ij (σ1σi)

〈〈
X

σ̄i σ̄1
i (τi)X

0σ2
j (τj )Xσf 0

f (τf )
〉〉
. (24)

To simplify notation, in such expressions for the Green’s functions [or Eq. (26) below], the sum over an index implies
a sum over the corresponding site and also an integration over the corresponding time; e.g.,

∑
j V

σ1σ2
ij f (. . . ,τj , . . .) →

∑
Rj

∫ β

0 dτjVσ1σ2
ij (τj )δ(τi − τj )f (. . . ,τj , . . .). A further bold letter summation convention is used after Eq. (41). However,

note that in expressions for operators such as Eq. (21) or Eq. (22), the sum only refers to the site index summation. We further
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in the following. The second theorem is subtle as it leaves the
chemical potential µ unchanged (see Ref. 15). It provides a
measure of the equal-handed treatment of t and J . We will
find these almost trivial theorems of great use in devising and
validating various approximation schemes later.

In further work we need to add a source term via the
operator A:

A =
∫ β

0
A(τ )dτ =

∑

j,σ1,σ2

∫ β

0
dτ Vσ1σ2

j (τ )Xσ1σ2
j (τ )

+
∑

ij,σ1σ2

∫ β

0
dτ Vσ1σ2

ij (τ )Xσ10
i (τ )X0σ2

j (τ ), (15)

with the usual imaginary-time Heisenberg picture τ depen-
dence of the operators Q(τ ) = eτH Qe−τH , and the bosonic
sources Vσ1σ2

j (τ ) at every site and also Vσ1σ2
ij (τ ) for every

pair of sites, as arbitrary functions of time. We will denote
these sources in a compact notation where the site index also
carries the time argument as Vσ1σ2

i ≡ Vσ1σ2
i (τi) and Vσ1σ2

ij ≡
Vσ1σ2

ij (τi)δ(τi − τj ). For any variable we define a modified
expectation

⟨⟨Q(τ1,τ2,...)⟩⟩ = Tr[e−βH Tτ e
−A Q(τ1,τ2,..)]

Tr[e−βH Tτ (e−A)]
, (16)

with a compact notation that includes the (imaginary) time
ordering symbol Tτ and the exponential factor automatically.
With the abbreviation i ≡ (Ri,τi) for spatial R⃗i and imaginary-
time (τ ) coordinates, the physical electron is described by a
Green’s function:

Gσiσf
[i,f ] = −

〈〈
X

0σi

i X
σf 0
f

〉〉
. (17)

From this, the variation can be found from functional differ-
entiation as

δ

δVσ1σ2
j (τ1)

⟨⟨Q(τ2)⟩⟩

= ⟨⟨Q(τ2)⟩⟩
〈〈
Xσ1σ2

j (τ1)
〉〉

−
〈〈
Xσ1σ2

j (τ1)Q(τ2)
〉〉
. (18)

We note the fundamental anticommutator between the destruc-
tion and creation operators:

{
X0σ1

i ,Xσ20
j

}
= δij

(
δσ1σ2 − (σ1σ2)Xσ̄1σ̄2

i

)
. (19)

A. The Heisenberg equation of motion

Let us now study the time evolution of the destruction
operator through its important commutator:
[
X

0σi

i ,H
]

= −
∑

j

tij
[
δσiσj

− (σiσj )Xσ̄i σ̄j

i

]
X

0σj

j +1
4
J0X

0σi

i
︸ ︷︷ ︸

−µX
0σi

i − 1
2

∑

j ̸=i

Jij (σiσj )Xσ̄i σ̄j

j X
0σj

i . (20)

Here J0 is the zero wave vector (i.e., Jii the on-site) exchange
constant. The term in underbraces here and in the next equation
ensures that the commutator reproduces the term with Jij →
Jij + uJ δij correctly. We note that under the transformation
Eq. (14), the last term in Eq. (20) adds nothing, in view of
the ordering of the operators as written, while the term with
underbraces provides the correct transformation factor. Let us
call this commutator
[
X

0σi

i ,H
]

= −
∑

j

tijX
0σi

j +1
4
J0X

0σi

i
︸ ︷︷ ︸

−µX
0σi

i + Aiσi
, (21)

Ai,σi
=

∑

jσj

tij (σiσj )Xσ̄i σ̄j

i X
0σj

j − 1
2

∑

j ̸=i

Jij (σiσj )Xσ̄i σ̄j

j X
0σj

i .

(22)

We next express the EOM for the Green’s function in terms
of A.

B. Equation of motion for G
Let us compute the time derivative of G. For this we need

the derivative

∂τi
Tτ

(
e−AX

0σi

i (τi)
)

= −Tτ

(
e−A[

X
0σi

i (τi),H
])

+ Tτ

(
e−A[

A(τi),X
0σi

i (τi)
])

,
[
A(τi),X

0σi

i (τi)
]

= Vσ1σ2
i (τi)

[
Xσ1σ2

i (τi),X
0σi

i (τi)
]
−

∑

j

Vσ1σ2
ij (τi)

{
Xσ10

i (τi),X
0σi

i (τi)
}
X0σ2

j (τi)

= −Vσiσ2
i X0σ2

i −
∑

j

Vσiσ2
ij X + j 0σ2 +

∑

j

Vσ1σ2
ij (σ1σi)X

σ̄i σ̄1
i X0σ2

j . (23)

This follows from the definition of the time ordering and Eq. (15) for A. Using this we find

∂τi
Gσiσf

[i,f ] = −δ(τi − τf )δi,f

〈〈(
δσiσf

− σiσf X
σ̄i σ̄f

i

)〉〉
+

〈〈[
X

0σi

i (τi),H
]
X

σf 0
f (τf )

〉〉

−Vσiσ2
i (τi)Gσ2σf

[i,f ] −
∑

j

Vσiσ2
ij Gσ2σf

[j,f ] −
∑

j

Vσ1σ2
ij (σ1σi)

〈〈
X

σ̄i σ̄1
i (τi)X

0σ2
j (τj )Xσf 0

f (τf )
〉〉
. (24)

To simplify notation, in such expressions for the Green’s functions [or Eq. (26) below], the sum over an index implies
a sum over the corresponding site and also an integration over the corresponding time; e.g.,

∑
j V

σ1σ2
ij f (. . . ,τj , . . .) →

∑
Rj

∫ β

0 dτjVσ1σ2
ij (τj )δ(τi − τj )f (. . . ,τj , . . .). A further bold letter summation convention is used after Eq. (41). However,

note that in expressions for operators such as Eq. (21) or Eq. (22), the sum only refers to the site index summation. We further
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in the following. The second theorem is subtle as it leaves the
chemical potential µ unchanged (see Ref. 15). It provides a
measure of the equal-handed treatment of t and J . We will
find these almost trivial theorems of great use in devising and
validating various approximation schemes later.

In further work we need to add a source term via the
operator A:

A =
∫ β

0
A(τ )dτ =

∑

j,σ1,σ2

∫ β

0
dτ Vσ1σ2

j (τ )Xσ1σ2
j (τ )

+
∑

ij,σ1σ2

∫ β

0
dτ Vσ1σ2

ij (τ )Xσ10
i (τ )X0σ2

j (τ ), (15)

with the usual imaginary-time Heisenberg picture τ depen-
dence of the operators Q(τ ) = eτH Qe−τH , and the bosonic
sources Vσ1σ2

j (τ ) at every site and also Vσ1σ2
ij (τ ) for every

pair of sites, as arbitrary functions of time. We will denote
these sources in a compact notation where the site index also
carries the time argument as Vσ1σ2

i ≡ Vσ1σ2
i (τi) and Vσ1σ2

ij ≡
Vσ1σ2

ij (τi)δ(τi − τj ). For any variable we define a modified
expectation

⟨⟨Q(τ1,τ2,...)⟩⟩ = Tr[e−βH Tτ e
−A Q(τ1,τ2,..)]

Tr[e−βH Tτ (e−A)]
, (16)

with a compact notation that includes the (imaginary) time
ordering symbol Tτ and the exponential factor automatically.
With the abbreviation i ≡ (Ri,τi) for spatial R⃗i and imaginary-
time (τ ) coordinates, the physical electron is described by a
Green’s function:

Gσiσf
[i,f ] = −

〈〈
X

0σi

i X
σf 0
f

〉〉
. (17)

From this, the variation can be found from functional differ-
entiation as

δ

δVσ1σ2
j (τ1)

⟨⟨Q(τ2)⟩⟩

= ⟨⟨Q(τ2)⟩⟩
〈〈
Xσ1σ2

j (τ1)
〉〉

−
〈〈
Xσ1σ2

j (τ1)Q(τ2)
〉〉
. (18)

We note the fundamental anticommutator between the destruc-
tion and creation operators:

{
X0σ1

i ,Xσ20
j

}
= δij

(
δσ1σ2 − (σ1σ2)Xσ̄1σ̄2

i

)
. (19)

A. The Heisenberg equation of motion

Let us now study the time evolution of the destruction
operator through its important commutator:
[
X

0σi

i ,H
]

= −
∑

j

tij
[
δσiσj

− (σiσj )Xσ̄i σ̄j

i

]
X

0σj

j +1
4
J0X

0σi

i
︸ ︷︷ ︸

−µX
0σi

i − 1
2

∑

j ̸=i

Jij (σiσj )Xσ̄i σ̄j

j X
0σj

i . (20)

Here J0 is the zero wave vector (i.e., Jii the on-site) exchange
constant. The term in underbraces here and in the next equation
ensures that the commutator reproduces the term with Jij →
Jij + uJ δij correctly. We note that under the transformation
Eq. (14), the last term in Eq. (20) adds nothing, in view of
the ordering of the operators as written, while the term with
underbraces provides the correct transformation factor. Let us
call this commutator
[
X

0σi

i ,H
]

= −
∑

j

tijX
0σi

j +1
4
J0X

0σi

i
︸ ︷︷ ︸

−µX
0σi

i + Aiσi
, (21)

Ai,σi
=

∑

jσj

tij (σiσj )Xσ̄i σ̄j

i X
0σj

j − 1
2

∑

j ̸=i

Jij (σiσj )Xσ̄i σ̄j

j X
0σj

i .

(22)

We next express the EOM for the Green’s function in terms
of A.

B. Equation of motion for G
Let us compute the time derivative of G. For this we need

the derivative

∂τi
Tτ

(
e−AX

0σi

i (τi)
)

= −Tτ

(
e−A[

X
0σi

i (τi),H
])

+ Tτ

(
e−A[

A(τi),X
0σi

i (τi)
])

,
[
A(τi),X

0σi

i (τi)
]

= Vσ1σ2
i (τi)

[
Xσ1σ2

i (τi),X
0σi

i (τi)
]
−

∑

j

Vσ1σ2
ij (τi)

{
Xσ10

i (τi),X
0σi

i (τi)
}
X0σ2

j (τi)

= −Vσiσ2
i X0σ2

i −
∑

j

Vσiσ2
ij X + j 0σ2 +

∑

j

Vσ1σ2
ij (σ1σi)X

σ̄i σ̄1
i X0σ2

j . (23)

This follows from the definition of the time ordering and Eq. (15) for A. Using this we find

∂τi
Gσiσf

[i,f ] = −δ(τi − τf )δi,f

〈〈(
δσiσf

− σiσf X
σ̄i σ̄f

i

)〉〉
+

〈〈[
X

0σi

i (τi),H
]
X

σf 0
f (τf )

〉〉

−Vσiσ2
i (τi)Gσ2σf

[i,f ] −
∑

j

Vσiσ2
ij Gσ2σf

[j,f ] −
∑

j

Vσ1σ2
ij (σ1σi)

〈〈
X

σ̄i σ̄1
i (τi)X

0σ2
j (τj )Xσf 0

f (τf )
〉〉
. (24)

To simplify notation, in such expressions for the Green’s functions [or Eq. (26) below], the sum over an index implies
a sum over the corresponding site and also an integration over the corresponding time; e.g.,

∑
j V

σ1σ2
ij f (. . . ,τj , . . .) →

∑
Rj

∫ β

0 dτjVσ1σ2
ij (τj )δ(τi − τj )f (. . . ,τj , . . .). A further bold letter summation convention is used after Eq. (41). However,

note that in expressions for operators such as Eq. (21) or Eq. (22), the sum only refers to the site index summation. We further
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in the following. The second theorem is subtle as it leaves the
chemical potential µ unchanged (see Ref. 15). It provides a
measure of the equal-handed treatment of t and J . We will
find these almost trivial theorems of great use in devising and
validating various approximation schemes later.

In further work we need to add a source term via the
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A =
∫ β

0
A(τ )dτ =

∑

j,σ1,σ2

∫ β

0
dτ Vσ1σ2

j (τ )Xσ1σ2
j (τ )

+
∑

ij,σ1σ2

∫ β

0
dτ Vσ1σ2

ij (τ )Xσ10
i (τ )X0σ2

j (τ ), (15)

with the usual imaginary-time Heisenberg picture τ depen-
dence of the operators Q(τ ) = eτH Qe−τH , and the bosonic
sources Vσ1σ2

j (τ ) at every site and also Vσ1σ2
ij (τ ) for every

pair of sites, as arbitrary functions of time. We will denote
these sources in a compact notation where the site index also
carries the time argument as Vσ1σ2

i ≡ Vσ1σ2
i (τi) and Vσ1σ2

ij ≡
Vσ1σ2

ij (τi)δ(τi − τj ). For any variable we define a modified
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time (τ ) coordinates, the physical electron is described by a
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Let us now study the time evolution of the destruction
operator through its important commutator:
[
X

0σi

i ,H
]

= −
∑

j

tij
[
δσiσj

− (σiσj )Xσ̄i σ̄j

i

]
X

0σj

j +1
4
J0X

0σi

i
︸ ︷︷ ︸

−µX
0σi

i − 1
2

∑

j ̸=i

Jij (σiσj )Xσ̄i σ̄j

j X
0σj

i . (20)

Here J0 is the zero wave vector (i.e., Jii the on-site) exchange
constant. The term in underbraces here and in the next equation
ensures that the commutator reproduces the term with Jij →
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We next express the EOM for the Green’s function in terms
of A.

B. Equation of motion for G
Let us compute the time derivative of G. For this we need

the derivative
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Greens function

G⇥i⇥f [i, f ] = �⌅⌅X0⇥i
i X

⇥f0
f ⇧⇧. (1)

Let us denote:

�(i) = G(k)[i�, i], G(k)
⇥1⇥2

= ⇧1⇧2 G⇥̄2⇥̄1 (2)

Start with exact EOM in the presence of the time dependent potential V

(⌃⇤i � µ)G[i, f ] = �⇥[i, f ](1� �[i])� Vi · G[i, f ]�X[i, j] · G[j, f ]� Y [i, j] · G[j, f ], (3)

where denoting D = ⌅⇥ �
�V⇤ (* represents spin indices), X and Y are defined as

X[i, j] = �t[i, j] (D[i+] +D[j+]) +
1

2
J [i, k] (D[i+] +D[k+])⇥[i, j]

Y [i, j] = �t[i, j] (1� �[i]� �[j]) +
1

2
J [i, k] (1� �[i]� �[k])⇥[i, j]. (4)

Symbolically

X = [�t+
1

2
J ] D

Y1 = �[�t+
1

2
J ] � (5)

Denoting Fermi gas (non interacting) Greens function

Ĝ�1
0 (µ) ⇥ (µ� ⌃⇤ � V)1� [�t+

1

2
J ] (6)

we write EOM as

(Ĝ�1
0 (µ)� ⇤ Y1). G = (1� ⇤ �) + ⇤ X. G (7)

The exact EOM has ⇤ = 1, we introduced convenient ⇤ and at the end set ⇤ ⇤ 1. Hence inverting:

G = (Ĝ�1
0 (µ)� ⇤ Y1 � ⇤ X)�1. (1� ⇤ �). (8)

If we set (1� ⇤ �) ⇤ 1, canonical Fermi theory would have same form. Complications arise from time dependent �.
Now factors and vertex read:

G = g.µ (9)

We require the action of the functional derivative D on G. For this define a vertex function pair:

� ⇥ ⇥

⇥V . (�g�1), U ⇥ ⇥

⇥V . µ (10)

Thus Dg = g.�.g etc. Using the chain rule D(g.µ) = (g.�).g.µ+ g.D(µ), and defining

L ⇥ [t� 1

2
J ] ⌅⇥. g

⇥

⇥V⇥ , (11)

we obtain the decomposition

X.G = ⇥.G + ⇤

(12)

Local Greens function and (k) stands for  time reversal
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We present the theory of an extremely correlated Fermi liquid with U ! 1. This liquid has an

underlying auxiliary Fermi liquid Green’s function that is further caparisoned by extreme correlations.

The theory leads to two parallel hierarchies of equations that permit iterative approximations in a certain

parameter. Preliminary results for the spectral functions display a broad background and a distinct T
dependent left skew. An important energy scale !ð ~k; xÞ emerges as the average inelasticity of the FL

Green’s function, and influences the photoemission spectra profoundly. A duality is identified wherein a

loss of coherence of the ECFL results from an excessively sharp FL.
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Introduction.—Correlated electron systems attract two
distinct approaches. An intermediate to strong coupling
approach is used when the interaction U is comparable to
the band width 2W, and has seen some success in recent
times [1]. On the other hand, Anderson [2] has argued that
myriad experiments on high Tc superconductors require a
better understanding of the t-J model physics. This model
sets U ! 1 right away, i.e., leads to extreme correlations
and involves Gutzwiller projected Fermi operators that are
non canonical. Thus Wick’s theorem is immediately lost,
and perturbative schemes encoding the Feynman Dyson
approach become useless. Since this approach is at the root
of most current many body physics text books, the task of
understanding the t-J model is not lightly undertaken.

The Schwinger approach to interacting field theories is a
powerful and attractive alternative. It is fundamentally non
perturbative, where Wick’s theorem is bypassed by dealing
with suitable inverse Greens functions. Conventional many
body theory for canonical Fermions can also be cast into
this approach, and leads to the standard results. In Ref. [3]
(henceforth referred to as paper I), the author has recently
applied the Schwinger method to the t-J model, and found
a class of solutions that are termed as extremely correlated
quantum liquids. That state is presumably realized under
suitable conditions. However it gives a Fermi surface (FS)
volume that is always distinct from that of the Fermi gas.
This is contrast to the case of Fermi liquids (FL), where the
important theorem of Luttinger and Ward (LW) [4,5] man-
dates the invariance of the FS volume under interactions.

In this Letter we propose a state of matter termed as an
extremely correlated Fermi liquid (ECFL). The ECFL
found here, represents an alternate class of solutions for
the t-J model, where the Fermi surface satisfies the Fermi
gas (i.e., LW) volume. In this work we present the essen-
tials of the formalism, and display preliminary results on
spectral functions that are suggestive of the relevance of
the ECFL state to cuprate materials. An inherent flexibility
of the Schwinger approach permits the construction of an
alternate class of solutions from the one found in paper I.

The excitations of the ECFL state may be thought of as
bare electrons undergoing a double layer of renormaliza-
tion: the FL dressing into quasiparticles that are further
caparisoned (i.e., decorated) by extreme correlations.
Formalism.—The physical projected electronic Green’s

function G satisfies an equation of motion (EOM) (I-29)
written compactly in matrix form as

ð@!i #!ÞGði; fÞ ¼ #"ði; fÞf1# #ðiÞg#V i % Gði; fÞ
# Xði; "jÞ % Gð"j; fÞ # Yði; "jÞ % Gð"j; fÞ;

(1)

where ! is the chemical potential and an implicit integra-
tion over space-time variables such as "j, written with bold
overlined letters, is implied,

Xði; jÞ ¼ #tði; jÞ½DðiÞ þDðjÞ(
þ 1

2Jði; "kÞ½DðiÞ þDð "kÞ("ði; jÞ
Yði; jÞ ¼ #tði; jÞ½1# #ðiÞ # #ðjÞ(

þ 1
2Jði; "kÞ½1# #ðiÞ # #ð "kÞ("ði; jÞ:

(2)

In the above expression [6], we used #ðiÞ ¼ Gkði; iÞ with
the k conjugation defined by ðMkÞ$1$2

¼ M "$2 "$1
$1$2, and

D$1$2
ðiÞ ¼ $1$2

"
"V "$1 "$2

i

. The added (bosonic) source term

V $1$2
i ð!iÞ is central to this approach; it is a space-time

dependent field that couples to the charge and
spin densities through a term in the action:P

i$

R%
0 d!V

$1$2
i ð!ÞX$1$2

i ð!Þ, where X$1$2
i is the spin and

density operator at site i that acts as j$1ih$2j.
An important technical problem highlighted in I is to

deal with the time dependence of the #ðiÞ term in Eq. (1)
which makes the theory noncanonical. Here we use the
decomposition into two factors [7]:

G ða; bÞ ¼ gða; "bÞ %&ð "b; bÞ; (3)

and express #ðiÞ ¼ ½gði; "jÞ %&ð"j; iÞ(k. The object g is an
auxiliary FL Green’s function and &ð "b; bÞ is an appurte-
nant (or supplementary) factor that is determined below.
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Greens function

G⇥i⇥f [i, f ] = �⌅⌅X0⇥i
i X

⇥f0
f ⇧⇧. (1)

Let us denote:

�(i) = G(k)[i�, i], G(k)
⇥1⇥2

= ⇧1⇧2 G⇥̄2⇥̄1 (2)

Start with exact EOM in the presence of the time dependent potential V

(⌃⇤i � µ)G[i, f ] = �⇥[i, f ](1� �[i])� Vi · G[i, f ]�X[i, j] · G[j, f ]� Y [i, j] · G[j, f ], (3)

where denoting D = ⌅⇥ �
�V⇤ (* represents spin indices), X and Y are defined as

X[i, j] = �t[i, j] (D[i+] +D[j+]) +
1

2
J [i, k] (D[i+] +D[k+])⇥[i, j]

Y [i, j] = �t[i, j] (1� �[i]� �[j]) +
1

2
J [i, k] (1� �[i]� �[k])⇥[i, j]. (4)

Symbolically

X = [�t+
1

2
J ] D

Y1 = �[�t+
1

2
J ] � (5)

Denoting Fermi gas (non interacting) Greens function

Ĝ�1
0 (µ) ⇥ (µ� ⌃⇤ � V)1� [�t+

1

2
J ] (6)

we write EOM as

(Ĝ�1
0 (µ)� ⇤ Y1). G = (1� ⇤ �) + ⇤ X. G (7)

The exact EOM has ⇤ = 1, we introduced convenient ⇤ and at the end set ⇤ ⇤ 1. Hence inverting:

G = (Ĝ�1
0 (µ)� ⇤ Y1 � ⇤ X)�1. (1� ⇤ �). (8)

If we set (1� ⇤ �) ⇤ 1, canonical Fermi theory would have same form. Complications arise from time dependent �.
Now factors and vertex read:

G = g.µ (9)

We require the action of the functional derivative D on G. For this define a vertex function pair:

� ⇥ ⇥

⇥V . (�g�1), U ⇥ ⇥

⇥V . µ (10)

Thus Dg = g.�.g etc. Using the chain rule D(g.µ) = (g.�).g.µ+ g.D(µ), and defining

L ⇥ [t� 1

2
J ] ⌅⇥. g

⇥

⇥V⇥ , (11)

we obtain the decomposition

X.G = ⇥.G + ⇤

(12)
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0 (µ)� ⇤ Y1 � ⇤ X)�1. (1� ⇤ �). (8)

If we set (1� ⇤ �) ⇤ 1, canonical Fermi theory would have same form. Complications arise from time dependent �.
Now factors and vertex read:

G = g.µ (9)

We require the action of the functional derivative D on G. For this define a vertex function pair:

� ⇥ ⇥

⇥V . (�g�1), U ⇥ ⇥

⇥V . µ (10)

Thus Dg = g.�.g etc. Using the chain rule D(g.µ) = (g.�).g.µ+ g.D(µ), and defining

L ⇥ [t� 1

2
J ] ⌅⇥. g

⇥

⇥V⇥ , (11)

we obtain the decomposition

X.G = ⇥.G + ⇤

(12)
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We present the theory of an extremely correlated Fermi liquid with U ! 1. This liquid has an

underlying auxiliary Fermi liquid Green’s function that is further caparisoned by extreme correlations.

The theory leads to two parallel hierarchies of equations that permit iterative approximations in a certain

parameter. Preliminary results for the spectral functions display a broad background and a distinct T
dependent left skew. An important energy scale !ð ~k; xÞ emerges as the average inelasticity of the FL

Green’s function, and influences the photoemission spectra profoundly. A duality is identified wherein a

loss of coherence of the ECFL results from an excessively sharp FL.
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Introduction.—Correlated electron systems attract two
distinct approaches. An intermediate to strong coupling
approach is used when the interaction U is comparable to
the band width 2W, and has seen some success in recent
times [1]. On the other hand, Anderson [2] has argued that
myriad experiments on high Tc superconductors require a
better understanding of the t-J model physics. This model
sets U ! 1 right away, i.e., leads to extreme correlations
and involves Gutzwiller projected Fermi operators that are
non canonical. Thus Wick’s theorem is immediately lost,
and perturbative schemes encoding the Feynman Dyson
approach become useless. Since this approach is at the root
of most current many body physics text books, the task of
understanding the t-J model is not lightly undertaken.

The Schwinger approach to interacting field theories is a
powerful and attractive alternative. It is fundamentally non
perturbative, where Wick’s theorem is bypassed by dealing
with suitable inverse Greens functions. Conventional many
body theory for canonical Fermions can also be cast into
this approach, and leads to the standard results. In Ref. [3]
(henceforth referred to as paper I), the author has recently
applied the Schwinger method to the t-J model, and found
a class of solutions that are termed as extremely correlated
quantum liquids. That state is presumably realized under
suitable conditions. However it gives a Fermi surface (FS)
volume that is always distinct from that of the Fermi gas.
This is contrast to the case of Fermi liquids (FL), where the
important theorem of Luttinger and Ward (LW) [4,5] man-
dates the invariance of the FS volume under interactions.

In this Letter we propose a state of matter termed as an
extremely correlated Fermi liquid (ECFL). The ECFL
found here, represents an alternate class of solutions for
the t-J model, where the Fermi surface satisfies the Fermi
gas (i.e., LW) volume. In this work we present the essen-
tials of the formalism, and display preliminary results on
spectral functions that are suggestive of the relevance of
the ECFL state to cuprate materials. An inherent flexibility
of the Schwinger approach permits the construction of an
alternate class of solutions from the one found in paper I.

The excitations of the ECFL state may be thought of as
bare electrons undergoing a double layer of renormaliza-
tion: the FL dressing into quasiparticles that are further
caparisoned (i.e., decorated) by extreme correlations.
Formalism.—The physical projected electronic Green’s

function G satisfies an equation of motion (EOM) (I-29)
written compactly in matrix form as

ð@!i #!ÞGði; fÞ ¼ #"ði; fÞf1# #ðiÞg#V i % Gði; fÞ
# Xði; "jÞ % Gð"j; fÞ # Yði; "jÞ % Gð"j; fÞ;

(1)

where ! is the chemical potential and an implicit integra-
tion over space-time variables such as "j, written with bold
overlined letters, is implied,

Xði; jÞ ¼ #tði; jÞ½DðiÞ þDðjÞ(
þ 1

2Jði; "kÞ½DðiÞ þDð "kÞ("ði; jÞ
Yði; jÞ ¼ #tði; jÞ½1# #ðiÞ # #ðjÞ(

þ 1
2Jði; "kÞ½1# #ðiÞ # #ð "kÞ("ði; jÞ:

(2)

In the above expression [6], we used #ðiÞ ¼ Gkði; iÞ with
the k conjugation defined by ðMkÞ$1$2

¼ M "$2 "$1
$1$2, and

D$1$2
ðiÞ ¼ $1$2

"
"V "$1 "$2

i

. The added (bosonic) source term

V $1$2
i ð!iÞ is central to this approach; it is a space-time

dependent field that couples to the charge and
spin densities through a term in the action:P

i$

R%
0 d!V

$1$2
i ð!ÞX$1$2

i ð!Þ, where X$1$2
i is the spin and

density operator at site i that acts as j$1ih$2j.
An important technical problem highlighted in I is to

deal with the time dependence of the #ðiÞ term in Eq. (1)
which makes the theory noncanonical. Here we use the
decomposition into two factors [7]:

G ða; bÞ ¼ gða; "bÞ %&ð "b; bÞ; (3)

and express #ðiÞ ¼ ½gði; "jÞ %&ð"j; iÞ(k. The object g is an
auxiliary FL Green’s function and &ð "b; bÞ is an appurte-
nant (or supplementary) factor that is determined below.
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The caparison function appears here. 
Motivation is to get rid of a crucial

 non canonical term γ(i).



[g�1
0 (i, j)� µ⇥ij � tij � �(i, j)].g(j,k).µ(k, f) = ⇥(i, f)(1� �(i)) + �(i, f)

Using chain rule for functional derivatives get exact equation

Antiperiodic boundary conditions Gð0; !fÞ ¼ $Gð"; !fÞ
and Gð!i; 0Þ ¼ $Gð!i;"Þ imply that both factors g and
# are Fourier transformed using fermionic Matsubara
frequencies. We define the inverse Green’s function
g$1ða; !bÞ % gð !b; bÞ ¼ 1$ða; bÞ, and then a vertex function
"%1%2

%3%4ðp; q; rÞ ¼ $ $
$V %3%4

r
fg$1

%1%2
ðp; qÞg. Thus g, # and

g$1 are matrices in the spin space, and the vertex " has
four indices. We also define a linear operator

Lði; fÞ ¼
!
tði; !jÞ&& % gð!j; fÞ $ 1

2
Jði; !jÞ&& % gði; fÞ

"

'
!

$

$V &
i

þ $

$V &
!j

"
; (4)

where the matrix &&
%1%2

¼ %1%2. The asterisk is used
as a place holder that transmits the spin indices
(after conjugation) of the & matrix to the source matrix
V in the functional derivative. This notation used is
illustrated in component form by % % %&&

%a%b
% % %$=$V &

!j
¼

% % %%a%b % % %$=$V !%a; !%b
!j

.

A useful chain rule for the functional derivative is noted

DðrÞGða; bÞ ¼ && % gða; !cÞ %"&ð!c; !d; rÞ % Gð !d; bÞ

þ && % gða; !bÞ %
!

$

$V &
r

#ð !b; bÞ
"
: (5)

Using this chain rule, we see that

Xði; !jÞ % Gð!j; fÞ ) #ði; !bÞ % Gð !b; fÞ þ$ði; fÞ; (6)

where

#ði; mÞ ¼ Lði; !iÞ % g$1ð!i; mÞ
$ði; mÞ ¼ $Lði; !iÞ %#ð!i; mÞ:

(7)

Thus the two fundamental functions of this formalism #,
$ are closely connected as they arise from applying
the same operator to the two factors of G. Defining
Y0ði; jÞ ¼ ½$tði; jÞ þ 1

2 Jði; !kÞ$ði; jÞ+1, and Y1ði; jÞ ¼
tði; jÞ½'ðiÞ þ 'ðjÞ+ $ 1

2$ði; jÞJði; !kÞ½'ðiÞ þ 'ð !kÞ+, also de-
note the Fermi gas Green’s function

g$1
0 ði; fÞ ¼ f$ð@!i $!Þ1$V ig$ði; fÞ $ Y0ði; fÞ: (8)

Collecting everything, the exact EOM can now be written
neatly as

fg$1
0 ði; !jÞ $ (Y1ði; !jÞ $ (#ði; !jÞg % gð!j; !fÞ %#ð!f; fÞ
¼ $ði; fÞ½1$ ('ðiÞ+ þ ($ði; fÞ: (9)

We have introduced the parameter ( above, with 0,(,1,
in order to provide an adiabatic path between the Fermi gas
at ( ¼ 0 and the ECFL at ( ¼ 1, and also an iterative
scheme in powers of ( connecting the two endpoints.

We now choose the hitherto undetermined function# as

#ði; fÞ ¼ $ði; fÞ½1$ ('ðiÞ+ þ ($ði; fÞ; (10)

so that Eq. (9) reduces to a canonical FL type equation:

fg$1
0 ði; !jÞ$(Y1ði; !jÞ$(#ði; !jÞg %gð!j;fÞ¼$ði;fÞ: (11)

Notice that the right-hand side has a pure $ function as in a
canonical Fermi liquid type theory. To summarize, the
EOM Eq. (1) under the decomposition Eq. (3) leads to
Eq. (9). In turn this splits exactly into two coupled sets of
equations Eq. (7), (10), and (11) for the two factors g and
#. Note that the entire procedure is exact, we write explicit
forms of these equations below and then introduce approxi-
mate methods to solve them.
Inverting we find Dyson’s equation for the auxiliary FL

Green’s function:

g$1ði; mÞ ¼ fg$1
0 ði; mÞ $ (Y1ði; mÞ $ (#ði; mÞg: (12)

Taking functional derivatives of Eq. (10) and (12) with
respect to V , and comparing with Eq. (4) and (7) we
generate two parallel hierarchies of equations for g and
# that form the core of this formalism. The hierarchy for g
is essentially autonomous and drives that for #. Starting
with the Fermi gas at Oð(0Þ, an iterative process similar to
the skeleton graph expansion of LW [4] can be built up,
such that terms of Oð(nÞ arise from differentiating lower
order terms of Oð(n$1Þ. Systematic approximations may
thus be arranged to include all terms of Oð(nÞ for various
n [8]. The number of particles is given by 1

2nðiÞ ¼
gði; !iÞ#ð!i; iÞ, and with

U %1%2
%3%4ða; b; cÞ )

$#%1%2
ða; bÞ

$V %3%4
c

; (13)

the equations to solve simultaneously are Eq. (7), (12), and
(10). The density and spin density response functions
(I-F1), (I-F7) can be found from differentiating G, i.e.,
%%1%2

%3%4ðp; q; rÞ ¼ $
$V %3%4

c
fG%1%2

ðp; qÞg.
Zero source limit in Fourier space.—When we turn off

the sourceV , the various matrix function G, g, # become
spin diagonal and translation invariant so we can Fourier
transform these conveniently. We note the basic result
expressing G as a simple product of two functions in k
space:

GðkÞ ¼ gðkÞ#ðkÞ; #ðkÞ ¼ 1$ (
n

2
þ ($ðkÞ;

g$1ðkÞ ¼ i!k þ!$ "kð1$ (nÞ $ (#ðkÞ;
(14)

where "k is the Fourier transform of the hopping matrix
$tði; jÞ, and an uninteresting constant term is absorbed in
! here and below.
Here, g plays the role of an underlying auxiliary FL with

a self energy#, and$ acts as an extra spectral weight that
vanishes at high frequency, leaving the exact weight 1$ n

2
valid for a projected electron (as in paper I) for ( ¼ 1.
Denoting

P
k ! 1

Ns"

P
i!k; ~k

with Ns sites, the particle num-

ber sum rule is
P

k#ðkÞgðkÞ ¼ n
2 , i.e.,
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Antiperiodic boundary conditions Gð0; !fÞ ¼ $Gð"; !fÞ
and Gð!i; 0Þ ¼ $Gð!i;"Þ imply that both factors g and
# are Fourier transformed using fermionic Matsubara
frequencies. We define the inverse Green’s function
g$1ða; !bÞ % gð !b; bÞ ¼ 1$ða; bÞ, and then a vertex function
"%1%2

%3%4ðp; q; rÞ ¼ $ $
$V %3%4

r
fg$1

%1%2
ðp; qÞg. Thus g, # and

g$1 are matrices in the spin space, and the vertex " has
four indices. We also define a linear operator

Lði; fÞ ¼
!
tði; !jÞ&& % gð!j; fÞ $ 1

2
Jði; !jÞ&& % gði; fÞ

"

'
!

$

$V &
i

þ $

$V &
!j

"
; (4)

where the matrix &&
%1%2

¼ %1%2. The asterisk is used
as a place holder that transmits the spin indices
(after conjugation) of the & matrix to the source matrix
V in the functional derivative. This notation used is
illustrated in component form by % % %&&

%a%b
% % %$=$V &

!j
¼

% % %%a%b % % %$=$V !%a; !%b
!j

.

A useful chain rule for the functional derivative is noted

DðrÞGða; bÞ ¼ && % gða; !cÞ %"&ð!c; !d; rÞ % Gð !d; bÞ

þ && % gða; !bÞ %
!

$

$V &
r

#ð !b; bÞ
"
: (5)

Using this chain rule, we see that

Xði; !jÞ % Gð!j; fÞ ) #ði; !bÞ % Gð !b; fÞ þ$ði; fÞ; (6)

where

#ði; mÞ ¼ Lði; !iÞ % g$1ð!i; mÞ
$ði; mÞ ¼ $Lði; !iÞ %#ð!i; mÞ:

(7)

Thus the two fundamental functions of this formalism #,
$ are closely connected as they arise from applying
the same operator to the two factors of G. Defining
Y0ði; jÞ ¼ ½$tði; jÞ þ 1

2 Jði; !kÞ$ði; jÞ+1, and Y1ði; jÞ ¼
tði; jÞ½'ðiÞ þ 'ðjÞ+ $ 1

2$ði; jÞJði; !kÞ½'ðiÞ þ 'ð !kÞ+, also de-
note the Fermi gas Green’s function

g$1
0 ði; fÞ ¼ f$ð@!i $!Þ1$V ig$ði; fÞ $ Y0ði; fÞ: (8)

Collecting everything, the exact EOM can now be written
neatly as

fg$1
0 ði; !jÞ $ (Y1ði; !jÞ $ (#ði; !jÞg % gð!j; !fÞ %#ð!f; fÞ
¼ $ði; fÞ½1$ ('ðiÞ+ þ ($ði; fÞ: (9)

We have introduced the parameter ( above, with 0,(,1,
in order to provide an adiabatic path between the Fermi gas
at ( ¼ 0 and the ECFL at ( ¼ 1, and also an iterative
scheme in powers of ( connecting the two endpoints.

We now choose the hitherto undetermined function# as

#ði; fÞ ¼ $ði; fÞ½1$ ('ðiÞ+ þ ($ði; fÞ; (10)

so that Eq. (9) reduces to a canonical FL type equation:

fg$1
0 ði; !jÞ$(Y1ði; !jÞ$(#ði; !jÞg %gð!j;fÞ¼$ði;fÞ: (11)

Notice that the right-hand side has a pure $ function as in a
canonical Fermi liquid type theory. To summarize, the
EOM Eq. (1) under the decomposition Eq. (3) leads to
Eq. (9). In turn this splits exactly into two coupled sets of
equations Eq. (7), (10), and (11) for the two factors g and
#. Note that the entire procedure is exact, we write explicit
forms of these equations below and then introduce approxi-
mate methods to solve them.
Inverting we find Dyson’s equation for the auxiliary FL

Green’s function:

g$1ði; mÞ ¼ fg$1
0 ði; mÞ $ (Y1ði; mÞ $ (#ði; mÞg: (12)

Taking functional derivatives of Eq. (10) and (12) with
respect to V , and comparing with Eq. (4) and (7) we
generate two parallel hierarchies of equations for g and
# that form the core of this formalism. The hierarchy for g
is essentially autonomous and drives that for #. Starting
with the Fermi gas at Oð(0Þ, an iterative process similar to
the skeleton graph expansion of LW [4] can be built up,
such that terms of Oð(nÞ arise from differentiating lower
order terms of Oð(n$1Þ. Systematic approximations may
thus be arranged to include all terms of Oð(nÞ for various
n [8]. The number of particles is given by 1

2nðiÞ ¼
gði; !iÞ#ð!i; iÞ, and with

U %1%2
%3%4ða; b; cÞ )

$#%1%2
ða; bÞ

$V %3%4
c

; (13)

the equations to solve simultaneously are Eq. (7), (12), and
(10). The density and spin density response functions
(I-F1), (I-F7) can be found from differentiating G, i.e.,
%%1%2

%3%4ðp; q; rÞ ¼ $
$V %3%4

c
fG%1%2

ðp; qÞg.
Zero source limit in Fourier space.—When we turn off

the sourceV , the various matrix function G, g, # become
spin diagonal and translation invariant so we can Fourier
transform these conveniently. We note the basic result
expressing G as a simple product of two functions in k
space:

GðkÞ ¼ gðkÞ#ðkÞ; #ðkÞ ¼ 1$ (
n

2
þ ($ðkÞ;

g$1ðkÞ ¼ i!k þ!$ "kð1$ (nÞ $ (#ðkÞ;
(14)

where "k is the Fourier transform of the hopping matrix
$tði; jÞ, and an uninteresting constant term is absorbed in
! here and below.
Here, g plays the role of an underlying auxiliary FL with

a self energy#, and$ acts as an extra spectral weight that
vanishes at high frequency, leaving the exact weight 1$ n

2
valid for a projected electron (as in paper I) for ( ¼ 1.
Denoting
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with Ns sites, the particle num-

ber sum rule is
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Falls apart into two a pair of coupled exact equations with a canonical greens 
function if we write

µ(i, f) = ⇥(i, f)(1� �(i)) + �(i, f)

[g�1
0 (i, j)� µ�ij � tij � �(i, j)].g(j, f) = �(i, f)

Antiperiodic boundary conditions Gð0; !fÞ ¼ $Gð"; !fÞ
and Gð!i; 0Þ ¼ $Gð!i;"Þ imply that both factors g and
# are Fourier transformed using fermionic Matsubara
frequencies. We define the inverse Green’s function
g$1ða; !bÞ % gð !b; bÞ ¼ 1$ða; bÞ, and then a vertex function
"%1%2

%3%4ðp; q; rÞ ¼ $ $
$V %3%4

r
fg$1

%1%2
ðp; qÞg. Thus g, # and

g$1 are matrices in the spin space, and the vertex " has
four indices. We also define a linear operator

Lði; fÞ ¼
!
tði; !jÞ&& % gð!j; fÞ $ 1

2
Jði; !jÞ&& % gði; fÞ

"

'
!

$

$V &
i

þ $

$V &
!j

"
; (4)

where the matrix &&
%1%2

¼ %1%2. The asterisk is used
as a place holder that transmits the spin indices
(after conjugation) of the & matrix to the source matrix
V in the functional derivative. This notation used is
illustrated in component form by % % %&&

%a%b
% % %$=$V &

!j
¼

% % %%a%b % % %$=$V !%a; !%b
!j

.

A useful chain rule for the functional derivative is noted

DðrÞGða; bÞ ¼ && % gða; !cÞ %"&ð!c; !d; rÞ % Gð !d; bÞ

þ && % gða; !bÞ %
!

$

$V &
r

#ð !b; bÞ
"
: (5)

Using this chain rule, we see that

Xði; !jÞ % Gð!j; fÞ ) #ði; !bÞ % Gð !b; fÞ þ$ði; fÞ; (6)

where

#ði; mÞ ¼ Lði; !iÞ % g$1ð!i; mÞ
$ði; mÞ ¼ $Lði; !iÞ %#ð!i; mÞ:

(7)

Thus the two fundamental functions of this formalism #,
$ are closely connected as they arise from applying
the same operator to the two factors of G. Defining
Y0ði; jÞ ¼ ½$tði; jÞ þ 1

2 Jði; !kÞ$ði; jÞ+1, and Y1ði; jÞ ¼
tði; jÞ½'ðiÞ þ 'ðjÞ+ $ 1

2$ði; jÞJði; !kÞ½'ðiÞ þ 'ð !kÞ+, also de-
note the Fermi gas Green’s function

g$1
0 ði; fÞ ¼ f$ð@!i $!Þ1$V ig$ði; fÞ $ Y0ði; fÞ: (8)

Collecting everything, the exact EOM can now be written
neatly as

fg$1
0 ði; !jÞ $ (Y1ði; !jÞ $ (#ði; !jÞg % gð!j; !fÞ %#ð!f; fÞ
¼ $ði; fÞ½1$ ('ðiÞ+ þ ($ði; fÞ: (9)

We have introduced the parameter ( above, with 0,(,1,
in order to provide an adiabatic path between the Fermi gas
at ( ¼ 0 and the ECFL at ( ¼ 1, and also an iterative
scheme in powers of ( connecting the two endpoints.

We now choose the hitherto undetermined function# as

#ði; fÞ ¼ $ði; fÞ½1$ ('ðiÞ+ þ ($ði; fÞ; (10)

so that Eq. (9) reduces to a canonical FL type equation:

fg$1
0 ði; !jÞ$(Y1ði; !jÞ$(#ði; !jÞg %gð!j;fÞ¼$ði;fÞ: (11)

Notice that the right-hand side has a pure $ function as in a
canonical Fermi liquid type theory. To summarize, the
EOM Eq. (1) under the decomposition Eq. (3) leads to
Eq. (9). In turn this splits exactly into two coupled sets of
equations Eq. (7), (10), and (11) for the two factors g and
#. Note that the entire procedure is exact, we write explicit
forms of these equations below and then introduce approxi-
mate methods to solve them.
Inverting we find Dyson’s equation for the auxiliary FL

Green’s function:

g$1ði; mÞ ¼ fg$1
0 ði; mÞ $ (Y1ði; mÞ $ (#ði; mÞg: (12)

Taking functional derivatives of Eq. (10) and (12) with
respect to V , and comparing with Eq. (4) and (7) we
generate two parallel hierarchies of equations for g and
# that form the core of this formalism. The hierarchy for g
is essentially autonomous and drives that for #. Starting
with the Fermi gas at Oð(0Þ, an iterative process similar to
the skeleton graph expansion of LW [4] can be built up,
such that terms of Oð(nÞ arise from differentiating lower
order terms of Oð(n$1Þ. Systematic approximations may
thus be arranged to include all terms of Oð(nÞ for various
n [8]. The number of particles is given by 1

2nðiÞ ¼
gði; !iÞ#ð!i; iÞ, and with

U %1%2
%3%4ða; b; cÞ )

$#%1%2
ða; bÞ

$V %3%4
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; (13)

the equations to solve simultaneously are Eq. (7), (12), and
(10). The density and spin density response functions
(I-F1), (I-F7) can be found from differentiating G, i.e.,
%%1%2

%3%4ðp; q; rÞ ¼ $
$V %3%4

c
fG%1%2

ðp; qÞg.
Zero source limit in Fourier space.—When we turn off

the sourceV , the various matrix function G, g, # become
spin diagonal and translation invariant so we can Fourier
transform these conveniently. We note the basic result
expressing G as a simple product of two functions in k
space:

GðkÞ ¼ gðkÞ#ðkÞ; #ðkÞ ¼ 1$ (
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2
þ ($ðkÞ;

g$1ðkÞ ¼ i!k þ!$ "kð1$ (nÞ $ (#ðkÞ;
(14)

where "k is the Fourier transform of the hopping matrix
$tði; jÞ, and an uninteresting constant term is absorbed in
! here and below.
Here, g plays the role of an underlying auxiliary FL with

a self energy#, and$ acts as an extra spectral weight that
vanishes at high frequency, leaving the exact weight 1$ n

2
valid for a projected electron (as in paper I) for ( ¼ 1.
Denoting
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n

2
¼

X

k

gðkÞ þ !
X

k

!
!ðkÞ % n

2

"
gðkÞ: (15)

In this formalism, at k& kF, x ¼ 0 that is relevant to the

LW sum rule, the RegðkÞ dominates ReGð ~k; 0Þ (since

Re!ð ~k; 0Þ is smooth through the FS). Requiring consis-
tency with the LW theorem forces us to pin any sign change

of Regð ~k; 0Þ to the free case, whereby we impose a second
level sum rule

X

k

!ðkÞgðkÞ ¼ n2

4
; and

X

k

gðkÞ ¼ n

2
: (16)

This can be viewed as a splitting of the usual number sum
rule Eq. (15) [9]. With Eðp1; p2Þ ¼ ½"p1

þ "p2
þ 1

2 Ĵð0Þ þ
1
2 Ĵðp1 % p2Þ( we find

"ðkÞ ¼
X

p

Eðk; pÞgðpÞ#ðaÞðp; kÞ;

!ðkÞ ¼
X

p

Eðk; pÞgðpÞUðaÞðp; kÞ;
(17)

and the spin labels are from paper I with the usual signifi-
cance #ðaÞ ¼ #ð2Þ %#ð3Þ ¼ 1

2#
ðsÞ % 3

2#
ðtÞ.

Next we introduce the spectral representation of various

functions Q that vanish at infinity: Qði!QÞ ¼
R1
%1 dx

"QðxÞ
i!Q%x and "QðxÞ ¼ % 1

# ImQðxþ i0þÞ, with xþ )
xþ i0þ. The Matsubara frequency !Q is fermionic
(bosonic) if Q is fermionic (bosonic). Proceeding further,
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equations for the spectral densities of the physical particles
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terms of the two objects " $"ð ~k; xÞ and "!ð ~k; xÞ and their
Hilbert transforms. The Lehmann representation implies

that "Gð ~k; xÞ is positive at all ~k, x. In making approxima-
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kept in mind.
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%V $. To lowest order in
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X
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X
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(18)

From Eq. (14) we note that these expressions Eq. (18) lead
to a calculation of g%1 and $ correct up to Oð!2Þ.
Frequency dependent corrections arise only to second or-
der in !, which is analogous to the structure of the canoni-
cal many body theory within the skeleton graph expansion.
We may now set ! ¼ 1 and study the resulting theory as
the first step in exploring this formalism.
Denote fðxÞ ¼ 1

ðexp&xÞþ1 as the Fermi distribution func-

tions and $fðxÞ ¼ 1% fðxÞ, and denote the usual Fermi
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a function of the frequencies u, v, w, x, and

Y ¼
Z
u;v;w

W"gð ~q; wÞ"gð ~p; uÞ"gð ~qþ ~p% ~k; vÞ; (19)

a function of ~k, ~p, ~q, and x. We may then write the spectral
functions corresponding to Eq. (18)

" $"ð ~k; xÞ ¼ 2
X

~p; ~q

Eð ~k; ~pÞ½Eð ~p; ~kÞ þ Eð ~qþ ~p% ~k; ~pÞ(Y;

"!ð ~k; xÞ ¼ 2
X

~p; ~q

Eð ~k; ~pÞY: (20)

The functions appearing in Eq. (20) are familiar from
Fermi liquids [4,5], and encode the usual phase space
constraints of that theory. This leads to the low tempera-
tures behavior &maxfx2; ð#kBTÞ2g, for both objects
Im!ðk; x; TÞ and Im $"ðk; x; TÞ. The real parts of these
objects are smooth through the Fermi surface, as one
expects from the real part of the self energy in a FL, and
hence motivates the second level sum rule Eq. (16).
From Eq. (14) we write the exact expression for the

physical spectral function "G:

"Gð ~k; xÞ ¼ "gð ~k; xÞ
!#
1% n

2

$
þ 'k % x

%ð ~k; xÞ
þ (ð ~k; xÞ

"
; (21)

where 'k ¼ "̂k %!, and the important energy scale

%ð ~k; xÞ and the term ( is defined as

%ð ~k; xÞ ¼ %" $"ð ~k; xÞ
"!ð ~k; xÞ

; (22)

(ð ~k; xÞ ¼ Re!ð ~k; xþÞ þ 1

%ð ~k; xÞ
Re"ð ~k; xþÞ: (23)

The sign of the energy scale % in Eq. (22) is expected to be
positive from Eq. (20). The dimensionless term ( aug-
ments the spectral weight at the Fermi level. The equations
necessary to solve the theory to Oð!2Þmay be summarized
as Eq. (14), (16), and (18) and Ref. [10] giving rise to the
spectral function Eq. (21). These require further numerical
work that is underway, it leads to spectral functions in 2
and 3 dimensions that will be published separately.
However it also provides a very interesting insight about
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µ(k) = 1� n

2
+ �(k)

k ⌘ (i�n,⇥k)

g�1(k) = i�n + µ� n

2
⇥k � �(k)

Turning off the sources, we restore translation invariance and can take Ft’s. Number 
sum rules are obvious- both G and g satisfy the same number sum rule.



Exact so far. 
It is a formal solution and how do we make sense of it?

Can we devise an approximate solution, valid in some limit?

Devise a small parameter λ between 0,1 related to particle density
and also to double occupancy.

At λ=0, get the Fermi gas, and at λ=1 get the full tJ model.

We will require a good understanding of the shift invariance of the tJ model,
this important invariance leads to  a second chemical potential in the problem.
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the “engineering approach” in Section (II C). A set of
⇤-Fermi operators are defined below, as generalized ver-
sion of the non-Hermitean representation (67) with a
parameter ⇤ ⌅ [0, 1] providing a continuous interpolation
between the free Fermi and extremely correlated limits:

X⇤0
i (⇤) ⇤ C†

i⇤(1� ⇤C†
i⇤̄Ci⇤̄)

X0⇤
i (⇤) ⇤ Ci⇤

X⇤⇤�

i (⇤) ⇤ C†
i⇤Ci⇤� . (79)

Clearly ⇤ = 0 gives us back the canonical Fermion op-
erators, whereas ⇤ = 1 gives the Gutzwiller projected
Hubbard X operators Ref. (4) as in (67), provided
the states are Gutzwiller projected. A feature of this
representation is the loss of the adjoint property, i.e.�
X⇤0

i (⇤)
⇥† ⇧= X0⇤

i (⇤), unless ⇤ = 0.
These operators satisfy a ⇤ dependent (graded) Lie

algebra with fundamental brackets that are partly
Fermionic and partly Bosonic. Using the canonical an-
ticommutation relations of the C,C† operators, we we
work out the fundamental Fermionic bracket:

{X0⇤i
i (⇤), X

⇤j0
j (⇤)} = ⇥ij{⇥⇤i⇤j � ⇤⌅i⌅jX

⇤̄i⇤̄j

i (⇤)}.
(80)

We next evaluate the fundamental Bosonic bracket

[X0⇤i
i (⇤), X

⇤j⇤k

j (⇤)] = ⇥ij⇥⇤i⇤jX
0⇤k
i (⇤) (81)

[X⇤i0
i (⇤), X

⇤j⇤k

j (⇤)] = �⇥ij⇥⇤i⇤kX
⇤j0
i (⇤). (82)

Here (82) requires a brief calculation27 invoking the
Pauli principle vanishing of C†

⇤C
†
⇤ ⇤ 0. On the other

hand (81) is elementary, due to the absence of ⇤ in
both sides of the equation. At ⇤ = 1 these reduce to the
relevant subset of the Hubbard algebra Ref. (4) found
from the fundamental definition Xab

i = |a�↵b| .
The representation (79) does not at general ⇤ repro-

duce the “half bracket”, or product relations expected for
projection operators. We find that

X⇤0
i (⇤)X0⇤�

i (⇤) ⇧= X⇤⇤�

i (⇤), (83)

X0⇤�

i (⇤)X⇤0
i (⇤) ⇧= X00

i ⇥⇤⇤� . (84)

The exceptions are at ⇤ = 0, where it is trivially true,
and non trivially at ⇤ = 1, where Gutzwiller projection of
the allowed states does restore this property when right-
operating on the projected states. In the Green’s func-
tions below, we will equate the averages of both sides of
Eq. (83). This equality of the averages acts as the number
constraint and fixes the chemical potential µ. In doing
so, the average of Eq. (84) is not constrained and takes
on a suitable value determined by the anticommutation
relation Eq. (80).

This representation can be used to define a many-body
problem where the ⇤ dependent EOMs for the Green’s
functions constructed from (79) can be written down.
Observe that the EOMs for the Green’s functions only

require the use of (80) and the Heisenberg equations of
motion, and in turn these arise from the basic Lie com-
mutators (anticommutators) of the type given in (81)
and (82). The calculation does not ever require the
use of product relations of the type (83). It then fol-
lows that we can replace the t-J Hamiltonian and the
operators in the original theory by their ⇤-versions, i.e.
replacing Xab

i ⇤ Xab
i (⇤), and thereby obtain equations

that yield (16). This procedure then provides a (contin-
uous) interpolation between the free Fermi and extremely
correlated regimes by varying ⇤ from 0 to 1. Let us first
demonstrate this by a brief calculation.

A. The �-Fermion theory equations of motion.

Using the ⇤ Fermions, we define the Green’s function
as

G(⇥)
⇤i⇤f

(i⇧i, f⇧f ) = � < T⌅X
0⇤i
i (⇧i,⇤)X

⇤f0
f (⇧f ,⇤) >(⇥)(85)

where with arbitrary Â

< Â >⇥ ⇥ �
Tr e��Heff (⇥)T⌅

⇤
e�ÂS(⇥)Â)

⌅

Z(⇤)
,

Z(⇤) = Tr e��Heff (⇥)T⌅

⇤
e�ÂS(⇥)

⌅
. (86)

In this expression Heff (⇤) and ÂS(⇤) are obtained
from the original definition (9) and (10), with
the replacement Xab

i ⇤ Xab
i (⇤) and adding the term

u0 ⇤
⇧

i Ni⇥Ni⇤ to Heff , where u0 is now a Lagrange
multiplier.
The equation of motion of G(⇥) can be obtained using

the commutation relations Eqs (80,81,82), the calculation
is parallel to that in Appendix (A). In brief, Eq. (129)
and Eq. (130) are unchanged by working with X (⇤)’s,
and in place of Eq. (134) we obtain

g�1
0,⇤i,⇤j

(i⇧i, j⇧j)G(⇥)
⇤j⇤f

(j⇧j , f⇧f ) =

⇥(⇧i � ⇧f )⇥ij(1� ⇤ �⇤i⇤f (i⇧i))

�⇤
⌃

j⇤j

tij(⌅i⌅j) ↵T⌅

⇤
X

⇤̄i⇤̄j

i (⇧i)X
0⇤j

j (⇧i) X
⇤f0
f (⇧f )

⌅
�(⇥)

+
1

2

⌃

j⇤j

Jij(⌅i⌅j)↵T⌅

⇤
X

⇤̄i⇤̄j

j (⇧i)X
0⇤j

i (⇧i)X
⇤f0
f (⇧f )

⌅
�(⇥)

�1

2
⇤u0

⌃

⇤j

(⌅i⌅j)↵T⌅

⇤
X

⇤̄i⇤̄j

i (⇧i)X
0⇤j

i (⇧i)X
⇤f0
f (⇧f )

⌅
�(⇥) ,

(87)

where the ⇤ dependence of the X operators is implicit.
The higher order Green’s functions may be expressed as
functional derivatives with respect to the Bosonic source
V, in the same fashion as in the Appendix (A). The ex-
change term Jij does not pick up a factor of ⇤ through
the EOM since it conserves double occupancy. We can
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V, in the same fashion as in the Appendix (A). The ex-
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We could  take the game one step 
further and do a Perturbation theory in

small (fake) parameter λ
Theory of λ Fermions

Lot of promise- but in infancy.
 Hence will not purse in these lectures



Y represents the hopping matrix element
broken into a static and dynamic  parts. 

Symbolic Symmetrized EOM Notes All
(Dated: Feb 19, 2012)

Greens function

G⇥i⇥f [i, f ] = �⌅⌅X0⇥i
i X

⇥f0
f ⇧⇧. (1)

Let us denote:

�(i) = G(k)[i�, i], G(k)
⇥1⇥2

= ⇧1⇧2 G⇥̄2⇥̄1 (2)

Start with exact EOM in the presence of the time dependent potential V

(⌃⇤i � µ)G[i, f ] = �⇥[i, f ](1� �[i])� Vi · G[i, f ]�X[i, j] · G[j, f ]� Y [i, j] · G[j, f ], (3)

where denoting D = ⌅⇥ �
�V⇤ (* represents spin indices), X and Y are defined as

X[i, j] = �t[i, j] (D[i+] +D[j+]) +
1

2
J [i, k] (D[i+] +D[k+])⇥[i, j]

Y [i, j] = �t[i, j] (1� �[i]� �[j]) +
1

2
J [i, k] (1� �[i]� �[k])⇥[i, j]. (4)

Symbolically

X = [�t+
1

2
J ] D

Y1 = �[�t+
1

2
J ] � (5)

Denoting Fermi gas (non interacting) Greens function

Ĝ�1
0 (µ) ⇥ (µ� ⌃⇤ � V)1� [�t+

1

2
J ] (6)

we write EOM as

(Ĝ�1
0 (µ)� ⇤ Y1). G = (1� ⇤ �) + ⇤ X. G (7)

The exact EOM has ⇤ = 1, we introduced convenient ⇤ and at the end set ⇤ ⇤ 1. Hence inverting:

G = (Ĝ�1
0 (µ)� ⇤ Y1 � ⇤ X)�1. (1� ⇤ �). (8)

If we set (1� ⇤ �) ⇤ 1, canonical Fermi theory would have same form. Complications arise from time dependent �.
Now factors and vertex read:

G = g.µ (9)

We require the action of the functional derivative D on G. For this define a vertex function pair:

� ⇥ ⇥

⇥V . (�g�1), U ⇥ ⇥

⇥V . µ (10)

Thus Dg = g.�.g etc. Using the chain rule D(g.µ) = (g.�).g.µ+ g.D(µ), and defining

L ⇥ [t� 1

2
J ] ⌅⇥. g

⇥

⇥V⇥ , (11)

we obtain the decomposition

X.G = ⇥.G + ⇤

(12)

Symbolic notation makes things  simpler
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Ĝ�1
0 (µ) ⇥ (µ� ⌃⇤ � V)1� [�t+

1

2
J ] (6)

we write EOM as

(Ĝ�1
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Inspiration comes from the symbolic EOM for Hubbard model (Canonical theory.
Notice how the Hubbard U enters this eqn.
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(Ĝ�1
0 (µ)� ⇤ Y1). G = (1� ⇤ �) + ⇤ X. G (7)

The exact EOM has ⇤ = 1, we introduced convenient ⇤ and at the end set ⇤ ⇤ 1. Hence inverting:

G = (Ĝ�1
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Symbolic EOM for t J model

Parameter λ introduced here 
Set λ=1 at the end.
At λ=0 it reduces  a Fermi gas and
provides continuity between Fermi gas and tJ model.
It plays the role of double occupancy- see this 
explicitly in atomic limit.

Introducing λ expansion
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we obtain the decomposition
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Start from exact EOM

We can set up Schwinger Dyson equations by taking 

successive functional derivatives.

Generates the analog of the skeleton graph 

expansion  in powers of λ. 

We will take terms up to O(λ2 ) and study this 

“second order theory”.

� � U

U + z|t|

Comment:  With some  caveats,  it might 
be useful to think of a mapping

Hence low order theory in λ
is expected to be a VERY GOOD start.
(since unlike U, the range of λ is [0,1].)

 EOM continues to  bifurcate exactly defining the auxiliary FL etc
at a given λ.  At λ=0 Fermi gas, while at λ=1 the exact tJ eqns.

Auxiliary Fermi liquid

Caparison factor

(Ĝ�1
0 � � Y1 � � �). g = 1

µ = (1� ⇥�) + ⇥�



Since t is both the propagator and interaction term, we need a watchdog theorem to make 
sense.  

Shifting the center of gravity of the band should not change the physics.

Exact Shift identities  Simple but powerful.  Analogs of pure Gauge transformations.

Shift identities help us formulate a rigorous theory to each order in λ.
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identities of this theory, which splits into two parts following the splitting of the Greens functions. Sec. (IX) gives the
set of vertices defining the random phase approximation for this theory and Sec. (X) gives the formal results for the
charge and spin susceptibilities within RPA and its low order expansion. Sec. (XII) concludes with some comments
including a calculation of the superconducting transition temperature in this theory.

II. THE t-J MODEL AND ITS SHIFT INVARIANCE

We write the projected Fermi operators in terms of the Hubbard X operators as usual ĉi⇥ ⌅ X0⇥
i , ĉ†i⇥ ⌅ X⇥0

i and

ĉ†i⇥� ĉi⇥ ⌅ X⇥�⇥
i . We study the t-J model given by

H = �
⌦

i,j,⇥

tijX
⇥0
i X0⇥

j � µ
⌦

i,⇥

X⇥⇥
i +

1

2

⌦

i,j

Jij{⌅Si.⌅Sj �
1

4
ninj},

= �
⌦

i,j,⇥

tijX
⇥0
i X0⇥

j � µ
⌦

i,⇥

X⇥⇥
i +

1

4

⌦

ij,⇥

Jij
�
X⇥⇥̄

i X ⇥̄⇥
j �X⇥⇥

i X ⇥̄⇥̄
j

⇥
(10)

We will treat the two terms on an equal footing as far as possible. The statement of the model is invariant under a
particular “pure gauge” transformation that we next discuss. Let us note the shift invariance of the two parameters
in H. Consider the uniform (i.e. space independent) shifts of the basic parameters:

tij ⌅ tij � ut �ij , Jij ⌅ Jij + uJ �ij , (11)

with independent parameters ut, uJ . Under this transformation the Hamiltonian shifts as

H ⌅ H +

⌥
ut +

1

4
uJ

�
N̂ (12)

where N̂ =
 

i⇥ X
⇥⇥
i is the number operator for the electrons. Let us note two simple theorems encoding this

invariance:

• Shift theorem-(I): A shift of either t or J can be absorbed into suitable parameters, leaving the physics unchanged.

• Shift theorem-(II): The two shifts of t and J cancel each other when uJ = �4⇥ ut.

The first theorem is illustrated, for example, in the initial Hamiltonian Eq. (10) where it can be absorbed in the
chemical potential µ ⌅ µ + ut, and serves to identify a second generalized chemical potential u0 encountered later
while making approximations. The second theorem is subtle as it leaves the chemical potential µ unchanged. It
provides a measure of the equal handed treatment of t and J . We will find these almost trivial theorems of great use
in devising and validating various approximation schemes later.

In further work we need to add a source term via the operator A

A =

↵ �

0
A(⇤) d⇤ =

⌦

j,⇥1,⇥2

↵ �

0
d⇤ V⇥1⇥2

j (⇤)X⇥1⇥2
j (⇤) +

⌦

ij,⇥1⇥2

↵ �

0
d⇤ V⇥1⇥2

ij (⇤)X⇥10
i (⇤)X0⇥2

j (⇤), (13)

with the usual imaginary time Heisenberg picture ⇤ dependence of the operators Q(⇤) = e⇤HQe�⇤H , and the Bosonic
sources, V⇥1⇥2

j (⇤) at every site and also V⇥1⇥2
ij (⇤) for every pair of sites, as arbitrary functions of time. For any variable

we define a modified expectation

⇧⇧Q(⇤1, ⇤2, ..)⌃⌃ =
Tr
⇤
e��HT (e�A Q(⇤1, ⇤2, ..)

⌅

Tr [e��HT (e�A)]
, (14)

with a compact notation that includes the time ordering and the exponential factor automatically. With the abbre-
viation i ⇤ (Ri, ⇤i) for spatial ⌅Ri and imaginary time (⇤) coordinates, the physical electron is described by a Greens
function:

G⇥i⇥f [i, f ] = �⇧⇧X0⇥i
i X

⇥f0
f ⌃⌃. (15)

From this, the variation can be found from functional di�erentiation as

�

�V⇥1⇥2
j (⇤1)

⇧⇧Q(⇤2)⌃⌃ = ⇧⇧Q(⇤2)⌃⌃ ⇧⇧X⇥1⇥2
j (⇤1)⌃⌃ � ⇧⇧X⇥1⇥2

j (⇤1)Q(⇤2)⌃⌃. (16)

We note the fundamental anticommutator between the destruction and creation operators:
⇧
X0⇥1

i , X⇥20
j

⌃
= �ij

�
�⇥1⇥2 � (⇥1⇥2) X

⇥̄1⇥̄2
i

⇥
. (17)
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Shift invariance: Under the shifts
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charge and spin susceptibilities within RPA and its low order expansion. Sec. (XII) concludes with some comments
including a calculation of the superconducting transition temperature in this theory.

II. THE t-J MODEL AND ITS SHIFT INVARIANCE

We write the projected Fermi operators in terms of the Hubbard X operators as usual ĉi⇥ ⌅ X0⇥
i , ĉ†i⇥ ⌅ X⇥0

i and

ĉ†i⇥� ĉi⇥ ⌅ X⇥�⇥
i . We study the t-J model given by

H = �
⌦

i,j,⇥

tijX
⇥0
i X0⇥

j � µ
⌦

i,⇥

X⇥⇥
i +

1

2

⌦

i,j

Jij{⌅Si.⌅Sj �
1

4
ninj},

= �
⌦

i,j,⇥

tijX
⇥0
i X0⇥

j � µ
⌦

i,⇥

X⇥⇥
i +

1

4

⌦

ij,⇥

Jij
�
X⇥⇥̄

i X ⇥̄⇥
j �X⇥⇥

i X ⇥̄⇥̄
j

⇥
(10)

We will treat the two terms on an equal footing as far as possible. The statement of the model is invariant under a
particular “pure gauge” transformation that we next discuss. Let us note the shift invariance of the two parameters
in H. Consider the uniform (i.e. space independent) shifts of the basic parameters:

tij ⌅ tij � ut �ij , Jij ⌅ Jij + uJ �ij , (11)

with independent parameters ut, uJ . Under this transformation the Hamiltonian shifts as

H ⌅ H +

⌥
ut +

1

4
uJ

�
N̂ (12)

where N̂ =
 

i⇥ X
⇥⇥
i is the number operator for the electrons. Let us note two simple theorems encoding this

invariance:

• Shift theorem-(I): A shift of either t or J can be absorbed into suitable parameters, leaving the physics unchanged.

• Shift theorem-(II): The two shifts of t and J cancel each other when uJ = �4⇥ ut.

The first theorem is illustrated, for example, in the initial Hamiltonian Eq. (10) where it can be absorbed in the
chemical potential µ ⌅ µ + ut, and serves to identify a second generalized chemical potential u0 encountered later
while making approximations. The second theorem is subtle as it leaves the chemical potential µ unchanged. It
provides a measure of the equal handed treatment of t and J . We will find these almost trivial theorems of great use
in devising and validating various approximation schemes later.

In further work we need to add a source term via the operator A

A =

↵ �

0
A(⇤) d⇤ =

⌦

j,⇥1,⇥2

↵ �

0
d⇤ V⇥1⇥2

j (⇤)X⇥1⇥2
j (⇤) +

⌦

ij,⇥1⇥2

↵ �

0
d⇤ V⇥1⇥2

ij (⇤)X⇥10
i (⇤)X0⇥2

j (⇤), (13)

with the usual imaginary time Heisenberg picture ⇤ dependence of the operators Q(⇤) = e⇤HQe�⇤H , and the Bosonic
sources, V⇥1⇥2

j (⇤) at every site and also V⇥1⇥2
ij (⇤) for every pair of sites, as arbitrary functions of time. For any variable

we define a modified expectation

⇧⇧Q(⇤1, ⇤2, ..)⌃⌃ =
Tr
⇤
e��HT (e�A Q(⇤1, ⇤2, ..)

⌅

Tr [e��HT (e�A)]
, (14)

with a compact notation that includes the time ordering and the exponential factor automatically. With the abbre-
viation i ⇤ (Ri, ⇤i) for spatial ⌅Ri and imaginary time (⇤) coordinates, the physical electron is described by a Greens
function:

G⇥i⇥f [i, f ] = �⇧⇧X0⇥i
i X

⇥f0
f ⌃⌃. (15)

From this, the variation can be found from functional di�erentiation as

�

�V⇥1⇥2
j (⇤1)

⇧⇧Q(⇤2)⌃⌃ = ⇧⇧Q(⇤2)⌃⌃ ⇧⇧X⇥1⇥2
j (⇤1)⌃⌃ � ⇧⇧X⇥1⇥2

j (⇤1)Q(⇤2)⌃⌃. (16)

We note the fundamental anticommutator between the destruction and creation operators:
⇧
X0⇥1

i , X⇥20
j

⌃
= �ij

�
�⇥1⇥2 � (⇥1⇥2) X

⇥̄1⇥̄2
i

⇥
. (17)

COMMENTS



The auxiliary Fermi problem leading to g(k) is canonical in all respects.
It has a Hamiltonian with canonical electrons, and one can use the Feynman series to each 

order in λ.
The procedure outlined here “stitches” together this Feynman theory with  the caparison 

factor to give the exact physical Greens function.
Exact shift identities help us formulate a rigorous theory to each order in λ.
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In momentum representation this reads

Heff =
⌅

k

(⇤k +
1

4
J0 � µ)f†

k�fk� +
1

4 Ns

⌅

p

(⇥1⇥2) Weff (p1, p2; p3, p4) f
†
p1�1

f†
p2�̄1

fp3�̄2fp4�2 ,

Weff (p1, p2; p3, p4) = ��p1+p2,p3+p4 {⇤p1 + ⇤p2 + ⇤p3 + ⇤p4 + Jp2�p3 � u0} (28)

where the momentum independent term u0 has been explicitly written out in Eq. (28). In this Hamiltonian, the band
energies ⇤pj of the original model are present in the new band energy and also the interaction term, and hence the shift
Eq. (11) cannot be absorbed in the µ alone. Now the e�ective Hamiltonian explicitly satisfies the Shift theorem-(I)
provided u0 also transforms under Eq. (11) as:

u0 ⇥ uo + 4 ut + uJ . (29)

Thus in using the auxiliary Fermi liquid we have the

• Shift theorem-(I.1): An arbitrary shift of t and J , as in Eq. (12), can be absorbed by shifting u0, as in Eq. (29),
and the chemical potential µ ⇥ µ+ ut.

⇥2 ⇥2

⇥1 ⇥1

p1
p2

p3p4

Weff = ��p1+p2,p3+p4 {�
j ⇤j + Jp2�p3 � u0 }

FIG. 2: The pseudopotential Weff in the momentum space representation. The zigzag line represents Weff . Note that the
momentum transfer in the argument of J is also expressible as Jp1�p4 .

Since the standard notation for interaction reads
⇤

⇤ab|V |a⇥b⇥⌅f†
af

†
b fb�fa� for a conventional two body interac-

tion, our notation corresponds to writing Weff (p1, p2; p3, p4) = ⇤p1p2|W |p4p3⌅. Fermi symmetry implies the in-
variance Weff (p1, p2; p3, p4) = Weff (p2, p1; p4, p3), and Hermiticity implies the invariance Weff (p1, p2; p3, p4) =
Weff (p3, p4; p1, p2). For this canonical theory, we calculate the commutator:

[fi�i , Heff ] = �
⌅

j

tijfj�i � µ fi�i + Âi�i

Âi�i = [fi�i , Veff ]. (30)

with

Âi�i =
⌅

j�j

tij(⇥i⇥j)

�
f†
i�̄i

fi�̄jfj�j +
1

2
f†
j�̄i

fj�̄jfj�j +
1

2
f†
j�̄i

fi�̄jfi�j

⌥ ⌃⇧ �

⇥
� 1

2

⌅

j

Jij (⇥i⇥j) f
†
j�̄i

fj�̄jfi�j (31)

Let us note that Âi� Eq. (31) di�ers from Ai� in Eq. (20), through terms (in underbraces) that vanish identically if
we impose the single occupancy constraint on the auxiliary electrons.

D. Equation of Motion for G continued.

We now return to the study of the equation of motion for G in Eq. (24), given in terms of Ai� of Eq. (20). Since
this object represents the crucial Heisenberg equation of motion for the destruction operator, we look for terms that
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C. E�ective Hamiltonian

We now construct an e�ective Hamiltonian of canonical Fermions that will turn out to govern the auxiliary Fermi
liquid theory. The motivation for this construction is to cast the auxiliary Fermionic part of the ECFL theory into
a natural and canonical framework, so that the equation for the g, i.e. the auxiliary piece of the full G is obtainable
from a Hamiltonian that is Hermitian and respects the usual Fermi symmetry of interactions under exchange.

After some inspections a suitable Hamiltonian is provided by the expression:

Heff = �
⌃

ij

tijf
†
i�fj� +

⌃

i

(
1

4
J0 � µ)f†

i�fi� + Veff ,

Veff =
1

4

⌃

ij

tij(⇥1⇥2)
⌥⇤

f†
i�1

f†
i�̄1

+ f†
j�1

f†
j�̄1

⌅
fi�̄2fj�2 + (h.c.)

�
� 1

4

⌃

ij

Jij(⇥1⇥2) f
†
i�1

f†
j�̄1

fj�̄2fi�2

+
1

4

⌃

i

u0(⇥1⇥2) f
†
i�1

f†
i�̄1

fi�̄2fi�2 . (25)

with a Hermitian e�ective potential V †
eff = Veff and assume no constraint on double occupancy for these auxiliary

(canonical) Fermions fi�. The t and J parts reproduce the exact equations of motion as shown below with certain
additional terms that vanish under the constraint of single occupancy. The parameter u0 represent an e�ective
Hubbard type interaction for these Fermions, giving a contribution u0

⇧
i f

†
i�fi�f

†
i⇥fi⇥. Its magnitude is arbitrary at

the moment, since it disappears under exclusion of double occupancy. However it enables us to enforce the invariance
in Shift-theorem-(I), where the shift of t and J can be absorbed in u0. It will turn out to play the role of a second
chemical potential or Lagrange multiplier, in fixing the second sum rule Eq. (88). To illustrate this remark, note that
adding a constant to t or J as in Eq. (12), adds an onsite four Fermi interaction term. In order to satisfy the Shift
theorem -(I), we must compensate for this suitably, leading to the extra onsite term with coe⇥cient u0, which can
absorb this shift. It is also verified that the Shift theorem-(II) is satisfied without the u0 term. We emphasize that
the u0 term is both natural and essential for the purpose of satisfying the Shift theorem (I). Since the structure of the
u0 term is almost identical to that of Jij we will most often “hide it” inside Jij except when we explicitly display it.

Thus unless explicitly displayed, we should read Jij ⇥ Jij � uo�ij below. For analogous terms involving the X���

i
operators as in Eq. (20), we can include u0 in Jij without any errors, since the u0 term always vanishes due to the
properties of these operators.

�2 �2

�1 �1

i j
1
4(�1�2)tij

�2 �2

�1 �1

i j

1
4(�1�2)tij

�2 �2

�1 �1

i j
1
4(�1�2)tij

�2 �2

�1 �1

i j

1
4(�1�2)tij

�2 �2

�1 �1

i j

�1
4(�1�2)Jij

FIG. 1: The pseudopotential Veff in the real space representation, where the wavy line represents tij and the coiled line
represents Jij . The first two interaction vertices have two undisplayed symmetric partners with the exchange i � j.

Defining symmetric Cooper pair singlet operators

P†(i, j) =
⌃

⇥f†
i�f

†
j�̄ =

⇤
f†
i�f

†
j⇥ � f†

i⇥f
†
j�

⌅

P†(i, i) =
⌃

⇥f†
i�f

†
i�̄ = 2f†

i�f
†
i⇥ (26)

with P†(j, i) = P†(i, j) we write

Veff =
1

4

⌃

ij

tij
�
(P†(i, i) + P†(j, j)) P(i, j) + (h.c.)

⇥
� 1

4

⌃

ij

Jij P†
ij Pij . (27)

�
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I. INTRODUCTION AND PLAN OF THE PAPER

This work presents the results of a numerical calculation of the t�J model on a 2D square lattice. The first
detailed numerical calculation based on the formalism of extremely correlated Fermi systems Ref. (1) is described
here. The calculation is carried out to second order in the parameter � of that theory, related to the density of double
occupation, and the results compared with other approximations as well as a few experiments. We will refer to this
theory as (I) here and prefix equations of that paper with (I).

The work proceeds as follows. In section 2 we present a summary of the equations solved here from (I). In
section 3 we put these equations into a form which is appropriate for an explicit calculation. Some tricky aspects of
the calculation are discussed. In section 4, we present a scheme by which the spectral functions can be computed
e⇧ciently by FFT. Section 5 presents key results of the calculation in relation to key experimental results of the high
Tc Cuprate compounds.

II. SUMMARY OF THE O(�2) THEORY

This theory is described in (I). We start with the equations (I-83, I-84, I-85), for the Greens functions:

µ(k) = 1� �
n

2
+ �2 n2

4
+ �2⇥(k), where (k) ⇤ (⌘k, i⇤k), (1)

⇥(k) = �
⇤

p,q

(⌅p + ⌅k+q�p + ⌅k + ⌅q + Jk�p � u0) g(p) g(q) g(q + k � p) (2)

g�1(k) = i⇤n + µ� ⌅k � �2 �(k) (3)

⌅k =

�
1� � n+ �2 3n2
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⇥
⌅k + �

⇤

q

1

2
Jk�q g(q) (4)

�(k) = �
⇤

q,p

g(q) g(p) g(k + q � p)

⇥ (⌅k + ⌅p + ⌅q + ⌅k+q�p + Jk�p � u0 ) {⌅k + ⌅p + ⌅q + ⌅k+q�p +
1

2
(Jk�p + Jp�q)� u0 }. (5)

This is written with slight change of notation [�(k)]1 ⌅ �(k) from (I-85), and we have introduced the e⇤ective band
energy ⌅k in Eq. (4) that gets a static contribution from shrinking of the bare energies ⌅k as well as from the exchange
energy J . All terms are understood to be exact to O(�2) and to have corrections of O(�3) that we will ignore here

We set � ⌅ 1 in the following. The physical Greens function G is obtained from:

G(k) = g(k) µ(k) =
µ(k)

i⇤n + µ� ⌅k � �(k)
. (6)

The number of the physical electrons is fixed by the first sum rule:

n

2
=

⇤

k

G(k) ei�n0
+

, (7)

while the auxiliary Fermions described by g are equal in number, and satisfy an identical sum rule:

n

2
=

⇤

k

g(k) ei�n0
+

(8)

We can determine the two independent real parameters µ and u0 in order to satisfy both these equations simultane-
ously. Before discussing the computation we note that dropping terms of O(�3) in Eq. (1) - Eq. (5) limits the regime
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The number of the physical electrons is fixed by the first sum rule:

n

2
=

⇤

k

G(k) ei�n0
+

, (7)

while the auxiliary Fermions described by g are equal in number, and satisfy an identical sum rule:

n

2
=

⇤

k

g(k) ei�n0
+

(8)

We can determine the two independent real parameters µ and u0 in order to satisfy both these equations simultane-
ously. Before discussing the computation we note that dropping terms of O(�3) in Eq. (1) - Eq. (5) limits the regime
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I. INTRODUCTION AND PLAN OF THE PAPER

This work presents the results of a numerical calculation of the t�J model on a 2D square lattice. The first
detailed numerical calculation based on the formalism of extremely correlated Fermi systems Ref. (1) is described
here. The calculation is carried out to second order in the parameter � of that theory, related to the density of double
occupation, and the results compared with other approximations as well as a few experiments. We will refer to this
theory as (I) here and prefix equations of that paper with (I).

The work proceeds as follows. In section 2 we present a summary of the equations solved here from (I). In
section 3 we put these equations into a form which is appropriate for an explicit calculation. Some tricky aspects of
the calculation are discussed. In section 4, we present a scheme by which the spectral functions can be computed
e⇧ciently by FFT. Section 5 presents key results of the calculation in relation to key experimental results of the high
Tc Cuprate compounds.

II. SUMMARY OF THE O(�2) THEORY

This theory is described in (I). We start with the equations (I-83, I-84, I-85), for the Greens functions:

µ(k) = 1� �
n

2
+ �2 n2

4
+ �2⇥(k), where (k) ⇤ (⌘k, i⇤k), (1)

⇥(k) = �
⇤

p,q

(⌅p + ⌅k+q�p + ⌅k + ⌅q + Jk�p � u0) g(p) g(q) g(q + k � p) (2)

g�1(k) = i⇤n + µ� ⌅k � �2 �(k) (3)

⌅k =

�
1� � n+ �2 3n2
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⇥
⌅k + �

⇤

q

1

2
Jk�q g(q) (4)

�(k) = �
⇤

q,p

g(q) g(p) g(k + q � p)

⇥ (⌅k + ⌅p + ⌅q + ⌅k+q�p + Jk�p � u0 ) {⌅k + ⌅p + ⌅q + ⌅k+q�p +
1

2
(Jk�p + Jp�q)� u0 }. (5)

This is written with slight change of notation [�(k)]1 ⌅ �(k) from (I-85), and we have introduced the e⇤ective band
energy ⌅k in Eq. (4) that gets a static contribution from shrinking of the bare energies ⌅k as well as from the exchange
energy J . All terms are understood to be exact to O(�2) and to have corrections of O(�3) that we will ignore here

We set � ⌅ 1 in the following. The physical Greens function G is obtained from:

G(k) = g(k) µ(k) =
µ(k)

i⇤n + µ� ⌅k � �(k)
. (6)

The number of the physical electrons is fixed by the first sum rule:

n

2
=

⇤

k

G(k) ei�n0
+

, (7)

while the auxiliary Fermions described by g are equal in number, and satisfy an identical sum rule:

n

2
=

⇤

k

g(k) ei�n0
+

(8)

We can determine the two independent real parameters µ and u0 in order to satisfy both these equations simultane-
ously. Before discussing the computation we note that dropping terms of O(�3) in Eq. (1) - Eq. (5) limits the regime

µ(k) = 1� � + ⇥ �(k)

Domain of validity of second order theory n < .7 
(from the high frequency sum rule).
Can be pushed to higher densities by going to higher order in 

lambda
Already leads to interesting answers at the  second order. 
Leads to insight about Fermi liquid behaviour of the two self 

energies ~ g g g.  This is as in 2nd order perturbation of Fermi 
liquids. End Lectures 1&2


